Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.135
Filtrar
1.
Mikrochim Acta ; 191(8): 477, 2024 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039391

RESUMO

A novel biofuel cell (BFC)-based self-powered electrochemical immunosensing platform was developed by integrating the target-induced biofuel release and biogate immunoassay for ultrasensitive 17ß-estradiol (E2) detection. The carbon nanocages/gold nanoparticle composite was employed in the BFCs device as the electrode material, through which bilirubin oxidase and glucose oxidase were wired to form the biocathode and bioanode, respectively. Positively charged mesoporous silica nanoparticles (PMSN) were encapsulated with glucose molecules as biofuel and subsequently coated by the negatively charged AuNPs-labelled anti-E2 antibody (AuNPs-Ab) serving as a biogate. The biogate could be opened efficiently and the trapped glucose released once the target E2 was recognized and captured by AuNPs-Ab due to the decreased adhesion between the antigen-antibody complex and PMSN. Then, glucose oxidase oxidized the glucose to produce a large number of electrons, resulting in significantly increased open-circuit voltage (EOCV). Promisingly, the proposed BFC-based self-powered immunosensor demonstrated exceptional sensitivity for the detection of E2 in the concentration range from 1.0 pg mL-1 to 10.0 ng mL -1, with a detection limit of 0.32 pg mL-1 (S/N = 3). Furthermore, the prepared BFC-based self-powered homogeneous immunosensor showed significant potential for implementation as a viable prototype for a mobile and an on-site bioassay system in food and environmental safety applications.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Estradiol , Glucose Oxidase , Ouro , Limite de Detecção , Nanopartículas Metálicas , Imunoensaio/métodos , Estradiol/química , Estradiol/análise , Ouro/química , Glucose Oxidase/química , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Humanos , Eletrodos , Glucose/análise , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Anticorpos Imobilizados/imunologia , Dióxido de Silício/química , Enzimas Imobilizadas/química
2.
J Am Chem Soc ; 146(29): 19728-19736, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39001879

RESUMO

Electroactive microbes that can release or take up electrons are essential components of nearly every ecological niche and are powerful tools for the development of alternative energy technologies. Small-molecule mediators are critical for this electron transfer but remain difficult to study and engineer because they perform concerted two-electron transfer in native systems but only individual, one-electron transfers in electrochemical studies. Here, we report that electrode modification with ion- and electron-conductive polymers yields biosimilar, concerted two-electron transfer from Shewanella oneidensis via flavin mediators. S. oneidensis biofilms on these polymers show significantly improved per-microbe current generation and morphologies that more closely resemble native systems, setting a new paradigm for the study and optimization of these electron transfer processes. The unprecedented concerted electron transfer was found to be due to altered mediator electron transfer thermodynamics, enabling biologically relevant studies of electroactive biofilms in the lab for the first time. These important findings pave the way for a complete understanding of the ecological role of electroactive microbes and their broad application in sustainable technologies.


Assuntos
Biofilmes , Polímeros , Shewanella , Termodinâmica , Shewanella/metabolismo , Shewanella/química , Transporte de Elétrons , Biofilmes/efeitos dos fármacos , Polímeros/química , Fontes de Energia Bioelétrica , Eletrodos , Condutividade Elétrica , Elétrons , Técnicas Eletroquímicas
3.
ACS Appl Mater Interfaces ; 16(28): 36117-36130, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38950522

