Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48.885
Filtrar
1.
Int J Mol Med ; 54(4)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39092569

RESUMO

Non­SMC condensin I complex subunit D2 (NCAPD2) is a newly identified oncogene; however, the specific biological function and molecular mechanism of NCAPD2 in liver cancer progression remain unknown. In the present study, the aberrant expression of NCAPD2 in liver cancer was investigated using public tumor databases, including TNMplot, The Cancer Genome Atlas and the International Cancer Genome Consortium based on bioinformatics analyses, and it was validated using a clinical cohort. It was revealed that NCAPD2 was significantly upregulated in liver cancer tissues compared with in control liver tissues, and NCAPD2 served as an independent prognostic factor and predicted poor prognosis in liver cancer. In addition, the expression of NCAPD2 was positively correlated with the percentage of Ki67+ cells. Finally, single­cell sequencing data, gene­set enrichment analyses and in vitro investigations, including cell proliferation assay, Transwell assay, wound healing assay, cell cycle experiments, cell apoptosis assay and western blotting, were carried out in human liver cancer cell lines to assess the biological mechanisms of NCAPD2 in patients with liver cancer. The results revealed that the upregulation of NCAPD2 enhanced tumor cell proliferation, invasion and cell cycle progression at the G2/M­phase transition, and inhibited apoptosis in liver cancer cells. Furthermore, NCAPD2 overexpression was closely associated with the phosphatidylinositol 3­kinase (PI3K)­Akt­mammalian target of rapamycin (mTOR)/c­Myc signaling pathway and epithelial­mesenchymal transition (EMT) progression in HepG2 and Huh7 cells. In addition, upregulated NCAPD2 was shown to have adverse effects on overall survival and disease­specific survival in liver cancer. In conclusion, the overexpression of NCAPD2 was shown to lead to cell cycle progression at the G2/M­phase transition, activation of the PI3K­Akt­mTOR/c­Myc signaling pathway and EMT progression in human liver cancer cells.


Assuntos
Proliferação de Células , Neoplasias Hepáticas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Transdução de Sinais/genética , Fosfatidilinositol 3-Quinases/metabolismo , Masculino , Feminino , Proliferação de Células/genética , Carcinogênese/genética , Carcinogênese/patologia , Carcinogênese/metabolismo , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica , Progressão da Doença , Linhagem Celular Tumoral , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Transição Epitelial-Mesenquimal/genética , Apoptose/genética , Movimento Celular/genética , Prognóstico
2.
J Transl Med ; 22(1): 717, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095789

RESUMO

BACKGROUND: The global prevalence of autoimmune hepatitis (AIH) is increasing due in part to the lack of effective pharmacotherapies. Growing evidence suggests that fibroblast growth factor 4 (FGF4) is crucial for diverse aspects of liver pathophysiology. However, its role in AIH remains unknown. Therefore, we investigated whether FGF4 can regulate M1 macrophage and thereby help treat liver inflammation in AIH. METHODS: We obtained transcriptome-sequencing and clinical data for patients with AIH. Mice were injected with concanavalin A to induce experimental autoimmune hepatitis (EAH). The mechanism of action of FGF4 was examined using macrophage cell lines and bone marrow-derived macrophages. RESULTS: We observed higher expression of markers associated with M1 and M2 macrophages in patients with AIH than that in individuals without AIH. EAH mice showed greater M1-macrophage polarization than control mice. The expression of M1-macrophage markers correlated positively with FGF4 expression. The loss of hepatic Fgf4 aggravated hepatic inflammation by increasing the abundance of M1 macrophages. In contrast, the pharmacological administration of FGF4 mitigated hepatic inflammation by reducing M1-macrophage levels. The efficacy of FGF4 treatment was compromised following the in vivo clearance of macrophage populations. Mechanistically, FGF4 treatment activated the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT)-signal pathway in macrophages, which led to reduced M1 macrophages and hepatic inflammation. CONCLUSION: We identified FGF4 as a novel M1/M2 macrophage-phenotype regulator that acts through the PI3K-AKT-signaling pathway, suggesting that FGF4 may represent a novel target for treating inflammation in patients with AIH.


Assuntos
Polaridade Celular , Fator 4 de Crescimento de Fibroblastos , Hepatite Autoimune , Inflamação , Macrófagos , Camundongos Endogâmicos C57BL , Animais , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Hepatite Autoimune/patologia , Hepatite Autoimune/metabolismo , Fator 4 de Crescimento de Fibroblastos/metabolismo , Polaridade Celular/efeitos dos fármacos , Humanos , Inflamação/patologia , Fígado/patologia , Fígado/metabolismo , Fígado/efeitos dos fármacos , Camundongos , Masculino , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Modelos Animais de Doenças , Ativação de Macrófagos/efeitos dos fármacos , Feminino
3.
J Nanobiotechnology ; 22(1): 460, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090717

RESUMO

BACKGROUND: Nanoplastics (NPs) are emerging pollutants that pose risks to living organisms. Recent findings have unveiled the reproductive harm caused by polystyrene nanoparticles (PS-NPs) in female animals, yet the intricate mechanism remains incompletely understood. Under this research, we investigated whether sustained exposure to PS-NPs at certain concentrations in vivo can enter oocytes through the zona pellucida or through other routes that affect female reproduction. RESULTS: We show that PS-NPs disrupted ovarian functions and decreased oocyte quality, which may be a contributing factor to lower female fertility in mice. RNA sequencing of mouse ovaries illustrated that the PI3K-AKT signaling pathway emerged as the predominant environmental information processing pathway responding to PS-NPs. Western blotting results of ovaries in vivo and cells in vitro showed that PS-NPs deactivated PI3K-AKT signaling pathway by down-regulating the expression of PI3K and reducing AKT phosphorylation at the protein level, PI3K-AKT signaling pathway which was accompanied by the activation of autophagy and apoptosis and the disruption of steroidogenesis in granulosa cells. Since PS-NPs penetrate granulosa cells but not oocytes, we examined whether PS-NPs indirectly affect oocyte quality through granulosa cells using a granulosa cell-oocyte coculture system. Preincubation of granulosa cells with PS-NPs causes granulosa cell dysfunction, resulting in a decrease in the quality of the cocultured oocytes that can be reversed by the addition of 17ß-estradiol. CONCLUSIONS: This study provides findings on how PS-NPs impact ovarian function and include transcriptome sequencing analysis of ovarian tissue. The study demonstrates that PS-NPs impair oocyte quality by altering the functioning of ovarian granulosa cells. Therefore, it is necessary to focus on the research on the effects of PS-NPs on female reproduction and the related methods that may mitigate their toxicity.


Assuntos
Células da Granulosa , Nanopartículas , Oócitos , Poliestirenos , Transdução de Sinais , Animais , Feminino , Camundongos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Fertilidade/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Nanopartículas/toxicidade , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Ovário/efeitos dos fármacos , Ovário/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Poliestirenos/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
PLoS One ; 19(8): e0308051, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39093890

RESUMO

Preclinical models that replicate patient tumours as closely as possible are crucial for translational cancer research. While in vitro cancer models have many advantages in assessing tumour response therapy, in vivo systems are essential to enable evaluation of the role of the tumour cell extrinsic factors, such as the tumour microenvironment and host immune system. The requirement for a functional immune system is particularly important given the current focus on immunotherapies. Therefore, we set out to generate an immunocompetent, transplantable model of colorectal cancer suitable for in vivo assessment of immune-based therapeutic approaches. Intestinal tumours from a genetically engineered mouse model, driven by expression of a Pik3ca mutation and loss of Apc, were transplanted into wild type C57BL/6 host mice and subsequently passaged to form a novel syngeneic transplant model of colorectal cancer. Our work confirms the potential to develop a panel of mouse syngeneic grafts, akin to human PDX panels, from different genetically engineered, or carcinogen-induced, mouse models. Such panels would allow the in vivo testing of new pharmaceutical and immunotherapeutic treatment approaches across a range of tumours with a variety of genetic driver mutations.


Assuntos
Adenocarcinoma , Classe I de Fosfatidilinositol 3-Quinases , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Animais , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Camundongos , Adenocarcinoma/genética , Adenocarcinoma/patologia , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia , Proteína da Polipose Adenomatosa do Colo/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transplante Isogênico , Mutação , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia
5.
Int J Immunopathol Pharmacol ; 38: 3946320241272642, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39096175

RESUMO

Prolonged exposure to different occupational or environmental toxicants triggered oxidative stress and inflammatory reactions mediated lung damage. This study was designed to explore the influence and protective impact of flavone on lung injury in rats intoxicated with nicotine (NIC) and exposed to radiation (IR). Forty rats were divided into four groups; group I control, group II flavone; rats were administered with flavone (25 mg/kg/day), group III NIC + IR; rats were injected intraperitoneally with NIC (1 mg/kg/day) and exposed to γ-IR (3.5 Gy once/week for 2 weeks) while group IV NIC + IR + flavone; rats were injected with NIC, exposed to IR and administered with flavone. Redox status parameters and histopathological changes in lung tissue were evaluated. Nuclear factor-kappa B (NF-κB), forkhead box O-class1 (FoxO1) and nucleotide-binding domain- (NOD-) like receptor pyrin domain-containing-3 (NLRP3) gene expression were measured in lung tissues. Moreover, nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and phosphatidylinositol three kinase (PI3K) were measured using ELISA kits. Our data demonstrates, for the first time, that flavone protects the lung from NIC/IR-associated cytotoxicity, by attenuating the disrupted redox status and aggravating the antioxidant defence mechanism via activation of the PI3K/Nrf2. Moreover, flavone alleviates pulmonary inflammation by inhibiting the inflammatory signaling pathway FOXO1/NF-κB/NLRP3- Inflammasome. Collectively, the obtained results exhibited a notable efficiency of flavone in alleviating lung injury induced by NIC and IR via modulating PI3K/Nrf2 and FoxO1/NLRP3 Inflammasome.


Assuntos
Flavonas , Inflamassomos , Lesão Pulmonar , Fator 2 Relacionado a NF-E2 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Nicotina , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Flavonas/farmacologia , Masculino , Ratos , Nicotina/farmacologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/prevenção & controle , Raios gama , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/efeitos da radiação , Estresse Oxidativo/efeitos dos fármacos , NF-kappa B/metabolismo , Ratos Wistar , Proteína Forkhead Box O1
6.
J Clin Invest ; 134(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087471

RESUMO

Glomerular visceral epithelial cells (i.e., podocytes) are an essential component of the tripartite glomerular filtration barrier. Healthy podocytes are terminally differentiated cells with limited replicative capacity; however, inappropriate cell cycle reentry can be induced in podocytes by various injurious stimuli. In this issue of the JCI, Yamaguchi et al. report on a somatic mosaic gain-of-function mutation in the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic α subunit (p110α, encoded by PIK3CA). The study reveals that activating mutations of p110α can drive podocyte proliferation in PIK3CA-related overgrowth syndrome (PROS). They also showed that selective, small-molecule inhibitors of p110 may be useful for the treatment of proliferative glomerulonephritis.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases , Fosfatidilinositol 3-Quinases , Podócitos , Humanos , Podócitos/patologia , Podócitos/metabolismo , Animais , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proliferação de Células , Camundongos , Mutação , Glomerulonefrite/genética , Glomerulonefrite/patologia , Glomerulonefrite Membranoproliferativa/genética , Glomerulonefrite Membranoproliferativa/patologia , Glomerulonefrite Membranoproliferativa/imunologia
7.
Luminescence ; 39(7): e4838, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39051537

RESUMO

YM201636 is the potent PIKfyve inhibitor that is being actively investigated for liver cancer efficacy. In this study, computer simulations and experiments were conducted to investigate the interaction mechanism between YM201636 and the transport protein HSA. Results indicated that YM201636 is stably bound between the subdomains IIA and IIIA of HSA, supported by site marker displacement experiments. YM201636 quenched the endogenous fluorescence of HSA by static quenching since a decrease in quenching constants was observed from 7.74 to 2.39 × 104 M-1. UV-vis and time-resolved fluorescence spectroscopy confirmed the YM201636-HSA complex formation and this binding followed a static mechanism. Thermodynamic parameters ΔG, ΔH, and ΔS obtained negative values suggesting the binding was a spontaneous process driven by Van der Waals interactions and hydrogen binding. Binding constants ranged between 5.71 and 0.33 × 104 M-1, which demonstrated a moderately strong affinity of YM201636 to HSA. CD, synchronous, and 3D fluorescence spectroscopy revealed that YM201636 showed a slight change in secondary structure. The increase of Kapp and a decrease of PSH with YM201636 addition showed that YM201636 changed the surface hydrophobicity of HSA. The research provides reasonable models helping us further understand the transportation and distribution of YM201636 when it absorbs into the blood circulatory system.


Assuntos
Albumina Sérica Humana , Espectrometria de Fluorescência , Humanos , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Termodinâmica , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/química , Modelos Moleculares , Inibidores de Fosfoinositídeo-3 Quinase/química , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/metabolismo , Pirimidinas/química
8.
J Agric Food Chem ; 72(29): 16449-16460, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38996051

RESUMO

Milk fat synthesis has garnered significant attention due to its influence on the quality of milk. Recently, an increasing amount of proofs have elucidated that microRNAs (miRNAs) are important post-transcriptional factor involved in regulating gene expression and play a significant role in milk fat synthesis. MiR-200a was differentially expressed in the mammary gland tissue of dairy cows during different lactation periods, which indicated that miR-200a was a candidate miRNA involved in regulating milk fat synthesis. In our research, we investigated the potential function of miR-200a in regulating milk fat biosynthesis in bovine mammary epithelial cells (BMECs). We discovered that miR-200a inhibited cellular triacylglycerol (TAG) synthesis and suppressed lipid droplet formation; at the same time, miR-200a overexpression suppressed the mRNA and protein expression of milk fat metabolism-related genes, such as fatty acid synthase (FASN), peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element-binding protein 1 (SREBP1), CCAAT enhancer binding protein alpha (CEBPα), etc. However, knocking down miR-200a displayed the opposite results. We uncovered that insulin receptor substrate 2 (IRS2) was a candidate target gene of miR-200a through the bioinformatics online program TargetScan. Subsequently, it was confirmed that miR-200a directly targeted the 3'-untranslated region (3'-UTR) of IRS2 via real-time fluorescence quantitative PCR (RT-qPCR), western blot analysis, and dual-luciferase reporter gene assay. Additionally, IRS2 knockdown in BMECs has similar effects to miR-200a overexpression. Our research set up the mechanism by which miR-200a interacted with IRS2 and discovered that miR-200a targeted IRS2 and modulated the activity of the PI3K/Akt signaling pathway, thereby taking part in regulating milk fat synthesis in BMECs. Our research results provided valuable information on the molecular mechanisms for enhancing milk quality from the view of miRNA-mRNA regulatory networks.


Assuntos
Células Epiteliais , Proteínas Substratos do Receptor de Insulina , Glândulas Mamárias Animais , MicroRNAs , Leite , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Bovinos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Leite/metabolismo , Leite/química , Células Epiteliais/metabolismo , Feminino , Proteínas Substratos do Receptor de Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/citologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Triglicerídeos/metabolismo , Triglicerídeos/biossíntese , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Gorduras/metabolismo , Lactação/genética
9.
J Cell Mol Med ; 28(14): e18533, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39034442

RESUMO

Hepatitis B Virus (HBV) infection significantly elevates the risk of hepatocellular carcinoma (HCC), with the HBV X protein (HBx) playing a crucial role in cancer progression. Sorafenib, the primary therapy for advanced HCC, shows limited effectiveness in HBV-infected patients due to HBx-related resistance. Numerous studies have explored combination therapies to overcome this resistance. Sodium diethyldithiocarbamate (DDC), known for its anticancer effects and its inhibition of superoxide dismutase 1 (SOD1), is hypothesized to counteract sorafenib (SF) resistance in HBV-positive HCCs. Our research demonstrates that combining DDC with SF significantly reduces HBx and SOD1 expressions in HBV-positive HCC cells and human tissues. This combination therapy disrupts the PI3K/Akt/mTOR signalling pathway and promotes apoptosis by increasing reactive oxygen species (ROS) levels. These cellular changes lead to reduced tumour viability and enhanced sensitivity to SF, as evidenced by the synergistic suppression of tumour growth in xenograft models. Additionally, DDC-mediated suppression of SOD1 further enhances SF sensitivity in HBV-positive HCC cells and xenografted animals, thereby inhibiting cancer progression more effectively. These findings suggest that the DDC-SF combination could serve as a promising strategy for overcoming SF resistance in HBV-related HCC, potentially optimizing therapy outcomes.


Assuntos
Carcinoma Hepatocelular , Vírus da Hepatite B , Neoplasias Hepáticas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Espécies Reativas de Oxigênio , Transdução de Sinais , Sorafenibe , Superóxido Dismutase-1 , Serina-Treonina Quinases TOR , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/virologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/virologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/genética , Animais , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos , Vírus da Hepatite B/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Apoptose/efeitos dos fármacos , Hepatite B/complicações , Hepatite B/tratamento farmacológico , Hepatite B/virologia , Ditiocarb/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Camundongos Nus , Proliferação de Células/efeitos dos fármacos , Transativadores , Proteínas Virais Reguladoras e Acessórias
10.
Gene ; 927: 148760, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38992762

RESUMO

The CRISPR-Cas system is a powerful gene editing technology, the clinical application of which is currently constrained due to safety concerns. A substantial body of safety research concerning Cas9 exists; however, scant attention has been directed toward investigating the safety profile of the emergent Cas13 system, which confers RNA editing capabilities. In particular, uncertainties persist regarding the potential cellular impacts of Cas13d in the absence of reliance on a cleavage effect. In this study, we conducted an initial exploration of the effects of Cas13d on HeLa cells. Total RNA and protein samples were extracted after transfection with a Cas13d-expressing plasmid construct, followed by transcriptomic and proteomic sequencing. Differential gene expression analysis identified 94 upregulated and 847 downregulated genes, while differential protein expression analysis identified 185 upregulated and 231 downregulated proteins. Subsequently, enrichment analysis was conducted on the transcriptome and proteome sequencing data, revealing that the PI3K-Akt signaling pathway is a common term. After intersecting the differentially expressed genes enriched in the PI3K-Akt signaling pathway with all the differentially expressed proteins, it was found that the expression of the related regulatory gene PFKFB4 was upregulated. Moreover, western blot analysis demonstrated that Cas13d can mediate PI3K-Akt signaling upregulation through overexpression of PFKFB4. CCK-8 assay, colony formation, and EdU experiments showed that Cas13d can promote cell proliferation. Our data demonstrate, for the first time, that Cas13d significantly impacts the transcriptomic and proteomic profiles, and proliferation phenotype, of HeLa cells, thus offering novel insights into safety considerations regarding gene editing systems.


Assuntos
Sistemas CRISPR-Cas , Proliferação de Células , Fosfatidilinositol 3-Quinases , Fosfofrutoquinase-2 , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Regulação para Cima , Humanos , Células HeLa , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Proteômica/métodos , Edição de Genes/métodos , Transcriptoma , Multiômica
11.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(7): 1272-1283, 2024 Jul 20.
Artigo em Chinês | MEDLINE | ID: mdl-39051073

RESUMO

OBJECTIVE: To investigate the effect of type 2 dengue virus (DENV-2) infection on autophagy in human umbilical vein endothelial cells (HUVECs) and the mechanism mediating the inhibitory effect of baicalin against DENV-2 infection. METHODS: Cultured HUVECs with DENV-2 infection were treated with different concentrations of baicalin, and the changes in autophagy of the cells were detected using transmission electron microscopy. Lyso Tracker Red staining was used to examine pH changes in the lysosomes of the cells, and the expressions of ATG5, beclin-1, LC3, P62, STX17, SNAP29, VAMP8, and PI3K/AKT signaling pathway-related proteins were detected by Western blotting. DENV-2 replication in the cells were evaluated using RT-qPCR. The differentially expressed proteins in DENV-2-infected HUVECs were identified by proteomics screening. RESULTS: Treatment with baicalin did not significantly affect the viability of cultured HUVECs. Proteomic studies suggested that the PI3K-AKT pathway played an important role in mediating cell injury induced by DENV-2 infection. The results of RT-qPCR demonstrated that baicalin dose-dependently inhibited DENV-2 replication in HUVECs and produced the strongest inhibitory effect at the concentration of 50 µg/mL. Transmission electron microscopy, Lyso Tracker Red staining, RT-qPCR, and Western blotting all showed significant inhibitory effect of baicalin on DENV-2-induced autophagy in HUVECs. DENV-2 infection of HUVECs caused increased cellular expressions of LC3 and P62 proteins, which were significantly lowered by treatment with LY294002 (a PI3K inhibitor). CONCLUSION: Baicalin inhibits DENV-2 replication in HUVECs and suppresses DENV-2-induced cell autophagy by inhibiting the PI3K/AKT signaling pathway.


Assuntos
Autofagia , Vírus da Dengue , Flavonoides , Células Endoteliais da Veia Umbilical Humana , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Vírus da Dengue/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Flavonoides/farmacologia , Replicação Viral/efeitos dos fármacos , Células Cultivadas
12.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(7): 1336-1344, 2024 Jul 20.
Artigo em Chinês | MEDLINE | ID: mdl-39051079

RESUMO

OBJECTIVE: To explore the key targets and signaling pathways in the therapeutic mechanism of Semiliquidambar cathayensis Chang (SC) root against pancreatic cancer network pharmacology and molecular docking studies and cell experiments. METHODS: The targets of SC and pancreatic cancer were predicted using the network pharmacological database, the protein-protein interaction network was constructed, and pathways, functional enrichment and molecular docking analyses were performed. CCK-8 assay was used to test the inhibitory effect of the aqueous extract of SC root on 8 cancer cell lines, and its effects on invasion, migration, proliferation, and apoptosis of pancreatic cancer cells were evaluated. Western blotting was performed to verify the results of network pharmacology analysis. RESULTS: We identified a total of 18 active components in SC, which regulated 21 potential key targets in pancreatic cancer. GO and KEGG pathway enrichment analyses showed that these targets were involved mainly in the biological processes including protein phosphorylation, signal transduction, and apoptosis and participated in cancer signaling and PI3K-Akt signaling pathways. Among the 8 cancer cell lines, The aqueous extract of SC root produced the most obvious inhibitory effect in pancreatic cancer cells, and significantly inhibited the invasion, migration, and proliferation and promoted apoptosis of pancreatic cancer Panc-1 cells (P < 0.05). Western blotting confirmed that SC significantly inhibited the phosphorylation levels of PI3K and AKT in Panc-1 cells (P < 0.001). CONCLUSION: The therapeutic effect of SC root against pancreatic cancer effects is mediated by its multiple components that act on different targets and pathways including the PI3K-Akt pathway.


Assuntos
Apoptose , Movimento Celular , Proliferação de Células , Simulação de Acoplamento Molecular , Neoplasias Pancreáticas , Raízes de Plantas , Transdução de Sinais , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Raízes de Plantas/química , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Farmacologia em Rede , Extratos Vegetais/farmacologia , Mapas de Interação de Proteínas
13.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(7): 1306-1314, 2024 Jul 20.
Artigo em Chinês | MEDLINE | ID: mdl-39051076

RESUMO

OBJECTIVE: To explore the therapeutic mechanism of compound Yuye Decoction against diabetic cardiomyopathy (DCM). METHODS: Drugbank, Gene Cards, OMIM and PharmGKb databases were used to obtain DCM-related targets, and the core targets were identified and functionally annotated by protein-protein interaction network analysis followed by GO and KEGG enrichment analysis. The "Traditional Chinese Medicine-Key Component-Key Target-Key Pathway" network was constructed using Cytoscape 3.9.1, and molecular docking was carried out for the key components and the core targets. In the animal experiment, Wistar rat models of DCM were treated with normal saline or Yuye Decoction by gavage at low (0.29 g/kg) and high (1.15 g/kg) doses for 8 weeks, and the changes in cardiac electrophysiology and histopathology were evaluated. The changes in serum levels of LDH, CK, and CK-MB were examined, and myocardial expressions of PI3K, P-PI3K, Akt, P-AKT, BAX, IL-6, and TNF-α were detected using Western blotting. RESULTS: We identified 61 active compounds in Yuye Decoction with 1057 targets, 3682 DCM-related disease targets, and 551 common targets between them. Enrichment of the core targets suggested that apoptosis, inflammation and the PI3K/Akt pathways were the key signaling pathways for DCM treatment. Molecular docking studies showed that the active components in Yuye Decoction including gold amidohydroxyethyl ester and kaempferol had strong binding activities with AKT1 and PIK3R1. In DCM rat models, treatment with Yuye Decoction significantly alleviated myocardial pathologies, reduced serum levels of LDH, CK and CK-MB, lowered myocardial expressions of BAX, IL-6 and TNF-α, and increased the expressions of P-PI3K and P-AKT. CONCLUSION: The therapeutic effect of compound Yuye Decoction against DCM is mediated by its multiple active components that act on multiple targets and pathways to inhibit cardiomyocyte apoptosis and inflammatory response by regulating the PI3K/Akt signaling pathway.


Assuntos
Apoptose , Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Medicamentos de Ervas Chinesas , Inflamação , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Wistar , Transdução de Sinais , Animais , Ratos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Inflamação/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Masculino , Interleucina-6/metabolismo
14.
Cells ; 13(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39056766

RESUMO

Exposure to the neurotoxin trimethyltin (TMT) selectively induces hippocampal neuronal injury and astrocyte activation accompanied with resultant neuroinflammation, which causes severe behavioral, cognitive, and memory impairment. A large body of evidence suggests that flaxseed oil (FSO), as one of the richest sources of essential omega-3 fatty acids, i.e., α-linolenic acids (ALA), displays neuroprotective properties. Here, we report the preventive effects of dietary FSO treatment in a rat model of TMT intoxication. The administration of FSO (1 mL/kg, orally) before and over the course of TMT intoxication (a single dose, 8 mg/kg, i.p.) reduced hippocampal cell death, prevented the activation of astrocytes, and inhibited their polarization toward a pro-inflammatory/neurotoxic phenotype. The underlying protective mechanism was delineated through the selective upregulation of BDNF and PI3K/Akt and the suppression of ERK activation in the hippocampus. Pretreatment with FSO reduced cell death and efficiently suppressed the expression of inflammatory molecules. These beneficial effects were accompanied by an increased intrahippocampal content of n-3 fatty acids. In vitro, ALA pretreatment prevented the TMT-induced polarization of cultured astrocytes towards the pro-inflammatory spectrum. Together, these findings support the beneficial neuroprotective properties of FSO/ALA against TMT-induced neurodegeneration and accompanied inflammation and hint at a promising preventive use of FSO in hippocampal degeneration and dysfunction.


Assuntos
Astrócitos , Hipocampo , Óleo de Semente do Linho , Compostos de Trimetilestanho , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/metabolismo , Óleo de Semente do Linho/farmacologia , Feminino , Compostos de Trimetilestanho/toxicidade , Ratos , Fármacos Neuroprotetores/farmacologia , Inflamação/patologia , Inflamação/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Morte Celular/efeitos dos fármacos , Ratos Wistar
15.
Aging (Albany NY) ; 16(13): 10799-10812, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38967628

RESUMO

OBJECTIVE: This investigation seeks to elucidate the role of the Granulocyte Colony-Stimulating Factor (G-CSF) in the progression of hepatocellular carcinoma (HCC), as well as the impact of the substance on related signaling pathways within the disease matrix. METHODS: Nude mouse tumor-bearing assay was used to detect tumor progression. Levels of Mannose/CD68 and CD34/Mannose within these samples and the concentrations of Mannose and inducible Nitric Oxide Synthase (iNOS) in macrophages were quantified using immunofluorescence techniques. The angiogenic capability was assessed via tube formation assays, and protein expressions of G-CSF, Vascular Endothelial Growth Factor (VEGF), Transforming Growth Factor-beta (TGF-ß), Matrix Metalloproteinases 2 and 9 (MMP2/9), SH2-containing protein tyrosine phosphatase-2 (SHP-2), phosphorylated PI3K/total PI3K (P-PI3K/t-PI3K), phosphorylated AKT/total AKT (P-AKT/t-AKT), and phosphorylated mTOR/total mTOR (P-mTOR/t-mTOR) were measured through Western Blot analysis in both tumor tissues and macrophages. RESULTS: Administration of G-CSF resulted in a marked augmentation of tumor volume. Macrophage Mannose expression was significantly elevated upon G-CSF treatment, while iNOS levels were conspicuously diminished. G-CSF substantially enhanced the secretion of VEGF, TGF-ß, and MMPs in tumor tissues. Macrophage parameters, following incubation in G-CSF pre-treated conditioned medium, indicated enhanced tube-forming capabilities relative to the control, an effect mitigated by the introduction of specific inhibitors. Furthermore, the G-CSF group exhibited a notable reduction in SHP-2 expression, alongside a substantial elevation in the phosphorylation levels of the PI3K/AKT/mTOR pathway proteins across all tumor-bearing paradigms. CONCLUSION: G-CSF ostensibly facilitates the advancement of hepatocellular carcinoma by activating the PI3K/AKT/mTOR signaling cascade within Tumor-Associated Macrophages (TAM).


Assuntos
Carcinoma Hepatocelular , Fator Estimulador de Colônias de Granulócitos , Neoplasias Hepáticas , Camundongos Nus , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Animais , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator Estimulador de Colônias de Granulócitos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos , Humanos , Macrófagos Associados a Tumor/metabolismo , Neovascularização Patológica/metabolismo , Linhagem Celular Tumoral , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Masculino
16.
Int J Nanomedicine ; 19: 6643-6658, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979532

RESUMO

Purpose: Nanovesicles (NVs) derived from bone mesenchymal stem cells (BMSCs) as drug delivery systems are considered an effective therapeutic strategy for diabetes. However, its mechanism of action remains unclear. Here, we evaluated the efficacy and molecular mechanism of BMSC-derived NVs carrying the curcumin analog H8 (H8-BMSCs-NVs) on hepatic glucose and lipid metabolism in type 2 diabetes (T2D). Subjects and Methods: Mouse BMSCs were isolated by collagenase digestion and H8-BMSCs-NVs were prepared by microvesicle extrusion. The effects of H8-BMSCs-NVs on hepatic glucose and lipid metabolism were observed in a T2D mouse model and a HepG2 cell insulin resistance model. To evaluate changes in potential signaling pathways, the PI3K/AKT/AMPK signaling pathway and expression levels of G6P and PEPCK were assessed by Western blotting. Results: H8-BMSCs-NVs effectively improved lipid accumulation in liver tissues and restored liver dysfunction in T2D mice. Meanwhile, H8-BMSCs-NVs effectively inhibited intracellular lipid accumulation in the insulin resistance models of HepG2 cells. Mechanistic studies showed that H8-BMSCs-NVs activated the PI3K/AKT/AMPK signaling pathway and decreased the expression levels of G6P and PEPCK. Conclusion: These findings demonstrate that H8-BMSCs-NVs improved hepatic glucose and lipid metabolism in T2D mice by activating the PI3K/AKT/AMPK signaling pathway, which provides novel evidence suggesting the potential of H8-BMSCs-NVs in the clinically treatment of T2D patients.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Metabolismo dos Lipídeos , Fígado , Células-Tronco Mesenquimais , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células Hep G2 , Glucose/metabolismo , Camundongos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Curcumina/farmacologia , Curcumina/química , Curcumina/administração & dosagem , Resistência à Insulina , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Diabetes Mellitus Experimental/metabolismo
17.
Zhongguo Zhen Jiu ; 44(7): 821-30, 2024 Jul 12.
Artigo em Chinês | MEDLINE | ID: mdl-38986596

RESUMO

OBJECTIVE: To observe the protective effect of acupuncture at "Zhibian" (BL 54) through "Shuidao (ST 28)" based on the PI3K/AKT/FOXO3a pathway in mice with poor ovarian response (POR), and to explore the possible mechanism of acupuncture in inhibiting ovarian granulosa cells apoptosis in POR. METHODS: A total of 45 mice with regular estrous cycles were randomly divided into a blank group, a model group and an acupuncture group, with 15 mice in each group. Mice in the model group and the acupuncture group were given triptolide suspension (50 mg•kg-1•d-1) by gavage for 2 weeks to establish POR model. After successful modeling, mice in the acupuncture group were given acupuncture at "Zhibian" (BL 54) through "Shuidao" (ST 28) for 2 weeks, once a day, 20 min each time. Ovulation induction was started the day after the intervention ended, and samples were taken from each group after ovulation induction. Vaginal smears were used to observe changes in the estrous cycle of mice. The number of oocytes retrieved, ovarian wet weight, final body weight, and ovarian index were measured. The levels of anti-Mullerian hormone (AMH), follicle-stimulating hormone (FSH), estradiol (E2), and luteinizing hormone (LH) in serum were detected by ELISA. The morphology of ovarian tissue was observed by HE staining. The apoptosis of ovarian granulosa cells was detected by TUNEL staining. The mRNA expression of PI3K, AKT, and FOXO3a in ovarian tissue was detected by real-time fluorescence quantitative PCR. The protein expression of Bcl-2 associated X protein (BAX), caspase-3, phosphorylated phosphatidylinositol 3-kinase (p-PI3K), and phosphorylated protein kinase B (p-AKT) in ovarian tissue was detected by Western blot. RESULTS: Compared with the blank group, the rate of estrous cycle disorder in the model group was increased (P<0.01); compared with the model group, the rate of estrous cycle disorder in the acupuncture group was decreased (P<0.01). Compared with the blank group, the number of oocytes retrieved, ovarian wet weight, ovarian index, and final body weight in the model group were decreased (P<0.01); compared with the model group, the number of oocytes retrieved, ovarian index, and ovarian wet weight were increased (P<0.01, P<0.05), and there was no significant difference in final body weight (P>0.05) in the acupuncture group. Compared with the blank group, the serum levels of FSH and LH were increased (P<0.01), and the serum levels of AMH and E2 were decreased (P<0.01) in the model group; compared with the model group, the serum levels of FSH and LH were decreased (P<0.01, P<0.05), and the serum levels of AMH and E2 were increased (P<0.01, P<0.05) in the acupuncture group. Compared with the blank group, the number of normal developing follicles in ovarian tissue in the model group was decreased and the morphology was poor, while the number of atretic follicles increased; compared with the model group, the number, morphology, and granulosa cell structure of follicles in the acupuncture group improved to varying degrees, and the number of atretic follicles decreased. Compared with the blank group, the apoptosis rate of ovarian granulosa cells in the model group was increased (P<0.01); compared with the model group, the apoptosis rate of ovarian granulosa cells in the acupuncture group was decreased (P<0.01). Compared with the blank group, the FOXO3a mRNA expression and caspase-3 and BAX protein expression in ovarian tissue in the model group were increased (P<0.01), and the mRNA expression of PI3K and AKT and the protein expression of p-PI3K, p-AKT, and p-FOXO3a in ovarian tissue were decreased (P<0.01); compared with the model group, the mRNA expression of FOXO3a and protein expression of caspase-3 and BAX in ovarian tissue in the acupuncture group were decreased (P<0.05, P<0.01), and the mRNA expression of PI3K and AKT and the protein expression of p-PI3K, p-AKT, and p-FOXO3a in ovarian tissue were increased (P<0.01, P<0.05). CONCLUSION: Acupuncture at "Zhibian" (BL 54) through "Shuidao" (ST 28) could inhibit ovarian cell apoptosis, and improve ovarian function in POR mice, and its mechanism may be related to the regulation of key factors in the PI3K/AKT/FOXO3a pathway.


Assuntos
Pontos de Acupuntura , Terapia por Acupuntura , Proteína Forkhead Box O3 , Ovário , Proteínas Proto-Oncogênicas c-akt , Animais , Feminino , Camundongos , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Ovário/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinase/genética , Apoptose , Ovulação
18.
Int J Biol Sci ; 20(9): 3461-3479, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993574

RESUMO

Bone-fat balance is crucial to maintain bone homeostasis. As common progenitor cells of osteoblasts and adipocytes, bone marrow mesenchymal stem cells (BMSCs) are delicately balanced for their differentiation commitment. However, the exact mechanisms governing BMSC cell fate are unclear. In this study, we discovered that fibroblast growth factor 9 (Fgf9), a cytokine expressed in the bone marrow niche, controlled bone-fat balance by influencing the cell fate of BMSCs. Histomorphology and cytodifferentiation analysis showed that Fgf9 loss-of-function mutation (S99N) notably inhibited bone marrow adipose tissue (BMAT) formation and alleviated ovariectomy-induced bone loss and BMAT accumulation in adult mice. Furthermore, in vitro and in vivo investigations demonstrated that Fgf9 altered the differentiation potential of BMSCs, shifting from osteogenesis to adipogenesis at the early stages of cell commitment. Transcriptomic and gene expression analyses demonstrated that FGF9 upregulated the expression of adipogenic genes while downregulating osteogenic gene expression at both mRNA and protein levels. Mechanistic studies revealed that FGF9, through FGFR1, promoted adipogenic gene expression via PI3K/AKT/Hippo pathways and inhibited osteogenic gene expression via MAPK/ERK pathway. This study underscores the crucial role of Fgf9 as a cytokine regulating the bone-fat balance in adult bone, suggesting that FGF9 is a potentially therapeutic target in the treatment of osteoporosis.


Assuntos
Fator 9 de Crescimento de Fibroblastos , Células-Tronco Mesenquimais , Osteoporose , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Animais , Células-Tronco Mesenquimais/metabolismo , Fator 9 de Crescimento de Fibroblastos/metabolismo , Fator 9 de Crescimento de Fibroblastos/genética , Camundongos , Osteoporose/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Feminino , Diferenciação Celular , Osteogênese/genética , Sistema de Sinalização das MAP Quinases , Transdução de Sinais , Camundongos Endogâmicos C57BL , Adipogenia , Tecido Adiposo/metabolismo
20.
Zhonghua Xin Xue Guan Bing Za Zhi ; 52(7): 814-826, 2024 Jul 24.
Artigo em Chinês | MEDLINE | ID: mdl-39019831

RESUMO

Objective: To investigate the role and underlying mechanisms of methyltransferase (Mettl) 3 in the process of angiotensin Ⅱ (Ang Ⅱ)-induced pericyte-to-myofibroblast transdifferentiation and renal fibrosis. Methods: C57BL/6J mice were used, in cell experiments, mouse renal pericytes were isolated and cultured using magnetic bead sorting. These pericytes were then induced to transdifferentiate into myofibroblasts with 1×106 mmol/L Ang Ⅱ, which was the Ang Ⅱ group, while pericytes cultured in normal conditions served as the control group. Successful transdifferentiation was verified by immunofluorescence staining, Western blotting, and real-time reverse transcription PCR (RT-qPCR) for α-smooth muscle actin (α-SMA). The levels of m6A modifications and related enzymes (Mettl3, Mettl14), Wilms tumor 1-associated protein (WTAP), fat mass and obesity protein (FTO), ALKBH5, YTHDF1, YTHDF2, YTHDC1, YTHDC2, YTHDC3 were assessed by Dot blot, RT-qPCR and Western blot. Mettl3 expression was inhibited in cells using lentivirus-mediated Mettl3-shRNA transfection, creating sh-Mettl3 and Ang Ⅱ+sh-Mettl3 groups, while lentivirus empty vector transfection served as the negative control (Ang Ⅱ+sh-NC group). The impact of Ang Ⅱ on pericyte transdifferentiation was observed, and the expression of downstream phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway proteins, including PI3K, AKT, phosphorylated AKT at serine 473 (p-AKT (S473)), and phosphorylated AKT at threonine 308 (p-AKT (T308)), were examined. PI3K gene transcription was inhibited by co-culturing cells with actinomycin D, and the half-life of PI3K mRNA was calculated by measuring residual PI3K mRNA expression over different co-culture time. The reversibility of Mettl3 inhibition on Ang Ⅱ-induced pericyte-to-myofibroblast transdifferentiation was assessed by adding the AKT activator SC79 to the Ang Ⅱ+sh-Mettl3 group. In animal experiments, mice were divided into these groups: sham group (administered 0.9% sterile saline), Ang Ⅱ group (infused with Ang Ⅱ solution), sh-Mettl3 group (injected with Mettl3 shRNA lentivirus solution), Ang Ⅱ+sh-Mettl3 group (infused with Ang Ⅱ solution and injected with Mettl3 shRNA lentivirus solution), and Ang Ⅱ+sh-Mettl3+SC79 group (administered Ang Ⅱ solution and Mettl3 shRNA lentivirus, with an additional injection of SC79). Each group consisted of six subject mice. Blood pressure was measured using the tail-cuff method before and after surgery, and serum creatinine, urea, and urinary albumin levels were determined 4 weeks post-surgery. Kidney tissues were collected at 28 days and stained using hematoxylin-eosin (HE) and Masson's trichrome to assess the extent of renal fibrosis. Results: Primary renal pericytes were successfully obtained by magnetic bead sorting, and intervened with 1×106 mmol/L Ang Ⅱ for 48 hours to induce pericyte-to-myofibroblast transdifferentiation. Dot blot results indicated higher m6A modification levels in the Ang Ⅱ group compared to the control group (P<0.05). RT-qPCR and Western blot results showed upregulation of Mettl3 mRNA and protein levels in the Ang Ⅱ group compared to the control group (both P<0.05). In the Ang Ⅱ+sh-Mettl3 group, Mettl3 protein expression was lower than that in the Ang Ⅱ group, with reduced expression levels of α-SMA, vimentin, desmin, fibroblast agonist protein (FAPa) and type Ⅰ collagen (all P<0.05). Compared to the control group, PI3K mRNA expression level was elevated in the Ang Ⅱ group, along with increased p-AKT (S473) and p-AKT (T308) expressions. In the Ang Ⅱ+sh-Mettl3 group, PI3K mRNA expression and p-AKT (S473) and p-AKT (T308) levels were decreased (all P<0.05). The half-life of PI3K mRNA was shorter in the Ang Ⅱ+sh-Mettl3 group than that in the Ang Ⅱ+sh-NC group (2.34 h vs. 3.42 h). The ameliorative effect of Mettl3 inhibition on Ang Ⅱ-induced pericyte-to-myofibroblast transdifferentiation was reversible by SC79. Animal experiments showed higher blood pressure, serum creatinine, urea, and 24-hour urinary protein levels, and a larger fibrosis area in the Ang Ⅱ group compared to the sham group (all P<0.05). The fibrosis area was smaller in the Ang Ⅱ+sh-Mettl3 group than that in the Ang Ⅱ group (P<0.05), but increased again upon addition of SC79. Conclusion: Mettl3-mediated RNA m6A epigenetic regulation is involved in Ang Ⅱ-induced pericyte-to-myofibroblast transdifferentiation and renal fibrosis, potentially by affecting PI3K stability and regulating the PI3K/AKT signaling pathway.


Assuntos
Angiotensina II , Transdiferenciação Celular , Metiltransferases , Camundongos Endogâmicos C57BL , Miofibroblastos , Pericitos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Pericitos/metabolismo , Metiltransferases/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Angiotensina II/farmacologia , Miofibroblastos/metabolismo , Rim , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA