Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.094
Filtrar
1.
J Environ Sci (China) ; 145: 28-49, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38844322

RESUMO

Microbial fuel cells (MFCs) have become more prevalent in groundwater remediation due to their capacity for power generation, removal of pollution, ease of assembly, and low secondary contamination. It is currently being evaluated for practical application in an effort to eliminate groundwater pollution. However, a considerable majority of research was conducted in laboratories. But the operational circumstances including anaerobic characteristics, pH, and temperature vary at different sites. In addition, the complexity of contaminants and the positioning of MFCs significantly affect remediation performance. Taking the aforementioned factors into consideration, this review summarizes a bibliography on the application of MFCs for the remediation of groundwater contamination during the last ten decades and assesses the impact of environmental conditions on the treatment performance. The design of the reactor, including configuration, dimensions, electrodes, membranes, separators, and target contaminants are discussed. This review aims to provide practical guidance for the future application of MFCs in groundwater remediation.


Assuntos
Fontes de Energia Bioelétrica , Recuperação e Remediação Ambiental , Água Subterrânea , Água Subterrânea/química , Recuperação e Remediação Ambiental/métodos , Poluentes Químicos da Água/análise , Purificação da Água/métodos
2.
Nat Commun ; 15(1): 4992, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862519

RESUMO

It has been previously shown that devices based on microbial biofilms can generate hydrovoltaic energy from water evaporation. However, the potential of hydrovoltaic energy as an energy source for microbial growth has remained unexplored. Here, we show that the electroautotrophic bacterium Rhodopseudomonas palustris can directly utilize evaporation-induced hydrovoltaic electrons for growth within biofilms through extracellular electron uptake, with a strong reliance on carbon fixation coupled with nitrate reduction. We obtained similar results with two other electroautotrophic bacterial species. Although the energy conversion efficiency for microbial growth based on hydrovoltaic energy is low compared to other processes such as photosynthesis, we hypothesize that hydrovoltaic energy may potentially contribute to microbial survival and growth in energy-limited environments, given the ubiquity of microbial biofilms and water evaporation conditions.


Assuntos
Biofilmes , Rodopseudomonas , Água , Biofilmes/crescimento & desenvolvimento , Rodopseudomonas/metabolismo , Rodopseudomonas/crescimento & desenvolvimento , Água/química , Água/metabolismo , Fotossíntese , Elétrons , Ciclo do Carbono , Nitratos/metabolismo , Fontes de Energia Bioelétrica/microbiologia
3.
Chemosphere ; 358: 142119, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697567

RESUMO

The CO2 bioelectromethanosynthesis via two-chamber microbial electrolysis cell (MEC) holds tremendous potential to solve the energy crisis and mitigate the greenhouse gas emissions. However, the membrane fouling is still a big challenge for CO2 bioelectromethanosynthesis owing to the poor proton diffusion across membrane and high inter-resistance. In this study, a new MEC bioreactor with biogas recirculation unit was designed in the cathode chamber to enhance secondary-dissolution of CO2 while mitigating the contaminant adhesion on membrane surface. Biogas recirculation improved CO2 re-dissolution, reduced concentration polarization, and facilitated the proton transmembrane diffusion. This resulted in a remarkable increase in the cathodic methane production rate from 0.4 mL/L·d to 8.5 mL/L·d. A robust syntrophic relationship between anodic organic-degrading bacteria (Firmicutes 5.29%, Bacteroidetes 25.90%, and Proteobacteria 6.08%) and cathodic methane-producing archaea (Methanobacterium 65.58%) enabled simultaneous organic degradation, high CO2 bioelectromethanosynthesis, and renewable energy storage.


Assuntos
Biocombustíveis , Reatores Biológicos , Dióxido de Carbono , Metano , Dióxido de Carbono/análise , Eletrólise , Eletrodos , Fontes de Energia Bioelétrica , Methanobacterium/metabolismo , Membranas Artificiais , Proteobactérias/metabolismo
4.
Water Sci Technol ; 89(9): 2429-2439, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747958

RESUMO

Sediment microbial fuel cells (SMFCs) represent a technology that can enhance sediment quality through processes such as nutrient suppression while simultaneously generating electricity from microorganisms. Despite its importance in elucidating the principles of nutrient suppression, the complex behavior of various ions within this context has been rarely explored. Herein, we applied an SMFC and systematically evaluated alterations in ion concentrations in interstitial and overlying waters. The SMFC deployment substantially decreased Na+ concentrations and increased Cl- levels in the interstitial water. This intriguing phenomenon was attributed to reactions driven by the electrodes. These reactions induced remarkable shifts in pH. Consequently, this pH shift triggered the leaching of heavy metals, particularly Fe, and decreased HCO3- concentrations within the interstitial water, thereby inducing the migration of other ions, including Na+ and Cl-, as compensation. Moreover, the PO43- concentration in interstitial water showed an increasing trend upon SMFC application, which contradicts the results of several previous reports. This increase was primarily attributed to the release of PO43-caused by the leaching of Fe salts, which was triggered by the pH shift. These findings provide new insights into sediment improvement research through SMFCs, enhancing our understanding of the fundamental principles and broadening the potential applications of this technology.


Assuntos
Fontes de Energia Bioelétrica , Sedimentos Geológicos , Concentração de Íons de Hidrogênio , Sedimentos Geológicos/química , Íons/química
5.
Biotechnol Adv ; 73: 108372, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38714276

RESUMO

Anaerobic digestion (AD) is an effective and applicable technology for treating organic wastes to recover bioenergy, but it is limited by various drawbacks, such as long start-up time for establishing a stable process, the toxicity of accumulated volatile fatty acids and ammonia nitrogen to methanogens resulting in extremely low biogas productivities, and a large amount of impurities in biogas for upgrading thereafter with high cost. Microbial electrolysis cell (MEC) is a device developed for electrosynthesis from organic wastes by electroactive microorganisms, but MEC alone is not practical for production at large scales. When AD is integrated with MEC, not only can biogas production be enhanced substantially, but also upgrading of the biogas product performed in situ. In this critical review, the state-of-the-art progress in developing AD-MEC systems is commented, and fundamentals underlying methanogenesis and bioelectrochemical reactions, technological innovations with electrode materials and configurations, designs and applications of AD-MEC systems, and strategies for their enhancement, such as driving the MEC device by electricity that is generated by burning the biogas to improve their energy efficiencies, are specifically addressed. Moreover, perspectives and challenges for the scale up of AD-MEC systems are highlighted for in-depth studies in the future to further improve their performance.


Assuntos
Fontes de Energia Bioelétrica , Biocombustíveis , Eletrólise , Anaerobiose , Fontes de Energia Bioelétrica/microbiologia , Reatores Biológicos , Metano/metabolismo
6.
Biosens Bioelectron ; 259: 116365, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38759309

RESUMO

Effective wound management has the potential to reduce both the duration and cost of wound healing. However, traditional methods often rely on direct observation or complex and expensive biological testing to monitor and evaluate the invasive damage caused by wound healing, which can be time-consuming. Biosensors offer the advantage of precise and real-time monitoring, but existing devices are not suitable for integration with sensitive wound tissue due to their external dimensions. Here, we have designed a self-powered biosensing suture (SPBS) based on biofuel cells to accurately monitor glucose concentration at the wound site and promote wound healing. The anode of the SPBS consists of carbon nanotubes-modified carbon fibers, tetrathiafulvalene (TTF), and glucose oxidase (GOx), while the cathode is composed of Ag2O and carbon nanotubes modified nanotubes modified carbon fibers. It was observed that SPBS exhibited excellent physical and chemical stability in vitro. Regardless of different bending degrees or pH values, the maximum power density of SPBS remained above 92%, which is conducive to long-term dynamic evaluation. Furthermore, the voltage generated by SPBS reflects blood glucose concentration, and measurements at wound sites are consistent with those obtained using a commercially available blood glucose meter. SPBS achieves the healing effect of traditional medical sutures after complete healing within 14 days. It offers valuable insights for intelligent devices dedicated to real-time wound monitoring.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Suturas , Cicatrização , Técnicas Biossensoriais/instrumentação , Nanotubos de Carbono/química , Humanos , Glucose Oxidase/química , Desenho de Equipamento , Fontes de Energia Bioelétrica , Glicemia/análise , Animais , Glucose/análise , Glucose/isolamento & purificação , Fibra de Carbono/química
7.
Biosens Bioelectron ; 259: 116422, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38797034

RESUMO

The biology-material hybrid method for chemical-electricity conversion via microbial fuel cells (MFCs) has garnered significant attention in addressing global energy and environmental challenges. However, the efficiency of these systems remains unsatisfactory due to the complex manufacturing process and limited biocompatibility. To overcome these challenges, here, we developed a simple bio-inorganic hybrid system for bioelectricity generation in Shewanella oneidensis (S. oneidensis) MR-1. A biocompatible surface display approach was designed, and silver-binding peptide AgBP2 was expressed on the cell surface. Notably, the engineered Shewanella showed a higher electrochemical sensitivity to Ag+, and a 60 % increase in power density was achieved even at a low concentration of 10 µM Ag+. Further analysis revealed significant upregulations of cell surface negative charge intensity, ATP metabolism, and reducing equivalent (NADH/NAD+) ratio in the engineered S. oneidensis-Ag nanoparticles biohybrid. This work not only provides a novel insight for electrochemical biosensors to detect metal ions, but also offers an alternative biocompatible surface display approach by combining compatible biomaterials with electricity-converting bacteria for advancements in biohybrid MFCs.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Shewanella , Prata , Shewanella/metabolismo , Shewanella/química , Fontes de Energia Bioelétrica/microbiologia , Técnicas Biossensoriais/métodos , Prata/química , Materiais Biocompatíveis/química , Nanopartículas Metálicas/química , Eletricidade , Técnicas Eletroquímicas/métodos
8.
Biosensors (Basel) ; 14(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38785698

RESUMO

Wastewater pipelines are present everywhere in urban areas. Wastewater is a preferable fuel for renewable electricity generation from microbial fuel cells. Here, we created an integrated microbial fuel cell pipeline (MFCP) that could be connected to wastewater pipelines and work as an organic content biosensor and energy harvesting device at domestic waste-treatment plants. The MFCP used a pipeline-like terracotta-based membrane, which provided structural support for the MFCP. In addition, the anode and cathode were attached to the inside and outside of the terracotta membrane, respectively. Co-MnO2 was used as a catalyst to improve the performance of the MFCP cathode. The experimental data showed a good linear relationship between wastewater chemical oxygen demand (COD) concentration and the MFCP output voltage in a COD range of 200-1900 mg/L. This result implies the potential of using the MFCP as a sensor to detect the organic content of the wastewater inside the wastewater pipeline. Furthermore, the MFCP can be used as a long-lasting sustainable energy harvester with a maximum power density of 400 mW/m2 harvested from 1900 mg/L COD wastewater at 25 °C.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Eletrodos , Águas Residuárias , Análise da Demanda Biológica de Oxigênio , Eletricidade , Óxidos/química , Compostos de Manganês/química
9.
Bioresour Technol ; 402: 130842, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750828

RESUMO

Hydrophilic porous membranes, exemplified by polyvinylidene fluoride (PVDF) membranes, have demonstrated significant potential for replacing ion exchange membranes in microbial electrolysis cells (MECs). Membrane fouling remains a major challenge in MECs, impeding proton transport and consequently limiting hydrogen production. This study aims to investigate a synergistic antifouling strategy for PVDF membrane through the incorporation of a coating composed of polydopamine (PDA), polyethyleneimine (PEI), and silver nanoparticles (AgNPs). The PDA-PEI-Ag@PVDF membrane not only effectively mitigates fouling through steric and electrostatic repulsion forces, but also amplifies ion transport by facilitating water diffusion and electromigration. The PDA-PEI-Ag@PVDF membrane exhibited a reduced membrane resistance of 1.01 mΩ m2 and PDA-PEI-Ag modifying PVDF membrane was found to be effective in enhancing the proton transportation of PVDF membrane. Therefore, the enhanced hydrogen production rate of 2.65 ± 0.02 m3/m3/d was achieved in PDA-PEI-Ag@PVDF-MECs.


Assuntos
Fontes de Energia Bioelétrica , Incrustação Biológica , Eletrólise , Hidrogênio , Indóis , Membranas Artificiais , Polivinil , Prótons , Prata , Polivinil/química , Hidrogênio/metabolismo , Incrustação Biológica/prevenção & controle , Prata/química , Prata/farmacologia , Indóis/metabolismo , Indóis/química , Polímeros/química , Nanopartículas Metálicas/química , Polietilenoimina/química , Polímeros de Fluorcarboneto
10.
Molecules ; 29(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38792137

RESUMO

Bioelectrochemical systems (BESs) are an innovative technology for the efficient degradation of antibiotics. Shewanella oneidensis (S. oneidensis) MR-1 plays a pivotal role in degrading sulfamethoxazole (SMX) in BESs. Our study investigated the effect of BES conditions on SMX degradation, focusing on microbial activity. The results revealed that BESs operating with a 0.05 M electrolyte concentration and 2 mA/cm2 current density outperformed electrolysis cells (ECs). Additionally, higher electrolyte concentrations and elevated current density reduced SMX degradation efficiency. The presence of nutrients had minimal effect on the growth of S. oneidensis MR-1 in BESs; it indicates that S. oneidensis MR-1 can degrade SMX without nutrients in a short period of time. We also highlighted the significance of mass transfer between the cathode and anode. Limiting mass transfer at a 10 cm electrode distance enhanced S. oneidensis MR-1 activity and BES performance. In summary, this study reveals the complex interaction of factors affecting the efficiency of BES degradation of antibiotics and provides support for environmental pollution control.


Assuntos
Fontes de Energia Bioelétrica , Shewanella , Sulfametoxazol , Sulfametoxazol/metabolismo , Shewanella/metabolismo , Eletrodos , Biodegradação Ambiental , Antibacterianos/farmacologia , Antibacterianos/química , Eletrólise , Técnicas Eletroquímicas
11.
Bioelectrochemistry ; 158: 108724, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38714063

RESUMO

Microbial conversion of CO2 to multi-carbon compounds such as acetate and butyrate is a promising valorisation technique. For those reactions, the electrochemical supply of hydrogen to the biocatalyst is a viable approach. Earlier we have shown that trace metals from microbial growth media spontaneously form in situ electro-catalysts for hydrogen evolution. Here, we show biocompatibility with the successful integration of such metal mix-based HER catalyst for immediate start-up of microbial acetogenesis (CO2 to acetate). Also, n-butyrate formation started fast (after twenty days). Hydrogen was always produced in excess, although productivity decreased over the 36 to 50 days, possibly due to metal leaching from the cathode. The HER catalyst boosted microbial productivity in a two-step microbial community bioprocess: acetogenesis by a BRH-c20a strain and acetate elongation to n-butyrate by Clostridium sensu stricto 12 (related) species. These findings provide new routes to integrate electro-catalysts and micro-organisms showing respectively bio and electrochemical compatibility.


Assuntos
Hidrogênio , Hidrogênio/química , Hidrogênio/metabolismo , Catálise , Metais/química , Acetatos/química , Acetatos/metabolismo , Clostridium/metabolismo , Eletrodos , Materiais Biocompatíveis/química , Fontes de Energia Bioelétrica/microbiologia
12.
Bioelectrochemistry ; 158: 108723, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38733720

RESUMO

Bidirectional electron transfer is about that exoelectrogens produce bioelectricity via extracellular electron transfer at anode and drive cytoplasmic biochemical reactions via extracellular electron uptake at cathode. The key factor to determine above bioelectrochemical performances is the electron transfer efficiency under biocompatible abiotic/biotic interface. Here, a graphene/polyaniline (GO/PANI) nanocomposite electrode specially interfacing exoelectrogens (Shewanella loihica) and augmenting bidirectional electron transfer was conducted by in-situ electrochemical modification on carbon paper (CP). Impressively, the GO/PANI@CP electrode tremendously improved the performance of exoelectrogens at anode for wastewater treatment and bioelectricity generation (about 54 folds increase of power density compared to blank CP electrode). The bacteria on electrode surface not only showed fast electron release but also exhibited high electricity density of extracellular electron uptake through the proposed direct electron transfer pathway. Thus, the cathode applications of microbial electrosynthesis and bio-denitrification were developed via GO/PANI@CP electrode, which assisted the close contact between microbial outer-membrane cytochromes and nanocomposite electrode for efficient nitrate removal (0.333 mM/h). Overall, nanocomposite modified electrode with biocompatible interfaces has great potential to enhance bioelectrochemical reactions with exoelectrogens.


Assuntos
Fontes de Energia Bioelétrica , Eletrodos , Grafite , Grafite/química , Transporte de Elétrons , Fontes de Energia Bioelétrica/microbiologia , Compostos de Anilina/química , Compostos de Anilina/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Shewanella/metabolismo , Nanocompostos/química , Técnicas Eletroquímicas/métodos
13.
Environ Res ; 252(Pt 4): 119066, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38714219

RESUMO

In the practical application of wetland microbial fuel cells (WMFCs), suitable designs and stacked connection systems have consistently been employed to increase and harvest power generation. Our study compares different WMFCs designs and demonstrates that the cylinder pot design outperforms the small hanging pot design in terms of electrical energy production. Moreover, power generation from the cylinder pot can be further optimized through separator modification and stacked connections. The stacked WMFCs design exhibited no voltage reversal, with an average power output ranging from 0.03 ± 0.01 mW (single pot) to 0.11 ± 0.05 mW (stacked connection of 5 pots) over a 60-day operational period. Additionally, our study identifies distinct patterns in both anodic and cathodic physiochemical factors including electrical conductivity (EC), pH, and nitrate (NO3-), highlighting the significant influence of plant involvement on altering concentrations and levels in different electrode zones. The WMFCs bioelectricity production system, employing 15 pots stacked connections achieves an impressive maximum power density of 9.02 mW/m2. The system's practical application is evidenced by its ability to successfully power a DC-DC circuit and charge a 1.2 V AAA battery over a period of 30 h, achieving an average charging rate of 0.0.2 V per hour.


Assuntos
Fontes de Energia Bioelétrica , Áreas Alagadas , Condutividade Elétrica , Nitratos/análise , Eletrodos
14.
Chemosphere ; 359: 142323, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735496

RESUMO

Anoxygenic phototrophic bacteria is a promising catalyst for constructing bioanode, but the mixed culture with non-photosynthetic bacteria is inevitable in an open environment application. In this study, a Rhodopseudomonas-dominated mixed culture with other electrogenic bacteria was investigated for deciphering the differentiated performance on electricity generation in light or dark conditions. The kinetic study showed that reaction rate of OM degradation was 9 times higher than that under dark condition, demonstrating that OM degradation was enhanced by photosynthesis. However, CE under light condition was lower. It indicated that part of OM was used to provide hydrogen donors for the fixation of CO2 or hydrogen production in photosynthesis, decreasing the OM used for electron transfer. In addition, higher COD concentration was not conducive to electricity generation. EIS analysis demonstrated that higher OM concentration would increase Rct to hinder the transfer of electrons from bacteria to the electrode. Indirect and direct electron transfer were revealed by CV analysis for light and dark biofilm, respectively, and nanowires were also observed by SEM graphs, further revealing the differentiate performance. Microbial community analysis demonstrated Rhodopseudomonas was dominated in light and decreased in dark, but Geobacter increased apparently from light to dark, resulting in different power generation performance. The findings revealed the differentiated performance on electricity generation and pollutant removal by mixed culture of phototrophic bacteria in light or dark, which will improve the power generation from photo-microbial fuel cells.


Assuntos
Fontes de Energia Bioelétrica , Eletricidade , Rodopseudomonas , Rodopseudomonas/metabolismo , Fotossíntese , Luz , Eletrodos , Biofilmes/crescimento & desenvolvimento , Análise da Demanda Biológica de Oxigênio , Transporte de Elétrons , Geobacter/metabolismo , Geobacter/fisiologia
15.
J Environ Manage ; 360: 121066, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744202

RESUMO

The biotic nitrate reduction rate in freshwater ecosystems is typically constrained by the scarcity of carbon sources. In this study, 'two-chambers' - 'two-electrodes' photoautotrophic biofilm-soil microbial fuel cells (P-SMFC) was developed to accelerate nitrate reduction by activating in situ electron donors that originated from the soil organic carbon (SOC). The nitrate reduction rate of P-SMFC (0.1341 d-1) improved by âˆ¼ 1.6 times on the 28th day compared to the control photoautotrophic biofilm. The relative abundance of electroactive bacterium increased in the P-SMFC and this bacterium contributed to obtain electrons from SOC. Biochar amendment decreased the resistivity of P-SMFC, increased the electron transferring efficiency, and mitigated anodic acidification, which continuously facilitated the thriving of putative electroactive bacterium and promoted current generation. The results from physiological and ecological tests revealed that the cathodic photoautotrophic biofilm produced more extracellular protein, increased the relative abundance of Lachnospiraceae, Magnetospirillaceae, Pseudomonadaceae, and Sphingomonadaceae, and improved the activity of nitrate reductase and ATPase. Correspondingly, P-SMFC in the presence of biochar achieved the highest reaction rate constant for nitrate reduction (kobs) (0.2092 d-1) which was 2.4 times higher than the control photoautotrophic biofilm. This study provided a new strategy to vitalize in situ carbon sources in paddy soil for nitrate reduction by the construction of P-SMFC.


Assuntos
Fontes de Energia Bioelétrica , Biofilmes , Nitratos , Solo , Nitratos/metabolismo , Solo/química , Microbiologia do Solo , Eletrodos , Carbono/metabolismo , Oxirredução
16.
Bioresour Technol ; 403: 130883, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788807

RESUMO

Electrodes with superior stability and sensitivity are highly desirable in advancing the toxicity detection efficiency of microbial fuel cells (MFCs). Herein, boron-doped reduced graphene oxide (B-rGO) was synthesized and utilized as an efficient cathode candidate in an MFCs system for sensitive sodium dodecylbenzene sulfonate (SDBS) detection. Boron doping introduces additional defects and improves the dispersibility and oxygen permeability, thereby enhancing the oxygen reduction reaction (ORR) efficiency. The B-rGO-based cathode has demonstrated significantly improved output voltage and power density, marking improvements of 75 % and 58 % over their undoped counterparts, respectively. Furthermore, it also exhibited remarkable linear sensitivity to SDBS concentrations across a broad range (0.2-15 mg/L). Notably, the cathode maintained excellent stability within the test range and showed significant reversibility for SDBS concentrations between 0.2 and 3 mg/L. The highly sensitive and stable B-rGO-based cathode is inspiring for developing more practical and cost-effective toxicant sensing devices.


Assuntos
Fontes de Energia Bioelétrica , Boro , Eletrodos , Grafite , Grafite/química , Boro/química , Benzenossulfonatos/química , Oxirredução , Óxidos/química
17.
Bioresour Technol ; 403: 130896, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795921

RESUMO

Microbial electrosynthesis (MES) can use renewable electricity to power microbial conversion of carbon dioxide (CO2) into carboxylates. To ensure high productivities in MES, good mass transfer must be ensured, which could be accomplished with fluidization of granular activated carbon (GAC). In this study, fluidized and fixed GAC bed cathodes were compared. Acetate production rate and current density were 42 % and 47 % lower, respectively, in fluidized than fixed bed reactors. Although similar microbial consortium dominated by Eubacterium and Proteiniphilum was observed, lowest biomass quantity was measured with fixed GAC bed indicating higher specific acetate production rates compared to fluidized GAC bed. Furthermore, charge efficiency was the highest and charge recovery in carboxylates the lowest in fixed GAC beds indicating enhanced hydrogen evolution and need for enhancing CO2 feeding to enable higher production rates of acetate. Overall, fixed GAC beds have higher efficiency for acetate production in MES than fluidized GAC beds.


Assuntos
Dióxido de Carbono , Carvão Vegetal , Eletrodos , Dióxido de Carbono/metabolismo , Carvão Vegetal/química , Acetatos/metabolismo , Ácidos Carboxílicos/metabolismo , Reatores Biológicos , Fontes de Energia Bioelétrica , Biomassa
18.
Sci Total Environ ; 938: 173530, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38815818

RESUMO

Microbial fuel cells (MFCs), known for their low energy consumption, high efficiency, and environmental friendliness, have been widely utilized for removing antibiotics from wastewater. Compared to conventional wastewater treatment methods, MFCs produce less sludge while exhibiting superior antibiotic removal capacity, effectively reducing the spread of antibiotic resistance genes (ARGs). This study investigates 1) the mechanisms of ARGs generation and proliferation in MFCs; 2) the influencing factors on the fate and removal of antibiotics and ARGs; and 3) the fate and mitigation of ARGs in MFC and MFC-coupled systems. It is indicated that high removal efficiency of antibiotics and minimal amount of sludge production contribute the mitigation of ARGs in MFCs. Influencing factors, such as cathode potential, electrode materials, salinity, initial antibiotic concentration, and additional additives, can lead to the selection of tolerant microbial communities, thereby affecting the abundance of ARGs carried by various microbial hosts. Integrating MFCs with other wastewater treatment systems can synergistically enhance their performance, thereby improving the overall removal efficiency of ARGs. Moreover, challenges and future directions for mitigating the spread of ARGs using MFCs are suggested.


Assuntos
Antibacterianos , Fontes de Energia Bioelétrica , Resistência Microbiana a Medicamentos , Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Resistência Microbiana a Medicamentos/genética , Águas Residuárias/microbiologia , Poluentes Químicos da Água
19.
Sci Total Environ ; 927: 172242, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582122

RESUMO

Bacterial adhesion plays a vital role in forming and shaping the structure of electroactive biofilms that are essential for the performance of bioelectrochemical systems (BESs). Type IV pili are known to mediate cell adhesion in many Gram-negative bacteria, but the mechanism of pili-mediated cell adhesion of Geobacter species on anode surface remains unclear. Herein, a minor pilin PilV2 was found to be essential for cell adhesion ability of Geobacter sulfurreducens since the lack of pilV2 gene depressed the cell adhesion capability by 81.2% in microplate and the anodic biofilm density by 23.1 % at -0.1 V and 37.7 % at -0.3 V in BESs. The less cohesiveness of mutant biofilms increased the charge transfer resistance and biofilm resistance, which correspondingly lowered current generation of the pilV2-deficient strain by up to 63.2 % compared with that of the wild-type strain in BESs. The deletion of pilV2 posed an insignificant effect on the production of extracellular polysaccharides, pili, extracellular cytochromes and electron shuttles that are involved in biofilm formation or extracellular electron transfer (EET) process. This study demonstrated the significance of pilV2 gene in cell adhesion and biofilm formation of G. sulfurreducens, as well as the importance of pili-mediated adhesion for EET of electroactive biofilm.


Assuntos
Aderência Bacteriana , Biofilmes , Proteínas de Fímbrias , Geobacter , Geobacter/fisiologia , Geobacter/genética , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/fisiologia , Fímbrias Bacterianas/metabolismo , Fontes de Energia Bioelétrica
20.
Chemosphere ; 357: 142053, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636917

RESUMO

Emerging organic contaminants present in the environment can be biodegraded in anodic biofilms of microbial fuel cells (MFCs). However, there is a notable gap existing in deducing the degradation mechanism, intermediate products, and the microbial communities involved in degradation of broad-spectrum antibiotic such as triclosan (TCS). Herein, the possible degradation of TCS is explored using TCS acclimatized biofilms in MFCs. 95% of 5 mgL-1 TCS are been biodegraded within 84 h with a chemical oxygen demand (COD) reduction of 62% in an acclimatized-MFC (A-MFC). The degradation of TCS resulted in 8 intermediate products including 2,4 -dichlorophenol which gets further mineralized within the system. Concurrently, the 16S rRNA V3-V4 sequencing revealed that there is a large shift in microbial communities after TCS acclimatization and MFC operation. Moreover, 30 dominant bacterial species (relative intensity >1%) are identified in the biofilm in which Sulfuricurvum kujiense, Halomonas phosphatis, Proteiniphilum acetatigens, and Azoarcus indigens significantly contribute to dihydroxylation, ring cleavage and dechlorination of TCS. Additionally, the MFC was able to produce 818 ± 20 mV voltage output with a maximum power density of 766.44 mWm-2. The antibacterial activity tests revealed that the biotoxicity of TCS drastically reduced in the MFC effluent, signifying the non-toxic nature of the degraded products. Hence, this work provides a proof-of-concept strategy for sustainable mitigation of TCS in wastewaters with enhanced bioelectricity generation.


Assuntos
Bactérias , Biodegradação Ambiental , Fontes de Energia Bioelétrica , Biofilmes , Triclosan , Triclosan/metabolismo , Bactérias/metabolismo , Poluentes Químicos da Água/metabolismo , RNA Ribossômico 16S , Clorofenóis/metabolismo , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...