RESUMO

Better infection control will accelerate wound healing and alleviate associated healthcare burdens. Traditional antibacterial dressings often inadequately control infections, inadvertently promoting antibacterial resistance. Our research unveils a novel, dual-functional living dressing that autonomously generates antibacterial agents and delivers electrical stimulation, harnessing the power of spore-forming Bacillus subtilis. This dressing is built on an innovative wearable microbial fuel cell (MFC) framework, using B. subtilis endospores as a powerful, dormant biocatalyst. The endospores are resilient, reactivating in nutrient-rich wound exudate to produce electricity and antibacterial compounds. The combination allows B. subtilis to outcompete pathogens for food and other resources, thus fighting infections. The strategy is enhanced by the extracellular synthesis of tin oxide and copper oxide nanoparticles on the endospore surface, boosting antibacterial action, and electrical stimulation. Moreover, the MFC framework introduces a pioneering dressing design featuring a conductive hydrogel embedded within a paper-based substrate. The arrangement ensures cell stability and sustains a healing-friendly moist environment. Our approach has proven very effective against three key pathogens in biofilms: Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus demonstrating exceptional capabilities in both in vitro and ex vivo models. Our innovation marks a significant leap forward in wearable MFC-based wound care, offering a potent solution for treating infected wounds.


Assuntos
Antibacterianos , Bacillus subtilis , Fontes de Energia Bioelétrica , Biofilmes , Escherichia coli , Pseudomonas aeruginosa , Staphylococcus aureus , Infecção dos Ferimentos , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus/efeitos dos fármacos , Humanos , Pseudomonas aeruginosa/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Bacillus subtilis/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Dispositivos Eletrônicos Vestíveis , Bandagens , Cobre/química , Cobre/farmacologia , Cicatrização/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia
4.
Bioresour Technol ; 406: 131079, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38972431

RESUMO

The influence of sulfamethoxazole (SMX) on the electrochemical activity, bacterial community, and metabolic state of anode respiring microbes was investigated in constructed-wetland-coupled microbial fuel cells (CW-MFCs). Results suggested that SMX shortened the acclimatisation period and enhanced the maximal power density of the CW-MFC at 0.1 mg/L. Cyclic voltammetry (CV) results indicated that SMX may trigger an electrocatalytic process related to an extra redox-active compound. Exposure to SMX significantly altered the bacterial communities, leading to decreased abundances of Desulfurivibrio and Pseudomonas, while increasing the contents of Rhodobacter and Anaerovorax. Furthermore, metabolites related to amino acids and nucleotide metabolism were suppressed at 10 mg/L SMX, while the related metabolites increased at 0.1 mg/L SMX. The upregulated pathway of biofilm formation indicated that the bacteria tended to form biofilms under the influence of SMX. This study provides valuable insights into the complex interactions between SMX and electrochemically active bacteria.


Assuntos
Bactérias , Fontes de Energia Bioelétrica , Eletrodos , Sulfametoxazol , Áreas Alagadas , Fontes de Energia Bioelétrica/microbiologia , Sulfametoxazol/metabolismo , Bactérias/metabolismo , Biofilmes
5.
Proc Natl Acad Sci U S A ; 121(29): e2404958121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38985767

RESUMO

Hydrogen production through water splitting is a vital strategy for renewable and sustainable clean energy. In this study, we developed an approach integrating nanomaterial engineering and synthetic biology to establish a bionanoreactor system for efficient hydrogen production. The periplasmic space (20 to 30 nm) of an electroactive bacterium, Shewanella oneidensis MR-1, was engineered to serve as a bionanoreactor to enhance the interaction between electrons and protons, catalyzed by hydrogenases for hydrogen generation. To optimize electron transfer, we used the microbially reduced graphene oxide (rGO) to coat the electrode, which improved the electron transfer from the electrode to the cells. Native MtrCAB protein complex on S. oneidensis and self-assembled iron sulfide (FeS) nanoparticles acted in tandem to facilitate electron transfer from an electrode to the periplasm. To enhance proton transport, S. oneidensis MR-1 was engineered to express Gloeobacter rhodopsin (GR) and the light-harvesting antenna canthaxanthin. This led to efficient proton pumping when exposed to light, resulting in a 35.6% increase in the rate of hydrogen production. The overexpression of native [FeFe]-hydrogenase further improved the hydrogen production rate by 56.8%. The bionanoreactor engineered in S. oneidensis MR-1 achieved a hydrogen yield of 80.4 µmol/mg protein/day with a Faraday efficiency of 80% at a potential of -0.75 V. This periplasmic bionanoreactor combines the strengths of both nanomaterial and biological components, providing an efficient approach for microbial electrosynthesis.


Assuntos
Grafite , Hidrogênio , Shewanella , Hidrogênio/metabolismo , Shewanella/metabolismo , Shewanella/genética , Grafite/metabolismo , Hidrogenase/metabolismo , Hidrogenase/genética , Transporte de Elétrons , Reatores Biológicos , Biologia Sintética/métodos , Eletrodos , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/genética , Periplasma/metabolismo , Fontes de Energia Bioelétrica/microbiologia
6.
Sci Total Environ ; 946: 174332, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38950630

RESUMO

Cathodic electroactive bacteria (C-EAB) which are capable of accepting electrons from solid electrodes provide fresh avenues for pollutant removal, biosensor design, and electrosynthesis. This review systematically summarized the burgeoning applications of the C-EAB over the past decade, including 1) removal of nitrate, aromatic derivatives, and metal ions; 2) biosensing based on biocathode; 3) electrosynthesis of CH4, H2, organic carbon, NH3, and protein. In addition, the mechanisms of electron transfer by the C-EAB are also classified and summarized. Extracellular electron transfer and interspecies electron transfer have been introduced, and the electron transport mechanism of typical C-EAB, such as Shewanella oneidensis MR-1, has been combed in detail. By bringing to light this cutting-edge area of the C-EAB, this review aims to stimulate more interest and research on not only exploring great potential applications of these electron-accepting bacteria, but also developing steady and scalable processes harnessing biocathodes.


Assuntos
Eletrodos , Transporte de Elétrons , Bactérias/metabolismo , Shewanella/metabolismo , Fontes de Energia Bioelétrica , Técnicas Biossensoriais/métodos
7.
Water Sci Technol ; 89(11): 2880-2893, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877619

RESUMO

As a new pollutant treatment technology, microbial fuel cell (MFC) has a broad prospect. In this article, the devices assembled using walnut shells are named biochar-microbial fuel cell (B-MFC), and the devices assembled using graphene are named graphene-microbial fuel cell (G-MFC). Under the condition of an external resistance of 1,000 Ω, the B-MFC with biochar as the electrode plate can generate a voltage of up to 75.26 mV. The maximum power density is 76.61 mW/m2, and the total internal resistance is 3,117.09 Ω. The removal efficiency of B-MFC for ammonia nitrogen (NH3-N), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) was higher than that of G-MFC. The results of microbial analysis showed that there was more operational taxonomic unit (OTU) on the walnut shell biochar electrode plate. The final analysis of the two electrode materials using BET specific surface area testing method (BET) and scanning electron microscope (SEM) showed that the pore size of walnut shell biochar was smaller, the specific surface area was larger, and the pore distribution was smoother. The results show that using walnut shells to make electrode plates is an optional waste recycling method and an electrode plate with excellent development prospects.


Assuntos
Fontes de Energia Bioelétrica , Carvão Vegetal , Eletrodos , Grafite , Juglans , Esgotos , Juglans/química , Carvão Vegetal/química , Esgotos/química , Grafite/química , Eliminação de Resíduos Líquidos/métodos , Nitrogênio/química , Fósforo/química
8.
PLoS One ; 19(6): e0305673, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38889113

RESUMO

Microbial fuel cells (MFCs) are innovative eco-friendly technologies that advance a circular economy by enabling the conversion of both organic and inorganic substances in wastewater to electricity. While conceptually promising, there are lingering questions regarding the performance and stability of MFCs in real industrial settings. To address this research gap, we investigated the influence of specific operational settings, regarding the hydraulic retention time (HRT) and organic loading rate (OLR) on the performance of MFCs used for treating sulfide-rich wastewater from a canned pineapple factory. Experiments were performed at varying hydraulic retention times (2 days and 4 days) during both low and high seasonal production. Through optimization, we achieved a current density generation of 47±15 mA/m2, a COD removal efficiency of 91±9%, and a sulfide removal efficiency of 86±10%. Microbiome analysis revealed improved MFC performance when there was a substantial presence of electrogenic bacteria, sulfide-oxidizing bacteria, and methanotrophs, alongside a reduced abundance of sulfate-reducing bacteria and methanogens. In conclusion, we recommend the following operational guidelines for applying MFCs in industrial wastewater treatment: (i) Careful selection of the microbial inoculum, as this step significantly influences the composition of the MFC microbial community and its overall performance. (ii) Initiating MFC operation with an appropriate OLR is essential. This helps in establishing an effective and adaptable microbial community within the MFCs, which can be beneficial when facing variations in OLR due to seasonal production changes. (iii) Identifying and maintaining MFC-supporting microbes, including those identified in this study, should be a priority. Keeping these microbes as an integral part of the system's microbial composition throughout the operation enhances and stabilizes MFC performance.


Assuntos
Fontes de Energia Bioelétrica , Sulfetos , Águas Residuárias , Águas Residuárias/microbiologia , Fontes de Energia Bioelétrica/microbiologia , Bactérias/metabolismo , Bactérias/genética , Resíduos Industriais/análise , Purificação da Água/métodos , Microbiota , Eliminação de Resíduos Líquidos/métodos
9.
Z Naturforsch C J Biosci ; 79(5-6): 149-153, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38869146

RESUMO

Bio-electrochemical Systems (BES), particularly Microbial Fuel Cells (MFC), have emerged as promising technologies in environmental biotechnology. This study focused on optimizing the anode bacterial culture immobilization process to enhance BES performance. The investigation combines and modifies two key immobilization methods: covalent bonding with glutaraldehyde and inclusion in a chitosan gel in order to meet the criteria and requirements of the bio-anodes in MFC. The performance of MFCs with immobilized and suspended cultures was compared in parallel experiments. Both types showed similar substrate utilization dynamics with slight advantage of the immobilized bio-anode considering the lower concentration of biomass. The immobilized MFC exhibited higher power generation and metabolic activity, as well. Probably, this is due to improved anodic respiration and higher coulombic efficiency of the reactor. Analysis of organic acids content supported this conclusion showing significant inhibition of the fermentation products production in the MFC reactor with immobilized anode culture.


Assuntos
Fontes de Energia Bioelétrica , Células Imobilizadas , Quitosana , Eletrodos , Fontes de Energia Bioelétrica/microbiologia , Células Imobilizadas/metabolismo , Quitosana/metabolismo , Quitosana/química , Fermentação , Reatores Biológicos/microbiologia , Biomassa , Glutaral/química , Eletricidade
10.
Nano Lett ; 24(26): 7895-7902, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38913401

RESUMO

On-demand engineering of cell membrane receptors to nongenetically intervene in cellular behaviors is still a challenge. Herein, a membraneless enzyme biofuel cell-based self-powered biosensor (EBFC-SPB) was developed for autonomously and precisely releasing Zn2+ to initiate DNAzyme-based reprogramming of cell membrane receptors, which further mediates signal transduction to regulate cellular behaviors. The critical component of EBFC-SPB is a hydrogel film on a biocathode which is prepared using a Fe3+-cross-linked alginate hydrogel film loaded with Zn2+ ions. In the working mode in the presence of glucose/O2, the hydrogel is decomposed due to the reduction of Fe3+ to Fe2+, accompanied by rapid release of Zn2+ to specifically activate a Zn2+-responsive DNAzyme nanodevice on the cell surface, leading to the dimerization of homologous or nonhomologous receptors to promote or inhibit cell proliferation and migration. This EBFC-SPB platform provides a powerful "sensing-actuating-treating" tool for chemically regulating cellular behaviors, which holds great promise in precision biomedicine.


Assuntos
Técnicas Biossensoriais , Zinco , Zinco/química , Zinco/metabolismo , Receptores de Superfície Celular/metabolismo , DNA Catalítico/metabolismo , DNA Catalítico/química , Humanos , Hidrogéis/química , Proliferação de Células/efeitos dos fármacos , Fontes de Energia Bioelétrica , Alginatos/química , Movimento Celular/efeitos dos fármacos
11.
Sci Total Environ ; 945: 174018, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38906302

RESUMO

The inoculum has a crucial impact on bioreactor initialization and performance. However, there is currently a lack of guidance on selecting appropriate inocula for applications in environmental biotechnology. In this study, we applied microbial electrolysis cells (MECs) as models to investigate the differences in the functional potential of electroactive microorganisms (EAMs) within anodic biofilms developed from four different inocula (natural or artificial), using shotgun metagenomic techniques. We specifically focused on extracellular electron transfer (EET) function and stress resistance, which affect the performance and stability of MECs. Community profiling revealed that the family Geobacteraceae was the key EAM taxon in all biofilms, with Geobacter as the dominant genus. The c-type cytochrome gene imcH showed universal importance for Geobacteraceae EET and was utilized as a marker gene to evaluate the EET potential of EAMs. Additionally, stress response functional genes were used to assess the stress resistance potential of Geobacter species. Comparative analysis of imcH gene abundance revealed that EAMs with comparable overall EET potential could be enriched from artificial and natural inocula (P > 0.05). However, quantification of stress response gene copy numbers in the genomes demonstrated that EAMs originating from natural inocula possessed superior stress resistance potential (196 vs. 163). Overall, this study provides novel perspectives on the inoculum effect in bioreactors and offers theoretical guidance for selecting inoculum in environmental engineering applications.


Assuntos
Biofilmes , Reatores Biológicos , Reatores Biológicos/microbiologia , Geobacter/fisiologia , Geobacter/genética , Metagenômica , Estresse Fisiológico , Fontes de Energia Bioelétrica , Transporte de Elétrons
12.
Molecules ; 29(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38930791

RESUMO

Industrialization has brought many environmental problems since its expansion, including heavy metal contamination in water used for agricultural irrigation. This research uses microbial fuel cell technology to generate bioelectricity and remove arsenic, copper, and iron, using contaminated agricultural water as a substrate and Bacillus marisflavi as a biocatalyst. The results obtained for electrical potential and current were 0.798 V and 3.519 mA, respectively, on the sixth day of operation and the pH value was 6.54 with an EC equal to 198.72 mS/cm, with a removal of 99.08, 56.08, and 91.39% of the concentrations of As, Cu, and Fe, respectively, obtained in 72 h. Likewise, total nitrogen concentrations, organic carbon, loss on ignition, dissolved organic carbon, and chemical oxygen demand were reduced by 69.047, 86.922, 85.378, 88.458, and 90.771%, respectively. At the same time, the PDMAX shown was 376.20 ± 15.478 mW/cm2, with a calculated internal resistance of 42.550 ± 12.353 Ω. This technique presents an essential advance in overcoming existing technical barriers because the engineered microbial fuel cells are accessible and scalable. It will generate important value by naturally reducing toxic metals and electrical energy, producing electric currents in a sustainable and affordable way.


Assuntos
Bacillus , Fontes de Energia Bioelétrica , Fontes de Energia Bioelétrica/microbiologia , Bacillus/metabolismo , Metais Pesados , Poluentes Químicos da Água/metabolismo , Cobre/química , Cobre/metabolismo , Concentração de Íons de Hidrogênio , Biodegradação Ambiental , Arsênio/metabolismo
13.
Molecules ; 29(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38931000

RESUMO

Microbial fuel cells (MFCs) have the potential to directly convert the chemical energy in organic matter into electrical energy, making them a promising technology for achieving sustainable energy production alongside wastewater treatment. However, the low extracellular electron transfer (EET) rates and limited bacteria loading capacity of MFCs anode materials present challenges in achieving high power output. In this study, three-dimensionally heteroatom-doped carbonized grape (CG) monoliths with a macroporous structure were successfully fabricated using a facile and low-cost route and employed as independent anodes in MFCs for treating brewery wastewater. The CG obtained at 900 °C (CG-900) exhibited excellent biocompatibility. When integrated into MFCs, these units initiated electricity generation a mere 1.8 days after inoculation and swiftly reached a peak output voltage of 658 mV, demonstrating an exceptional areal power density of 3.71 W m-2. The porous structure of the CG-900 anode facilitated efficient ion transport and microbial community succession, ensuring sustained operational excellence. Remarkably, even when nutrition was interrupted for 30 days, the voltage swiftly returned to its original level. Moreover, the CG-900 anode exhibited a superior capacity for accommodating electricigens, boasting a notably higher abundance of Geobacter spp. (87.1%) compared to carbon cloth (CC, 63.0%). Most notably, when treating brewery wastewater, the CG-900 anode achieved a maximum power density of 3.52 W m-2, accompanied by remarkable treatment efficiency, with a COD removal rate of 85.5%. This study provides a facile and low-cost synthesis technique for fabricating high-performance MFC anodes for use in microbial energy harvesting.


Assuntos
Fontes de Energia Bioelétrica , Eletrodos , Vitis , Águas Residuárias , Fontes de Energia Bioelétrica/microbiologia , Águas Residuárias/química , Águas Residuárias/microbiologia , Vitis/química , Purificação da Água/métodos , Porosidade , Eletricidade
14.
Biosensors (Basel) ; 14(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38920593

RESUMO

Implantable and wearable bioelectronic systems can enable tailored therapies for the effective management of long-term diseases, thus minimising the risk of associated complications. In this context, glucose fuel cells hold great promise as in- or on-body energy harvesters for ultra-low-power bioelectronics and as self-powered glucose sensors. We report here the generation of gold nanostructures through a gold electrodeposition method in a soft template for the abiotic electrocatalysis of glucose in glucose fuel cells. Two different types of soft template were used: a lipid cubic phase-based soft template composed of Phytantriol and Brij®-56, and an emulsion-based soft template composed of hexane and sodium dodecyl sulphate (SDS). The resulting gold structures were first characterised by SAXS, SEM and TEM to elucidate their structure, and then their electrocatalytic activity towards glucose was compared in both a three-electrode set-up and in a fuel cell set-up. The Phytantriol/Brij®-56 template led to a nanofeather-like Au structure, while the hexane/SDS template led to a nanocoral-like Au structure. These templated electrodes exhibited similar electrochemical active surface areas (0.446 cm2 with a roughness factor (RF) of 14.2 for Phytantriol/Brij®-56 templated nanostructures and 0.421 cm2 with an RF of 13.4 for hexane/SDS templated nanostructures), and a sensitivity towards glucose of over 7 µA mM-1 cm-2. When tested as the anode of an abiotic glucose fuel cell (in a phosphate-buffered solution with a glucose concentration of 6 mM), a maximum power density of 7 µW cm-2 was reached; however the current density in the case of the fuel cell with the Phytantriol/Brij®-56 templated anode was approximately two times higher, reaching the value of 70 µA cm-2. Overall, this study demonstrates two simple, cost-effective and efficient strategies to manipulate the morphology of gold nanostructures, and thus their catalytic property, paving the way for the successful manufacturing of functional abiotic glucose fuel cells.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Glucose , Ouro , Nanoestruturas , Ouro/química , Glucose/análise , Eletrodos , Técnicas Eletroquímicas
15.
Biosensors (Basel) ; 14(6)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38920606

RESUMO

Microbial biofilms present one of the most widespread forms of life on Earth. The formation of microbial communities on various surfaces presents a major challenge in a variety of fields, including medicine, the food industry, shipping, etc. At the same time, this process can also be used for the benefit of humans-in bioremediation, wastewater treatment, and various biotechnological processes. The main direction of using electroactive microbial biofilms is their incorporation into the composition of biosensor and biofuel cells This review examines the fundamental knowledge acquired about the structure and formation of biofilms, the properties they have when used in bioelectrochemical devices, and the characteristics of the formation of these structures on different surfaces. Special attention is given to the potential of applying the latest advances in genetic engineering in order to improve the performance of microbial biofilm-based devices and to regulate the processes that take place within them. Finally, we highlight possible ways of dealing with the drawbacks of using biofilms in the creation of highly efficient biosensors and biofuel cells.


Assuntos
Fontes de Energia Bioelétrica , Biofilmes , Técnicas Biossensoriais
16.
Bioprocess Biosyst Eng ; 47(7): 1057-1070, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38842769

RESUMO

The treatment of agroindustrial wastewater using microbial fuel cells (MFCs) is a technological strategy to harness its chemical energy while simultaneously purifying the water. This manuscript investigates the organic load effect as chemical oxygen demand (COD) on the production of electricity during the treatment of cassava wastewater by means of a dual-chamber microbial fuel cell in batch mode. Additionally, specific conditions were selected to evaluate the semi-continuous operational mode. The dynamics of microbial communities on the graphite anode were also investigated. The maximum power density delivered by the batch MFC (656.4 µW m - 2 ) was achieved at the highest evaluated organic load (6.8 g COD L - 1 ). Similarly, the largest COD removal efficiency (61.9%) was reached at the lowest organic load (1.17 g COD L - 1 ). Cyanide degradation percentages (50-70%) were achieved across treatments. The semi-continuous operation of the MFC for 2 months revealed that the voltage across the cell is dependent on the supply or suspension of the organic load feed. The electrode polarization resistance was observed to decreases over time, possibly due to the enrichment of the anode with electrogenic microbial communities. A metataxonomic analysis revealed a significant increase in bacteria from the phylum Firmicutes, primarily of the genus Enterococcus.


Assuntos
Fontes de Energia Bioelétrica , Manihot , Águas Residuárias , Fontes de Energia Bioelétrica/microbiologia , Manihot/química , Águas Residuárias/microbiologia , Águas Residuárias/química , Análise da Demanda Biológica de Oxigênio , Eletrodos , Purificação da Água/métodos
17.
J Environ Manage ; 364: 121422, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878572

RESUMO

Biochar is a carbonaceous solid that is prepared through thermo-chemical decomposition of biomass under an inert atmosphere. The present study compares the performance of biochar prepared from Peanut shell, coconut shell and walnut shell in dual chamber microbial fuel cell. The physicochemical and electrochemical analysis of biochar reveals that prepared biochar is macroporous, amorphous, biocompatible, and electrochemically conductive. Polarization studies show that Peanut shell biochar (PSB) exhibited a maximum power density of 165 mW/m2 followed by Coconut shell biochar (CSB) Activated Charcoal (AC) and Walnut shell biochar (WSB). Enhanced power density of PSB was attributed to its surface area and suitable pore size distribution which proved conducive for biofilm formation. Furthermore, the high electrical capacitance of PSB improved the electron transfer between microbes and anode.


Assuntos
Fontes de Energia Bioelétrica , Carvão Vegetal , Eletrodos , Carvão Vegetal/química , Cocos , Juglans , Arachis , Biofilmes
18.
J Nanobiotechnology ; 22(1): 352, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902695

RESUMO

In this study, highly selenite-resistant strains belonging to Brevundimonas diminuta (OK287021, OK287022) genus were isolated from previously operated single chamber microbial fuel cell (SCMFC). The central composite design showed that the B. diminuta consortium could reduce selenite. Under optimum conditions, 15.38 Log CFU mL-1 microbial growth, 99.08% Se(IV) reduction, and 89.94% chemical oxygen demand (COD) removal were observed. Moreover, the UV-visible spectroscopy (UV) and Fourier transform infrared spectroscopy (FTIR) analyses confirmed the synthesis of elemental selenium nanoparticles (SeNPs). In addition, transmission electron microscopy (TEM) and scanning electron microscope (SEM) revealed the formation of SeNPs nano-spheres. Besides, the bioelectrochemical performance of B. diminuta in the SCMFC illustrated that the maximum power density was higher in the case of selenite SCMFCs than those of the sterile control SCMFCs. Additionally, the bioelectrochemical impedance spectroscopy and cyclic voltammetry characterization illustrated the production of definite extracellular redox mediators that might be involved in the electron transfer progression during the reduction of selenite. In conclusion, B. diminuta whose electrochemical activity has never previously been reported could be a suitable and robust biocatalyst for selenite bioreduction along with wastewater treatment, bioelectricity generation, and economical synthesis of SeNPs in MFCs.


Assuntos
Fontes de Energia Bioelétrica , Oxirredução , Ácido Selenioso , Selênio , Selênio/metabolismo , Selênio/química , Ácido Selenioso/metabolismo , Caulobacteraceae/metabolismo , Nanopartículas/química , Eletricidade , Nanopartículas Metálicas/química , Consórcios Microbianos , Análise da Demanda Biológica de Oxigênio
19.
Biosens Bioelectron ; 260: 116462, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38833834

RESUMO

Design and intelligent use renewable natural bioenergy is an important challenge. Electric microorganism-based materials are being serve as an important part of bioenergy devices for energy release and collection, calling for suitable skeleton materials to anchor live microbes. Herein we verified the feasibility of constructing bio-abiotic hybrid living materials based on the combination of gelatin, Li-ions and exoelectrogenic bacteria Shewanella oneidensis manganese-reducing-1 (MR-1). The gelatin-based mesh contains abundant pores, allowing microbes to dock and small molecules to diffuse. The hybrid materials hold plentiful electronegative groups, which effectively anchor Li-ions and facilitate their transition. Moreover, the electrochemical characteristics of the materials can be modulated through changing the ratios of gelatin, bacteria and Li-ions. Based on the gelatin-Li-ion-microorganism hybrid materials, a bifunctional device was fabricated, which could play dual roles alternatively, generation of electricity as a microbial fuel cell and energy storage as a pseudocapacitor. The capacitance and the maximum voltage output of the device reaches 68 F g-1 and 0.67 V, respectively. This system is a new platform and fresh start to fabricate bio-abiotic living materials for microbial electron storage and transfer. We expect the setup will extend to other living systems and devices for synthetic biological energy conversion.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Hidrogéis , Shewanella , Fontes de Energia Bioelétrica/microbiologia , Shewanella/química , Shewanella/metabolismo , Hidrogéis/química , Técnicas Biossensoriais/métodos , Gelatina/química , Lítio/química , Técnicas Eletroquímicas/métodos , Desenho de Equipamento , Capacitância Elétrica
20.
Nat Commun ; 15(1): 4992, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862519

RESUMO

It has been previously shown that devices based on microbial biofilms can generate hydrovoltaic energy from water evaporation. However, the potential of hydrovoltaic energy as an energy source for microbial growth has remained unexplored. Here, we show that the electroautotrophic bacterium Rhodopseudomonas palustris can directly utilize evaporation-induced hydrovoltaic electrons for growth within biofilms through extracellular electron uptake, with a strong reliance on carbon fixation coupled with nitrate reduction. We obtained similar results with two other electroautotrophic bacterial species. Although the energy conversion efficiency for microbial growth based on hydrovoltaic energy is low compared to other processes such as photosynthesis, we hypothesize that hydrovoltaic energy may potentially contribute to microbial survival and growth in energy-limited environments, given the ubiquity of microbial biofilms and water evaporation conditions.


Assuntos
Biofilmes , Rodopseudomonas , Água , Biofilmes/crescimento & desenvolvimento , Rodopseudomonas/metabolismo , Rodopseudomonas/crescimento & desenvolvimento , Água/química , Água/metabolismo , Fotossíntese , Elétrons , Ciclo do Carbono , Nitratos/metabolismo , Fontes de Energia Bioelétrica/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA