Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.019
Filtrar
1.
J Environ Sci (China) ; 146: 217-225, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969449

RESUMO

Membrane fouling is a bottleneck issue that hindered the further application of ultrafiltration technology. To alleviate membrane fouling, coagulation-ultrafiltration (C-UF) process using polyaluminum chloride (PACl) and PACl-Al13 with high proportion of Al13O4(OH)247+ as coagulants, respectively, were investigated at various pH conditions. Results indicated that an increase in solution pH contributed to larger floc size and looser floc structure for both PACl and PACl-Al13. It was conducive to the formation of more porous cake, as evidenced by mean pore area and pore area distribution of cake, leading to lower reversible fouling. Furthermore, humic acid (HA) removal presented a trend of first increasing and then decreasing with the increase of pH. The optimal HA removal was achieved at pH 6 regardless of coagulant type, suggesting that the slightest irreversible fouling should be occurred at this point. Interestingly, the irreversible fouling with PACl coagulant achieved a minimum value at pH 9, while the minimal irreversible fouling with PACl-Al13 was observed at pH 6. We speculated that the cake formed by PACl could further intercept HA prior to UF process at alkaline pH. Furthermore, compared with PACl, PACl-Al13 had a stronger charge neutralization ability, thus contributing to more compact floc structure and higher HA removal at various pH conditions. By UF fractionation measurement, higher HA removal for PACl-Al13 was due to higher removal of HA with molecular weight less than 50 kDa.


Assuntos
Substâncias Húmicas , Membranas Artificiais , Ultrafiltração , Ultrafiltração/métodos , Substâncias Húmicas/análise , Floculação , Hidróxido de Alumínio/química , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Eliminação de Resíduos Líquidos/métodos
2.
Environ Geochem Health ; 46(8): 286, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967819

RESUMO

The vacuum preloading coupling flocculation treatment is a widely employed method for reinforcing soils with high water content in practical construction. However, uneven distribution and accumulation of flocculants pose significant damage to the soil environment and result in uneven soil consolidation, leading to severe issues in subsequent soil development and exploitation. To address these concerns, an evolved leaching with vacuum method is developed for facilitating soil consolidation while preventing the accumulation of flocculant in the soil. In this study, five model tests are conducted in which FeCl3 is chosen as the typical flocculant to promote soil consolidation, and deionized water is used for leaching. The final discharged water, settlement, water content and penetration resistance of soil are obtained to evaluate the soil reinforcement effect, while the flocculant removal effect is evaluated by the Fe3+ content in the filtrate and soil. The comprehensive reinforcement and flocculant removal effect show that this method is extremely effective compared to traditional vacuum preloading. The two leaching is clarified as the best choice, resulting in a 22% decrease in the soil water content and a 25% in soil penetration resistance, meanwhile a 12.8% removal rate of the flocculant. The test results demonstrate that leaching with vacuum preloading can contribute to promoting soil consolidation and reducing the accumulation of flocculant in the soil, ensuring the safe and eco-friendly use of the soil for future applications. The conclusions obtained are of significant theoretical value and technical support for practical construction and sustainable development.


Assuntos
Floculação , Solo , Solo/química , Vácuo , Poluentes do Solo/química , Compostos Férricos/química , Cloretos/química
3.
Environ Sci Pollut Res Int ; 31(30): 43080-43095, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38888824

RESUMO

Foaming agents as a combination of several components are usually used as soil conditioning during earth pressure balance shield (EPBS) tunnelling. These residues in waste EPBS muck lead to a series of new challenges for in-situ recycling, i.e., foams overflow flocculation tank. This study investigates the effects of residual foaming agent components and defoamers on defoaming-flocculation-filterpress characteristics of EPBS muck using an improved flocculation and filterpress system. Residual foam height (Hf), defoaming ratio (DFR), antifoaming ratio (AFR), total suspended substance (TSS), turbidity, moisture content (MC), and zeta potential (ZP) were selected as characterization indices. The microstructure of filterpress cakes was analyzed using a scanning electron microscope. Results demonstrate that an enhancement within 0.0-1.0wt.% for sodium fatty alcohol polyoxyethylene ether sulfate (AES) and alpha olefin sulfonate (AOS) significantly reduces DFR and AFR. The MC and ZP decline, while the Hf and turbidity enhance. The combinations of nonionic surfactants alkyl polyglycoside (APG) and fatty alcohol-polyoxyethylene ether (AEO) in a concentration range of 0.0-1.0wt.% with 0.2wt.% AES causes the Hf, DFR, AFR, turbidity, and ZP to exhibit absolutely different variations. The MC with the growth in both APG and AEO presents a trend of first decreasing and then increasing. By increasing foam stabilizers sodium carboxymethyl cellulose (CMC) and guar gum (GG) within 0.02-0.10wt.%, the AFR, TSS, and ZP enhance in varying degrees, while the Hf, DFR, and MC gradually reduce. With the increase of defoamers hydroxyl silicone oil-glycerol polyoxypropylene ether (H-G) and dimethyl silicone oil-glycerol polyoxypropylene ether (D-G) within 0.002-0.010wt.%, the DFR and AFR are significantly improved, while the TSS, turbidity, MC, and ZP display varying degrees of reduction. Moreover, defoaming-flocculation-filterpress mechanisms of EPBS muck are explored to provide a useful reference for actual in-situ recycling projects.


Assuntos
Floculação , Pressão , Solo/química , Tensoativos/química
4.
Water Res ; 259: 121868, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38852392

RESUMO

A high level of phosphate triggers the excretion of algogenic organic matter (AOM) during algae blooming, leading to disinfection by-products (DBPs) formation. The presence of phosphate could impact cyanobacteria harvesting and AOM separations by electrocoagulation. This study aims to investigate the role of phosphate in cell separations and AOM destabilization by Al-based electrocoagulation-flocculation-flotation (EFF) for harvesting of cyanobacteria and phosphate. The Al-based EFF was conducted to harvest Microcystis aeruginosa (MA) with varied phosphate (0-10 mg/L) at 5 mA/cm2 and pH 8. Fluorescent organic fractions, molecular weight distributions, the properties of flocs and DBPs formation potential were fully investigated. The results showed that the EFF at a low level of phosphate (1 mg/L) effectively improves the harvesting of MA cells, phosphate and the reduction in dissolved organic matter (DOC) up to 99.5 %, 95 % and 50 %, respectively. However, the presence of concentrated phosphate (10 mg/L) alleviates cell harvesting and worsens AOM separations due to ineffective floc formation induced by the fast formation of inactive AlPO4 precipitates along with limited Al(OH)3. At such a condition, it worsens DBPs precursors minimization owing to AOM release from MA cells. The increase in the current density during EFF can compensate for cell harvesting efficiency even though at concentrated phosphate, but it further induces AOM release. It is concluded that Al-based EFF demonstrates an efficient harvesting of cyanobacteria, phosphorus and AOM separations from algae-laden water under phosphate impact.


Assuntos
Floculação , Microcystis , Fósforo , Cianobactérias/metabolismo , Fosfatos/química
5.
Water Res ; 259: 121906, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38861760

RESUMO

To address the problems of unstable efficiency, long treatment period, and high energy consumption during microplastics (MPs) removal by traditional coagulation-flotation technology, a gel coagulation-spontaneous flotation (GCSF) process is proposed that employs laminarin (LA) as the crosslinker and polyaluminum chloride (PAC)/polyaluminum ferric chloride (PAFC) as the coagulant to remove MPs. Herein, the effects of GCSF chemical conditions on microplastic-humic acid composite pollutants (MP-HAs) removal were investigated, and the removal mechanisms were analyzed through theoretical calculations and floc structure characterization. Results showed that an LA to PAC/PAFC ratio of 2.5:1 achieved the highest removal of HA (86 %) and MPs (93 %-99 %) in short coagulation (< 1 min) and spontaneous flotation (< 9 min) period. PAC-LA exhibited strong removal ability for MP-HAs while PAFC-LA induced fast flotation speed. The peak intensity and peak shift in Fourier-transformed infrared and X-ray photo-electron spectra indicated that the removal mechanisms of MPs include hydrogen bond adsorption and the sweeping effect, mainly relying on -OH/-C = O on the MPs surface and entrapment of gel flocs with a high degree of aggregation, respectively. The extended Derjaguin-Landau-Verwey-Overbeek calculation also revealed that interactions between PAC/PAFC-LA and MP-HAs were mainly polar interaction (hydrogen bonding) and intermolecular attraction interaction (Lifshitz-van der Waals force), and the sweep effect was reflected by intermolecular interaction. In addition, density function theory calculations indicated that -OH in LA mainly adsorbs DO through a double hydrogen bond configuration, and the crosslinking ligand FeO6/AlO6 assists in DO absorption by -OH.


Assuntos
Microplásticos , Microplásticos/química , Poluentes Químicos da Água/química , Carbono/química , Floculação
6.
Int J Biol Macromol ; 272(Pt 1): 132894, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38844285

RESUMO

Physicochemical and structural characteristics of chitosan prepared from Deep-sea shrimp (DCs), including degree of deacetylation (DD), molecular weight (Mw), viscosity, crystallinity index (CrI) and surface morphology were compared with a commercial chitosan (CCs). The DCs had a higher DD of 81.33 ± 0.40 %, whereas the CCs had a lower DD of 74.62 ± 0.64 %. Additionally, the DCs exhibited a lower Mw of 192.47 ± 2.5 kDa and viscosity of 646.00 ± 4.00 cP compared to the CCs, which had a Mw of 202.44 ± 0.28 kDa and viscosity of 689.67 ± 5.91 cP. This study investigated the influence of chitosan properties, particularly DD and Mw on the harvesting of Scenedesmus sp. along with the chitosan dosage, pH of the culture medium, mixing speed and time. Under optimal operating conditions, the microalgae removal efficiency of the DCs reached a significantly higher level (94.71 ± 0.20 %) compared to that of CCs (88.25 ± 0.41 %). Chitosan with a higher DD and low Mw demonstrated superior flocculation efficiency. The results highlight the significance of DD and Mw of chitosan and its influence on the flocculation of microalgae, providing valuable insights for optimizing the harvesting process with the non-toxic and natural flocculent, chitosan.


Assuntos
Quitosana , Floculação , Microalgas , Scenedesmus , Quitosana/química , Floculação/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Viscosidade , Concentração de Íons de Hidrogênio , Peso Molecular , Animais
7.
Chemosphere ; 361: 142563, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851498

RESUMO

In this study, the growth characteristics of microalgae cultured with different carbon sources were analyzed, and the flocculation characteristics under the influence of carbon sources were evaluated using three typical flocculants. The results showed that the organic carbon sources could significantly increase the content of extracellular proteins in microalgae. Specifically, the extracellular protein concentrations of microalgae cultured with pure BG-11, ethanol, sodium acetate and glucose were 18.2 29.2, 97.3, and 34.7 mg/g, respectively. During the flocculation process, microalgae cultured with sodium acetate exhibited a weak response to the flocculant because of excessive extracellular proteins inhibited flocculation. In addition, the flocculation efficiency was also less than 50.0% cultured with sodium acetate in all pH test ranges when alum and chitosan were used as flocculants. It could be inferred that the flocculant initially happened to charge neutralization with the negatively charged proteins in the solution and then bridged the charges with the microalgae. These findings provide insights into the effects of different carbon sources on microalgal flocculation, promising organic integration of microalgae wastewater treatment and harvesting.


Assuntos
Carbono , Chlorella , Floculação , Microalgas , Chlorella/crescimento & desenvolvimento , Carbono/química , Microalgas/crescimento & desenvolvimento , Quitosana/química , Acetato de Sódio/química , Águas Residuárias/química , Glucose , Concentração de Íons de Hidrogênio , Etanol/química , Eliminação de Resíduos Líquidos/métodos
8.
Bioresour Technol ; 403: 130904, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38801957

RESUMO

Chlamydomonas reinhardtii prefers ammonium (NH4+) as a nitrogen source, but its late-stage growth under high-NH4+ concentrations (0.5 âˆ¼ 1 g/L) is retarded due to medium acidification. In this study, oyster shell powders were shown to increase the tolerance of C. reinhardtii to NH4+ supplementation at 0.7 g/L in TAP medium in 1-L bubble-column bioreactors, resulting in a 22.9 % increase in biomass production, 62.1 % rise in unsaturated fatty acid accumulation, and 19.2 % improvement in harvesting efficiency. Powdered oyster shell mitigated medium acidification (pH 7.2-7.8) and provided dissolved inorganic carbon up to 8.02 × 103 µmol/L, facilitating a 76.3 % NH4+ consumption, release of up to 189 mg/L of Ca2+, a 42.1 % reduction in ζ-potential and 27.7 % increase in flocculation activity of microalgae cells. This study highlights a promising approach to utilize powdered oyster shell as a liming agent, supplement carbon source, and bio-flocculant for enhancing biomass production and microalgae harvesting in NH4+-rich environments.


Assuntos
Compostos de Amônio , Biomassa , Chlamydomonas reinhardtii , Ostreidae , Animais , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Exoesqueleto , Pós , Floculação , Carbono , Concentração de Íons de Hidrogênio , Reatores Biológicos , Nitrogênio
9.
Chemosphere ; 359: 142200, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38697565

RESUMO

Mg(OH)2 dissolves slowly and can provide a long-term source of alkalinity, thus a promising alternative reagent for the in situ remediation of heavy metal polluted groundwater. Unfortunately, it exhibits a relatively poor stabilization effect on heavy metal Cd due to the higher solubility of the resulting stabilized product, Cd(OH)2. To overcome this limitation, we investigated the use of MgCO3/Mg(OH)2 colloid modified by sodium polyacrylate (PAAS) to remove Cd from groundwater. Through ultrasonic dispersion, the molecular chains of PAAS are broken, causing a transformation from flocculation to surface modification, resulting in the production of a stable colloid. The colloidal particles of MgCO3/Mg(OH)2 have a smaller size and a negatively charged surface, which significantly enhances their migration ability in aquifers. The combination of MgCO3 and Mg(OH)2 provides a complementary effect, where MgCO3 effectively precipitates Cd in the aquifer while Mg(OH)2 maintains the required pH level for stabilization. The optimal compounding ratio of MgCO3 to Mg(OH)2 for achieving the best stabilization effect on Cd is found to be 1:1. Column experiments demonstrate that the injection of MgCO3/Mg(OH)2 colloid substantially enhances Cd stability, reducing the exchangeable fraction of Cd in aquifer media from 88.61% to a range of 22.50-34.38%. Based on these results, the MgCO3/Mg(OH)2 colloid shows great potential as a reactive medium for remediating Cd-contaminated groundwater.


Assuntos
Cádmio , Coloides , Recuperação e Remediação Ambiental , Água Subterrânea , Poluentes Químicos da Água , Água Subterrânea/química , Poluentes Químicos da Água/química , Cádmio/química , Coloides/química , Recuperação e Remediação Ambiental/métodos , Concentração de Íons de Hidrogênio , Floculação , Resinas Acrílicas/química
10.
Bioresour Technol ; 403: 130892, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795922

RESUMO

Chitosan (CTS) serves as an excellent natural flocculant in wastewater purification and sludge conditioning, but its potential impact on anaerobic fermentation of waste-activated sludge is unclear. The current study investigated the role of CTS in short-chain fatty acids (SCFAs) generation via sludge alkaline anaerobic fermentation. The results showed a drastic reduction in SCFA production with CTS, showing a maximum inhibition of 33 % at 6 mg/g of total suspended solids. CTS hindered sludge solubilization through flocculation, and acted as a humus precursor, promoting humus formation, and consequently reduced the amount of available substrates. Further, CTS promoted free ammonia production, posing a challenge to enzymes and cell viability. Additionally, CTS increased the population of Rikenellaceae sp. and weakened the dominance of hydrolyzing and acidifying bacteria. This study deepens the understanding of the potential impact of CTS on anaerobic fermentation and provides a theoretical basis for reducing the risk of polymeric flocculants.


Assuntos
Quitosana , Ácidos Graxos Voláteis , Fermentação , Floculação , Esgotos , Quitosana/química , Quitosana/farmacologia , Ácidos Graxos Voláteis/metabolismo , Anaerobiose , Amônia/metabolismo
11.
Water Res ; 259: 121846, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38820733

RESUMO

Ballasted flocculation is regarded as a most promising water treatment technology in aspects of retrofit and high-rate applications. To deep understand the incorporation behaviors of ballasting agent into ballasted floc growth, two distinct injection modes (namely a two-stage injection of polyacrylamide (PAM) alone, and a two-stage injection of both PAM and microsand) were developed in this study. Then, ballasted flocculation tests of kaolin and kaolin-HA (humic acid) waters were conducted at varying split ratios for fixed total dosages of both PAM and microsand. The experimental results showed that for either two-stage injection mode, the higher the second percentage of each split ratio, the greater the average size of maturated flocs at the second sub-stage of maturation. Meanwhile, the turbidity and UV254 values of settled water became lower at 30 and 180 s of sedimentation, suggesting that varying split ratios significantly affected the kinetics of ballasted floc growth. Moreover, it was suggested that the selection of either two-stage injection mode or corresponding split ratios played a more pronounced role in the HA removal than the total dosage of PAM. This suggestion was supported by SEM, FTIR and XPS analyses for surface morphological details, functional groups and chemical states of maturated flocs eventually formed in the kaolin-HA water through both two-stage injection modes. Accordingly, newly-established conceptual models of ballasted floc growth were proposed to explore the potential influencing mechanisms of varying split ratios on the ballasted flocculation performance. At each sub-stage of maturation, an appropriate dosage ratio between PAM and microsand was of great importance to effectively incorporate microsand particles into ballasted floc formation, besides the hydrolyzed produces of AS coagulant formed at the coagulation stage of ballasted flocculation. This study is expected to provide valuable insights for making ballasted flocculation more effective, economical and sustainable in water treatment engineering.


Assuntos
Floculação , Substâncias Húmicas , Caulim , Purificação da Água , Caulim/química , Purificação da Água/métodos , Resinas Acrílicas/química , Polímeros/química
12.
Sci Total Environ ; 939: 173378, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38795993

RESUMO

Cyanobacterial blooms have been a growing problem in water bodies and attracted attention from researcher and water companies worldwide. Different treatment methods have been researched and applied either inside water treatment plants or directly into reservoirs. We tested a combination of coagulants, polyaluminium chloride (PAC) and iron(III) chloride (FeCl3), and ballasts, luvisol (LUV) and planosol (PLAN), known as the 'Floc and Sink' technique, to remove positively buoyant cyanobacteria from a tropical reservoir water. Response Surface Methodology (RSM) based on Central Composite Design (CCD) was used to optimize the two reaction variables - coagulant dosage (x1) and ballast dosage (x2) to remove the response variables: chlorophyll-a, turbidity, true color, and organic matter. Results showed that the combination of LUV with PAC effectively reduced the concentration of the response variables, while PLAN was ineffective in removing cyanobacteria when combined to PAC or FeCl3. Furthermore, FeCl3 presented poorer floc formation and lower removal efficiency compared to PAC. This study may contribute to the theoretical and practical knowledge of the algal biomass removal for mitigating eutrophication trough different dosages of coagulants and ballasts.


Assuntos
Cianobactérias , Eutrofização , Cianobactérias/crescimento & desenvolvimento , Purificação da Água/métodos , Cloretos/análise , Floculação , Compostos Férricos , Hidróxido de Alumínio/química , Solo/química
13.
Water Res ; 258: 121781, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38761597

RESUMO

Biogas slurry from anaerobic digestion is rich in nutrients but has not been fully utilized due to a high content of suspended solids (SS) causing clogging during agricultural irrigation. This study aimed to evaluate the performance of a novel chitosan and polyferric sulfate (CTS-PFS) composite coagulant for simultaneous flocculation and floatation to enhance SS removal while preserving nutrients in biogas slurry. Orthogonal method was used for experimental design to determine the optimal synthesis and operational conditions of CTS-PFS. Results show that CTS-PFS outperformed individual CTS and PFS coagulant in terms of SS removal and nutrient (nitrogen, phosphorus, and potassium) preservation. Compared to individual CTS and PFS coagulation, the combination of CTS and PFS at the mass ratio of 1:6 showed significantly higher performance by 41.5 % increase in SS removal and 5.2 % reduction in nutrient loss. The improved performance of CTS-PFS was attributed to its formation of polynuclear hydroxyl complexes with ferric oxide groups (e.g. Fe-OH, Fe-O-Fe, Fe-OH-Fe and COO-Fe) to strengthen charge neutralization and adsorption bridging. Data from this study further confirm that CTS-PFS enhanced the removal of small suspended particles and dissolved organic matter in the molecular weight range of 0.4-2.0 kDa and preserved ammonia and potassium better in biogas slurry. Bubbles were generated as hydrogen ions from coagulant hydrolysis interacted with bicarbonate and carbonate in biogas slurry for removing the produced flocs by floatation. Floc flotation was more effective in CTS-PFS coagulation due to the significant production of uniform bubbles, evidenced by the reduction in the viscosity of biogas slurry.


Assuntos
Biocombustíveis , Quitosana , Floculação , Quitosana/química , Compostos Férricos/química , Eliminação de Resíduos Líquidos/métodos , Fósforo/química , Nitrogênio/química
14.
ACS Appl Bio Mater ; 7(6): 4017-4028, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38788153

RESUMO

Microalgae show great promise for producing valuable molecules like biofuels, but their large-scale production faces challenges, with harvesting being particularly expensive due to their low concentration in water, necessitating extensive treatment. While methods such as centrifugation and filtration have been proposed, their efficiency and cost-effectiveness are limited. Flotation, involving air-bubbles lifting microalgae to the surface, offers a viable alternative, yet the repulsive interaction between bubbles and cells can hinder its effectiveness. Previous research from our group proposed using an amphiphilic chitosan derivative, polyoctyl chitosan (PO-chitosan), to functionalize bubbles used in dissolved air flotation (DAF). Molecular-scale studies performed using atomic force microscopy (AFM) revealed that PO-chitosan's efficiency correlates with cell surface properties, particularly hydrophobic ones, raising the question of whether this molecule can in fact be used more generally to harvest different microalgae. Evaluating this, we used a different strain of Chlorella vulgaris and first characterized its surface properties using AFM. Results showed that cells were hydrophilic but could still interact with PO-chitosan on bubble surfaces through a different mechanism based on specific interactions. Although force levels were low, flotation resulted in 84% separation, which could be explained by the presence of AOM (algal organic matter) that also interacts with functionalized bubbles, enhancing the overall separation. Finally, flocculation was also shown to be efficient and pH-independent, demonstrating the potential of PO-chitosan for harvesting microalgae with different cell surface properties and thus for further sustainable large-scale applications.


Assuntos
Materiais Biocompatíveis , Quitosana , Floculação , Teste de Materiais , Microalgas , Propriedades de Superfície , Quitosana/química , Microalgas/química , Microalgas/metabolismo , Microalgas/citologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Tamanho da Partícula , Microscopia de Força Atômica , Interações Hidrofóbicas e Hidrofílicas , Chlorella vulgaris/metabolismo , Chlorella vulgaris/química , Tensoativos/química
15.
Mar Pollut Bull ; 203: 116437, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38733893

RESUMO

Dissolved algal organic matter (dAOM) originating from harmful algal blooms (HABs) can deteriorate the quality of municipal water supplies, threaten the health of aquatic environments, and interfere with modified clay (MC)-based HABs control measures. In this study, we explored the composition of dAOM from Prorocentrum donghaiense, a typical HAB organism, and assessed the influence of dAOM on MC flocculation. Our results suggested that dAOM composition was complex and had a wide molecular weight (MW) distribution. MW and electrical properties were important dAOM characteristics affecting flocculation and algal removal efficiency of MC. Negatively charged high-MW components (>50 kDa) critically affected algal removal efficiency, reducing the zeta potential of MC particles and leading to small and weak flocs. However, the effect of dAOM depended on its concentration. When the cell density of P. donghaiense reached HAB levels, the high-MW dAOM strongly decreased the algal removal efficiency of MC.


Assuntos
Argila , Floculação , Proliferação Nociva de Algas , Argila/química
16.
Chemosphere ; 359: 142328, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740336

RESUMO

Considering the limited literature and the difficulty of quantifying 1-µm micro-nanoplastics (1-µm MNP) in complex aqueous matrices such as wastewater and sludge, the removal rate of these very small particles in wastewater treatment plants (WWTP) represents a major challenge. In this study, coagulation-flocculation-sedimentation (CFS) with aluminum salts was investigated to evaluate the removal of 1-µm MNPs spiked in tap water, raw wastewater, pre-settled wastewater, and activated sludge. Quantification of 1-µm MNP was performed using the high-throughput flow cytometry (FCM) analysis which takes only a few minutes and produces results with high accuracy and reproducibly. The results indicated that the 1-µm MNPs were highly stable in pure water and unable to settle rapidly. In raw wastewater, sedimentation without coagulants removed less than 4% of 1-µm MNP. Conversely, CFS treatment showed a significant improvement in the removal of 1-µm MNP from wastewater. At dosages of 0.3-3 mg Al3+/L, the removal of MNPs in wastewater reached 30% and no flocs were observed, while floc formation was visible with increased dosages of 3-12 mg Al3+/L, obtaining MNP removal greater than 90%. CFS in activated sludge with a solids content of 5800 mg MLSS/L registered the highest removal efficiency (95-99%) even for dosages of 0.3-60 mg Al3+/L and pH dropping to 5. However, activated sludge showed extremely high removal efficiency of MNPs (97.3 ± 0.9%) even without coagulants. The large, dense flocs that constitute activated sludge appear particularly efficient in capturing 1-µm MNPs during the sedimentation process even in the absence of coagulants.


Assuntos
Floculação , Citometria de Fluxo , Microplásticos , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Esgotos/química , Águas Residuárias/química , Citometria de Fluxo/métodos , Microplásticos/análise , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos/métodos
17.
Sci Total Environ ; 931: 172945, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703849

RESUMO

The coagulation process has a high potential as a treatment method that can handle pathogenic viruses including emerging enveloped viruses in drinking water treatment process which can lower infection risk through drinking water consumption. In this study, a surrogate enveloped virus, bacteriophage Փ6, and surrogate non-enveloped viruses, including bacteriophage MS-2, T4, ՓX174, were used to evaluate removal efficiencies and mechanisms by the conventional coagulation process with alum, poly­aluminum chloride, and ferric chloride at pH 5, 7, and 9 in turbid water. Also, treatability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a recent virus of global concern by coagulation was evaluated as SARS-CoV-2 can presence in drinking water sources. It was observed that an increase in the coagulant dose enhanced the removal efficiency of turbidity and viruses, and the condition that provided the highest removal efficiency of enveloped and non-enveloped viruses was 50 mg/L of coagulants at pH 5. In addition, the coagulation process was more effective for enveloped virus removal than for the non-enveloped viruses, and it demonstrated reduction of SARS-CoV-2 Omicron BA.2 over 0.83-log with alum. According to culture- and molecular-based assays (qPCR and CDDP-qPCR), the virus removal mechanisms were floc adsorption and coagulant inactivation. Through inactivation with coagulants, coagulants caused capsid destruction, followed by genome damage in non-enveloped viruses; however, damage to a lipid envelope is suggested to contribute to a great extend for enveloped virus inactivation. We demonstrated that conventional coagulation is a promising method for controlling emerging and re-emerging viruses in drinking water.


Assuntos
SARS-CoV-2 , Purificação da Água , Purificação da Água/métodos , SARS-CoV-2/fisiologia , COVID-19 , Água Potável/virologia , Água Potável/química , Compostos de Alúmen , Microbiologia da Água , Betacoronavirus/fisiologia , Floculação , Compostos de Alumínio , Compostos Férricos/química
18.
Water Res ; 257: 121684, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38723348

RESUMO

Natural manganese oxides could induce the intermolecular coupling reactions among small-molecule organics in aqueous environments, which is one of the fundamental processes contributing to natural humification. These processes could be simulated to design novel advanced oxidation technology for water purification. In this study, periodate (PI) was selected as the supplementary electron-acceptor for colloidal manganese oxides (Mn(IV)aq) to remove phenolic contaminants from water. By introducing polyferric sulfate (PFS) into the Mn(IV)aq/PI system and exploiting the flocculation potential of Mn(IV)aq, a post-coagulation process was triggered to eliminate soluble manganese after oxidation. Under acidic conditions, periodate exists in the H4IO6- form as an octahedral oxyacid capable of coordinating with Mn(IV)aq to form bidentate complexes or oligomers (Mn(IV)-PI*) as reactive oxidants. The Mn(IV)-PI* complex could induce cross-coupling process between phenolic contaminants, resulting in the formation of oligomerized products ranging from dimers to hexamers. These oligomerized products participate in the coagulation process and become stored within the nascent floc due to their catenulate nature and strong hydrophobicity. Through coordination between Mn(IV)aq and H4IO6-, residual periodate is firmly connected with manganese oxides in the floc after coagulation and could be simultaneously separated from the aqueous phase. This study achieves oxidizing oligomerization through a homogeneous process under mild conditions without additional energy input or heterogeneous catalyst preparation. Compared to traditional mineralization-driven oxidation techniques, the proposed novel cascade processes realize transformation, convergence, and separation of phenolic contaminants with high oxidant utilization efficiency for low-carbon purification.


Assuntos
Oxirredução , Purificação da Água , Purificação da Água/métodos , Óxidos/química , Compostos de Manganês/química , Poluentes Químicos da Água/química , Floculação
19.
Water Res ; 257: 121743, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728775

RESUMO

Effective deep-dewatering is crucial for wastewater sludge management. Currently, the dominant methods focus on promoting cell lysis to release intracellular water, but these techniques often lead to secondary pollution and require stringent conditions, limiting their practical use. This study explores an innovative method using a commercially available complex quaternary ammonium salt surfactant, known as G-agent. This agent remarkably reduces the sludge water content from 98.6 % to 56.8 % with a low dosage (50 mg/g DS) and under neutral pH conditions. This approach surpasses Fenton oxidation in terms of dewatering efficiency and avoids the necessity for cell lysis and bound water release, thereby reducing the risk of secondary pollution in the filtrate, including heavy metals, nitrogen, phosphorus, and other contaminants. The G-agent plays a significant role in destabilizing flocs and enhancing flocculation during the conditioning and initial dewatering stages, effectively reducing the solid-liquid interfacial affinity of the sludge. In the compression filtration stage, the agent's solidification effect is crucial in forming a robust skeleton that improves pore connectivity within the filter cake, leading to increased water permeability, drainage performance and water flow-out efficiency. This facilitates deep dewatering of sludge without cell lysis. The study reveals that the G-agent primarily improves water flow-out efficiency rather than water flowability, indicating that cell lysis and bound water release are not indispensable prerequisites for sludge deep-dewatering. Furthermore, it presents an encouraging prospect for overcoming the limitations associated with conventional sludge deep-dewatering processes.


Assuntos
Floculação , Esgotos , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Filtração , Água/química , Tensoativos/química
20.
Chemosphere ; 356: 141958, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608775

RESUMO

In water treatment processes (WTPs), artificial intelligence (AI) based techniques, particularly machine learning (ML) models have been increasingly applied in decision-making activities, process control and optimization, and cost management. At least 91 peer-reviewed articles published since 1997 reported the application of AI techniques to coagulation/flocculation (41), membrane filtration (21), disinfection byproducts (DBPs) formation (13), adsorption (16) and other operational management in WTPs. In this paper, these publications were reviewed with the goal of assessing the development and applications of AI techniques in WTPs and determining their limitations and areas for improvement. The applications of the AI techniques have improved the predictive capabilities of coagulant dosages, membrane flux, rejection and fouling, disinfection byproducts (DBPs) formation and pollutants' removal for the WTPs. The deep learning (DL) technology showed excellent extraction capabilities for features and data mining ability, which can develop an image recognition-based DL framework to establish the relationship among the shapes of flocs and dosages of coagulant. Further, the hybrid techniques (e.g., combination of regression and AI; physical/kinetics and AI) have shown better predictive performances. The future research directions to achieve better control for WTPs through improving these techniques were also emphasized.


Assuntos
Inteligência Artificial , Água Potável , Floculação , Purificação da Água , Purificação da Água/métodos , Água Potável/química , Desinfecção/métodos , Filtração/métodos , Poluentes Químicos da Água/análise , Aprendizado de Máquina , Adsorção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...