Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.335
Filtrar
1.
Traffic ; 25(5): e12936, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38725127

RESUMO

Endosomal trafficking of TrkA is a critical process for nerve growth factor (NGF)-dependent neuronal cell survival and differentiation. The small GTPase ADP-ribosylation factor 6 (Arf6) is implicated in NGF-dependent processes in PC12 cells through endosomal trafficking and actin cytoskeleton reorganization. However, the regulatory mechanism for Arf6 in NGF signaling is largely unknown. In this study, we demonstrated that EFA6A, an Arf6-specific guanine nucleotide exchange factor, was abundantly expressed in PC12 cells and that knockdown of EFA6A significantly inhibited NGF-dependent Arf6 activation, TrkA recycling from early endosomes to the cell surface, prolonged ERK1/2 phosphorylation, and neurite outgrowth. We also demonstrated that EFA6A forms a protein complex with TrkA through its N-terminal region, thereby enhancing its catalytic activity for Arf6. Similarly, we demonstrated that EFA6A forms a protein complex with TrkA in cultured dorsal root ganglion (DRG) neurons. Furthermore, cultured DRG neurons from EFA6A knockout mice exhibited disturbed NGF-dependent TrkA trafficking compared with wild-type neurons. These findings provide the first evidence for EFA6A as a key regulator of NGF-dependent TrkA trafficking and signaling.


Assuntos
Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP , Endossomos , Fatores de Troca do Nucleotídeo Guanina , Fator de Crescimento Neural , Crescimento Neuronal , Receptor trkA , Animais , Células PC12 , Receptor trkA/metabolismo , Fator de Crescimento Neural/metabolismo , Ratos , Endossomos/metabolismo , Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Camundongos , Transporte Proteico , Gânglios Espinais/metabolismo , Camundongos Knockout
2.
FASEB J ; 38(10): e23661, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38733310

RESUMO

Itching is an aversive somatosensation that triggers the desire to scratch. Transient receptor potential (TRP) channel proteins are key players in acute and chronic itch. However, whether the modulatory effect of fibroblast growth factor 13 (FGF13) on acute and chronic itch is associated with TRP channel proteins is unclear. Here, we demonstrated that conditional knockout of Fgf13 in dorsal root ganglion neurons induced significant impairment in scratching behaviors in response to acute histamine-dependent and chronic dry skin itch models. Furthermore, FGF13 selectively regulated the function of the TRPV1, but not the TRPA1 channel on Ca2+ imaging and electrophysiological recordings, as demonstrated by a significant reduction in neuronal excitability and current density induced by TRPV1 channel activation, whereas TRPA1 channel activation had no effect. Changes in channel currents were also verified in HEK cell lines. Subsequently, we observed that selective modulation of TRPV1 by FGF13 required its microtubule-stabilizing effect. Furthermore, in FGF13 knockout mice, only the overexpression of FGF13 with a tubulin-binding domain could rescue TRP channel function and the impaired itch behavior. Our findings reveal a novel mechanism by which FGF13 is involved in TRPV1-dependent itch transduction and provide valuable clues for alleviating pathological itch syndrome.


Assuntos
Fatores de Crescimento de Fibroblastos , Camundongos Knockout , Microtúbulos , Prurido , Canais de Cátion TRPV , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Prurido/metabolismo , Prurido/genética , Animais , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Camundongos , Humanos , Células HEK293 , Microtúbulos/metabolismo , Gânglios Espinais/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Canal de Cátion TRPA1/metabolismo , Canal de Cátion TRPA1/genética
3.
J Tradit Chin Med ; 44(3): 437-447, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38767627

RESUMO

OBJECTIVE: To evaluate the analgesic effects of total flavonoids of Longxuejie (Resina Dracaenae Cochinchinensis) (TFDB) and explore the possible analgesic mechanism associated with transient receptor potential vanilloid 1 (TRPV1). METHODS: Whole-cell patch clamp technique was used to observe the effects of TFDB on capsaicin-induced TRPV1 currents. Rat experiments in vivo were used to observe the analgesic effects of TFDB. Western blot and immunofluorescence experiments were used to test the change of TRPV1 expression in DRG neurons induced by TFDB. RESULTS: Results showed that TFDB inhibited capsaicin-induced TRPV1 receptor currents in acutely isolated dorsal root ganglion (DRG) neurons of rats and the half inhibitory concentration was (16.7 ± 1.6) mg/L. TFDB (2-20 mg/kg) showed analgesic activity in the phase Ⅱ of formalin test and (0.02-2 mg per paw) reduced capsaicin-induced licking times of rats. TFDB (20 mg/kg) was fully efficacious on complete Freund's adjuvant (CFA)-induced inflammatory thermal hyperalgesia and capsaicin could weaken the analgesic effects. The level of TRPV1 expressions of DRG neurons was also decreased in TFDB-treated CFA-inflammatory pain rats. CONCLUSION: All these results indicated that the analgesic effect of TFDB may contribute to their modulations on both function and expression of TRPV1 channels in DRG neurons.


Assuntos
Analgésicos , Flavonoides , Gânglios Espinais , Ratos Sprague-Dawley , Canais de Cátion TRPV , Animais , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Ratos , Flavonoides/farmacologia , Analgésicos/farmacologia , Analgésicos/química , Masculino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Gânglios Espinais/citologia , Humanos , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Dor/tratamento farmacológico , Dor/metabolismo
4.
BMC Musculoskelet Disord ; 25(1): 331, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725009

RESUMO

BACKGROUND: The development of neuropathic pain (NP) is one of the reasons why the pain is difficult to treat, and microglial activation plays an important role in NP. Recently, platelet-rich plasma (PRP) has emerged as a novel therapeutic method for knee osteoarthritis (KOA). However, it's unclarified whether PRP has analgesic effects on NP induced by KOA and the underlying mechanisms unknown. PURPOSE: To observe the analgesic effects of PRP on NP induced by KOA and explore the potential mechanisms of PRP in alleviating NP. METHODS: KOA was induced in male rats with intra-articular injections of monosodium iodoacetate (MIA) on day 0. The rats received PRP or NS (normal saline) treatment at days 15, 17, and 19 after modeling. The Von Frey and Hargreaves tests were applied to assess the pain-related behaviors at different time points. After euthanizing the rats with deep anesthesia at days 28 and 42, the corresponding tissues were taken for subsequent experiments. The expression of activating transcription factor 3 (ATF3) in dorsal root ganglia (DRG) and ionized-calcium-binding adapter molecule-1(Iba-1) in the spinal dorsal horn (SDH) was detected by immunohistochemical staining. In addition, the knee histological assessment was performed by hematoxylin-eosin (HE) staining. RESULTS: The results indicated that injection of MIA induced mechanical allodynia and thermal hyperalgesia, which could be reversed by PRP treatment. PRP downregulated the expression of ATF3 within the DRG and Iba-1 within the SDH. Furthermore, an inhibitory effect on cartilage degeneration was observed in the MIA + PRP group only on day 28. CONCLUSION: These results indicate that PRP intra-articular injection therapy may be a potential therapeutic agent for relieving NP induced by KOA. This effect could be attributed to downregulation of microglial activation and reduction in nerve injury.


Assuntos
Regulação para Baixo , Microglia , Neuralgia , Osteoartrite do Joelho , Plasma Rico em Plaquetas , Ratos Sprague-Dawley , Animais , Masculino , Neuralgia/terapia , Neuralgia/metabolismo , Microglia/metabolismo , Ratos , Osteoartrite do Joelho/terapia , Fator 3 Ativador da Transcrição/metabolismo , Gânglios Espinais/metabolismo , Modelos Animais de Doenças , Injeções Intra-Articulares , Proteínas de Ligação ao Cálcio/metabolismo , Ácido Iodoacético/toxicidade , Proteínas dos Microfilamentos
5.
Biol Res ; 57(1): 28, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750549

RESUMO

BACKGROUND: The activated microglia have been reported as pillar factors in neuropathic pain (NP) pathology, but the molecules driving pain-inducible microglial activation require further exploration. In this study, we investigated the effect of dorsal root ganglion (DRG)-derived exosomes (Exo) on microglial activation and the related mechanism. METHODS: A mouse model of NP was generated by spinal nerve ligation (SNL), and DRG-derived Exo were extracted. The effects of DRG-Exo on NP and microglial activation in SNL mice were evaluated using behavioral tests, HE staining, immunofluorescence, and western blot. Next, the differentially enriched microRNAs (miRNAs) in DRG-Exo-treated microglia were analyzed using microarrays. RT-qPCR, RNA pull-down, dual-luciferase reporter assay, and immunofluorescence were conducted to verify the binding relation between miR-16-5p and HECTD1. Finally, the effects of ubiquitination modification of HSP90 by HECTD1 on NP progression and microglial activation were investigated by Co-IP, western blot, immunofluorescence assays, and rescue experiments. RESULTS: DRG-Exo aggravated NP resulting from SNL in mice, promoted the activation of microglia in DRG, and increased neuroinflammation. miR-16-5p knockdown in DRG-Exo alleviated the stimulating effects of DRG-Exo on NP and microglial activation. DRG-Exo regulated the ubiquitination of HSP90 through the interaction between miR-16-5p and HECTD1. Ubiquitination alteration of HSP90 was involved in microglial activation during NP. CONCLUSIONS: miR-16-5p shuttled by DRG-Exo regulated the ubiquitination of HSP90 by interacting with HECTD1, thereby contributing to the microglial activation in NP.


Assuntos
Modelos Animais de Doenças , Exossomos , Gânglios Espinais , Proteínas de Choque Térmico HSP90 , MicroRNAs , Microglia , Neuralgia , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Microglia/metabolismo , Exossomos/metabolismo , Neuralgia/metabolismo , Neuralgia/genética , Gânglios Espinais/metabolismo , Camundongos , Proteínas de Choque Térmico HSP90/metabolismo , Masculino , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Camundongos Endogâmicos C57BL
6.
J Toxicol Sci ; 49(5): 241-248, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38692911

RESUMO

Methylmercury is an environmental polluting organometallic compound that exhibits neurotoxicity, as observed in Minamata disease patients. Methylmercury damages peripheral nerves in Minamata patients, causing more damage to sensory nerves than motor nerves. Peripheral nerves are composed of three cell types: dorsal root ganglion (DRG) cells, anterior horn cells (AHCs), and Schwann cells. In this study, we compared cultured these three cell types derived from the rat for susceptibility to methylmercury cytotoxicity, intracellular accumulation of mercury, expression of L-type amino acid transporter 1 (LAT1), which transports methylmercury into cells, and expression of multidrug resistance-associated protein 2 (MRP2), which transports methylmercury-glutathione conjugates into the extracellular space. Of the cells examined, we found that DRG cells were the most susceptible to methylmercury with markedly higher intracellular accumulation of mercury. The constitutive level of LAT1 was higher and that of MRP2 lower in DRG cells compared with those in AHC and Schwann cells. Additionally, decreased cell viability caused by methylmercury was significantly reduced by either the LAT1 inhibitor, JPH203, or siRNA-mediated knockdown of LAT1. On the other hand, an MRP2 inhibitor, MK571, significantly intensified the decrease in the cell viability caused by methylmercury. Our results provide a cellular basis for sensory neve predominant injury in the peripheral nerves of Minamata disease patients.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Sobrevivência Celular , Gânglios Espinais , Compostos de Metilmercúrio , Células de Schwann , Animais , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Compostos de Metilmercúrio/toxicidade , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Nervos Periféricos/metabolismo , Nervos Periféricos/efeitos dos fármacos , Masculino , Ratos , Proteína 2 Associada à Farmacorresistência Múltipla
7.
J Clin Invest ; 134(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690736

RESUMO

Pain and inflammation are biologically intertwined responses that warn the body of potential danger. In this issue of the JCI, Defaye, Bradaia, and colleagues identified a functional link between inflammation and pain, demonstrating that inflammation-induced activation of stimulator of IFN genes (STING) in dorsal root ganglia nociceptors reduced pain-like behaviors in a rodent model of inflammatory pain. Utilizing mice with a gain-of-function STING mutation, Defaye, Bradaia, and colleagues identified type I IFN regulation of voltage-gated potassium channels as the mechanism of this pain relief. Further investigation into mechanisms by which proinflammatory pathways can reduce pain may reveal druggable targets and insights into new approaches for treating persistent pain.


Assuntos
Gânglios Espinais , Proteínas de Membrana , Dor , Animais , Camundongos , Gânglios Espinais/metabolismo , Dor/genética , Dor/metabolismo , Dor/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Humanos , Nociceptores/metabolismo , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/imunologia , Interferon Tipo I/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/imunologia
8.
J Clin Invest ; 134(9)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38690737

RESUMO

Inflammation and pain are intertwined responses to injury, infection, or chronic diseases. While acute inflammation is essential in determining pain resolution and opioid analgesia, maladaptive processes occurring during resolution can lead to the transition to chronic pain. Here we found that inflammation activates the cytosolic DNA-sensing protein stimulator of IFN genes (STING) in dorsal root ganglion nociceptors. Neuronal activation of STING promotes signaling through TANK-binding kinase 1 (TBK1) and triggers an IFN-ß response that mediates pain resolution. Notably, we found that mice expressing a nociceptor-specific gain-of-function mutation in STING exhibited an IFN gene signature that reduced nociceptor excitability and inflammatory hyperalgesia through a KChIP1-Kv4.3 regulation. Our findings reveal a role of IFN-regulated genes and KChIP1 downstream of STING in the resolution of inflammatory pain.


Assuntos
Proteínas de Membrana , Nociceptores , Animais , Camundongos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nociceptores/metabolismo , Gânglios Espinais/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Inflamação/genética , Inflamação/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Dor/metabolismo , Dor/genética , Transdução de Sinais , Masculino
9.
Biotechnol J ; 19(5): e2300734, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38719571

RESUMO

Self-assembly of biological elements into biomimetic cargo carriers for targeting and delivery is a promising approach. However, it still holds practical challenges. We developed a functionalization approach of DNA origami (DO) nanostructures with neuronal growth factor (NGF) for manipulating neuronal systems. NGF bioactivity and its interactions with the neuronal system were demonstrated in vitro and in vivo models. The DO elements fabricated by molecular self-assembly have manipulated the surrounding environment through static spatially and temporally controlled presentation of ligands to the cell surface receptors. Our data showed effective bioactivity in differentiating PC12 cells in vitro. Furthermore, the DNA origami NGF (DON) affected the growth directionality and spatial capabilities of dorsal root ganglion neurons in culture by introducing a chemotaxis effect along a gradient of functionalized DO structures. Finally, we showed that these elements provide enhanced axonal regeneration in a rat sciatic nerve injury model in vivo. This study is a proof of principle for the functionality of DO in neuronal manipulation and regeneration. The approach proposed here, of an engineered platform formed out of programmable nanoscale elements constructed of DO, could be extended beyond the nervous system and revolutionize the fields of regenerative medicine, tissue engineering, and cell biology.


Assuntos
DNA , Gânglios Espinais , Fator de Crescimento Neural , Regeneração Nervosa , Animais , Ratos , Células PC12 , DNA/química , Gânglios Espinais/citologia , Fator de Crescimento Neural/química , Fator de Crescimento Neural/farmacologia , Nanoestruturas/química , Neurônios , Nervo Isquiático , Alicerces Teciduais/química , Ratos Sprague-Dawley
10.
PLoS One ; 19(5): e0300254, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38696450

RESUMO

Low back pain, knee osteoarthritis, and cancer patients suffer from chronic pain. Aberrant nerve growth into intervertebral disc, knee, and tumors, are common pathologies that lead to these chronic pain conditions. Axonal dieback induced by capsaicin (Caps) denervation has been FDA-approved to treat painful neuropathies and knee osteoarthritis but with short-term efficacy and discomfort. Herein, we propose to evaluate pyridoxine (Pyr), vincristine sulfate (Vcr) and ionomycin (Imy) as axonal dieback compounds for denervation with potential to alleviate pain. Previous literature suggests Pyr, Vcr, and Imy can cause undesired axonal degeneration, but no previous work has evaluated axonal dieback and cytotoxicity on adult rat dorsal root ganglia (DRG) explants. Thus, we performed axonal dieback screening using adult rat DRG explants in vitro with Caps as a positive control and assessed cytotoxicity. Imy inhibited axonal outgrowth and slowed axonal dieback, while Pyr and Vcr at high concentrations produced significant reduction in axon length and robust axonal dieback within three days. DRGs treated with Caps, Vcr, or Imy had increased DRG cytotoxicity compared to matched controls, but overall cytotoxicity was minimal and at least 88% lower compared to lysed DRGs. Pyr did not lead to any DRG cytotoxicity. Further, neither Pyr nor Vcr triggered intervertebral disc cell death or affected cellular metabolic activity after three days of incubation in vitro. Overall, our findings suggest Pyr and Vcr are not toxic to DRGs and intervertebral disc cells, and there is potential for repurposing these compounds for axonal dieback compounds to cause local denervation and alleviate pain.


Assuntos
Axônios , Denervação , Gânglios Espinais , Disco Intervertebral , Animais , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/patologia , Ratos , Disco Intervertebral/efeitos dos fármacos , Disco Intervertebral/patologia , Axônios/efeitos dos fármacos , Capsaicina/farmacologia , Ratos Sprague-Dawley , Masculino , Vincristina/farmacologia
11.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731951

RESUMO

Distal sensory polyneuropathy (DSP) and distal neuropathic pain (DNP) remain significant challenges for older people with HIV (PWH), necessitating enhanced clinical attention. HIV and certain antiretroviral therapies (ARTs) can compromise mitochondrial function and impact mitochondrial DNA (mtDNA) replication, which is linked to DSP in ART-treated PWH. This study investigated mtDNA, mitochondrial fission and fusion proteins, and mitochondrial electron transport chain protein changes in the dorsal root ganglions (DRGs) and sural nerves (SuNs) of 11 autopsied PWH. In antemortem standardized assessments, six had no or one sign of DSP, while five exhibited two or more DSP signs. Digital droplet polymerase chain reaction was used to measure mtDNA quantity and the common deletions in isolated DNA. We found lower mtDNA copy numbers in DSP+ donors. SuNs exhibited a higher proportion of mtDNA common deletion than DRGs in both groups. Mitochondrial electron transport chain (ETC) proteins were altered in the DRGs of DSP+ compared to DSP- donors, particularly Complex I. These findings suggest that reduced mtDNA quantity and increased common deletion abundance may contribute to DSP in PWH, indicating diminished mitochondrial activity in the sensory neurons. Accumulated ETC proteins in the DRG imply impaired mitochondrial transport to the sensory neuron's distal portion. Identifying molecules to safeguard mitochondrial integrity could aid in treating or preventing HIV-associated peripheral neuropathy.


Assuntos
DNA Mitocondrial , Infecções por HIV , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Masculino , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Infecções por HIV/genética , Projetos Piloto , Feminino , Pessoa de Meia-Idade , Idoso , Gânglios Espinais/metabolismo , Gânglios Espinais/virologia , Mitocôndrias/metabolismo , Mitocôndrias/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Nervos Periféricos/metabolismo , Nervos Periféricos/virologia , Nervos Periféricos/patologia , Adulto , Nervo Sural/metabolismo , Nervo Sural/patologia
12.
J Cell Mol Med ; 28(8): e18201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568078

RESUMO

Sensory nerves play a crucial role in maintaining bone homeostasis by releasing Semaphorin 3A (Sema3A). However, the specific mechanism of Sema3A in regulation of bone marrow mesenchymal stem cells (BMMSCs) during bone remodelling remains unclear. The tibial denervation model was used and the denervated tibia exhibited significantly lower mass as compared to sham operated bones. In vitro, BMMSCs cocultured with dorsal root ganglion cells (DRGs) or stimulated by Sema3A could promote osteogenic differentiation through the Wnt/ß-catenin/Nrp1 positive feedback loop, and the enhancement of osteogenic activity could be inhibited by SM345431 (Sema3A-specific inhibitor). In addition, Sema3A-stimulated BMMSCs or intravenous injection of Sema3A could promote new bone formation in vivo. To sum up, the coregulation of bone remodelling is due to the ageing of BMMSCs and increased osteoclast activity. Furthermore, the sensory neurotransmitter Sema3A promotes osteogenic differentiation of BMMSCs via Wnt/ß-catenin/Nrp1 positive feedback loop, thus promoting osteogenesis in vivo and in vitro.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Osteogênese/genética , Semaforina-3A/genética , Retroalimentação , beta Catenina , Gânglios Espinais , Neuropilina-1/genética
13.
Neuromolecular Med ; 26(1): 12, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600344

RESUMO

The role of circular RNAs (circRNAs) in neuropathic pain is linked to the fundamental physiological mechanisms involved. However, the exact function of circRNAs in the context of neuropathic pain is still not fully understood. The functional impact of circGRIN2B on the excitability of dorsal root ganglion (DRG) neurons was investigated using siRNA or overexpression technology in conjunction with fluorescence in situ hybridization and whole-cell patch-clamp technology. The therapeutic efficacy of circGRIN2B in treating neuropathic pain was confirmed by assessing the pain threshold in a chronic constrictive injury (CCI) model. The interaction between circGRIN2B and NF-κB was examined through RNA pulldown, RIP, and mass spectrometry assays. CircGRIN2B knockdown significantly affected the action potential discharge frequency and the sodium-dependent potassium current flux (SLICK) in DRG neurons. Furthermore, knockdown of circGRIN2B dramatically reduced the SLICK channel protein and mRNA expression in vivo and in vitro. Our research confirmed the interaction between circGRIN2B and NF-κB. These findings demonstrated that circGRIN2B promotes the transcription of the SLICK gene by binding to NF-κB. In CCI rat models, the overexpression of circGRIN2B has been shown to hinder the progression of neuropathic pain, particularly by reducing mechanical and thermal hyperalgesia. Additionally, this upregulation significantly diminished the levels of the inflammatory cytokines IL-1ß, IL-6, and TNF-α in the DRG. Upon reviewing these findings, it was determined that circGRIN2B may mitigate the onset of neuropathic pain by modulating the NF-κB/SLICK pathway.


Assuntos
NF-kappa B , Neuralgia , Ratos , Animais , NF-kappa B/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , RNA Circular/uso terapêutico , Ratos Sprague-Dawley , Hibridização in Situ Fluorescente , Neuralgia/terapia , Neuralgia/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Gânglios Espinais/metabolismo
14.
J Exp Med ; 221(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38607420

RESUMO

Physiological pain serves as a warning of exposure to danger and prompts us to withdraw from noxious stimuli to prevent tissue damage. Pain can also alert us of an infection or organ dysfunction and aids in locating such malfunction. However, there are instances where pain is purely pathological, such as unresolved pain following an inflammation or injury to the nervous system, and this can be debilitating and persistent. We now appreciate that immune cells are integral to both physiological and pathological pain, and that pain, in consequence, is not strictly a neuronal phenomenon. Here, we discuss recent findings on how immune cells in the skin, nerve, dorsal root ganglia, and spinal cord interact with somatosensory neurons to mediate pain. We also discuss how both innate and adaptive immune cells, by releasing various ligands and mediators, contribute to the initiation, modulation, persistence, or resolution of various modalities of pain. Finally, we propose that the neuroimmune axis is an attractive target for pain treatment, but the challenges in objectively quantifying pain preclinically, variable sex differences in pain presentation, as well as adverse outcomes associated with immune system modulation, all need to be considered in the development of immunotherapies against pain.


Assuntos
Neurônios , Dor , Feminino , Masculino , Humanos , Cognição , Gânglios Espinais , Imunoterapia
15.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612402

RESUMO

The dorsal root ganglion (DRG) serves as a pivotal site for managing chronic pain through dorsal root ganglion stimulation (DRG-S). In recent years, the DRG-S has emerged as an attractive modality in the armamentarium of neuromodulation therapy due to its accessibility and efficacy in alleviating chronic pain refractory to conventional treatments. Despite its therapeutic advantages, the precise mechanisms underlying DRG-S-induced analgesia remain elusive, attributed in part to the diverse sensory neuron population within the DRG and its modulation of both peripheral and central sensory processing pathways. Emerging evidence suggests that DRG-S may alleviate pain by several mechanisms, including the reduction of nociceptive signals at the T-junction of sensory neurons, modulation of pain gating pathways within the dorsal horn, and regulation of neuronal excitability within the DRG itself. However, elucidating the full extent of DRG-S mechanisms necessitates further exploration, particularly regarding its supraspinal effects and its interactions with cognitive and affective networks. Understanding these mechanisms is crucial for optimizing neurostimulation technologies and improving clinical outcomes of DRG-S for chronic pain management. This review provides a comprehensive overview of the DRG anatomy, mechanisms of action of the DRG-S, and its significance in neuromodulation therapy for chronic pain.


Assuntos
Dor Crônica , Humanos , Dor Crônica/terapia , Gânglios Espinais , Manejo da Dor , Vias Aferentes , Células Receptoras Sensoriais
16.
J Virol ; 98(5): e0159623, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38587378

RESUMO

Following acute herpes simplex virus type 2 (HSV-2) infection, the virus undergoes an asymptomatic latent infection of sensory neurons of dorsal root ganglia (DRG). Chemical and physical stress cause intermittent virus reactivation from latently infected DRG and recurrent virus shedding in the genital mucosal epithelium causing genital herpes in symptomatic patients. While T cells appear to play a role in controlling virus reactivation from DRG and reducing the severity of recurrent genital herpes, the mechanisms for recruiting these T cells into DRG and the vaginal mucosa (VM) remain to be fully elucidated. The present study investigates the effect of CXCL9, CXCL10, and CXCL11 T-cell-attracting chemokines on the frequency and function of DRG- and VM-resident CD4+ and CD8+ T cells and its effect on the frequency and severity of recurrent genital herpes in the recurrent herpes guinea pig model. HSV-2 latent-infected guinea pigs were immunized intramuscularly with the HSV-2 ribonucleotide reductase 2 (RR2) protein (Prime) and subsequently treated intravaginally with the neurotropic adeno-associated virus type 8 expressing CXCL9, CXCL10, or CXCL11 chemokines to recruit CD4+ and CD8+ T cells into the infected DRG and VM (Pull). Compared to the RR2 therapeutic vaccine alone, the RR2/CXCL11 prime/pull therapeutic vaccine significantly increased the frequencies of functional tissue-resident and effector memory CD4+ and CD8+ T cells in both DRG and VM tissues. This was associated with less virus in the healed genital mucosal epithelium and reduced frequency and severity of recurrent genital herpes. These findings confirm the role of local DRG- and VM-resident CD4+ and CD8+ T cells in reducing virus shedding at the vaginal site of infection and the severity of recurrent genital herpes and propose the novel prime-pull vaccine strategy to protect against recurrent genital herpes.IMPORTANCEThe present study investigates the novel prime/pull therapeutic vaccine strategy to protect against recurrent genital herpes using the latently infected guinea pig model. In this study, we used the strategy that involves immunization of herpes simplex virus type 2-infected guinea pigs using a recombinantly expressed herpes tegument protein-ribonucleotide reductase 2 (RR2; prime), followed by intravaginal treatment with the neurotropic adeno-associated virus type 8 expressing CXCL9, CXCL10, or CXCL11 T-cell-attracting chemokines to recruit T cells into the infected dorsal root ganglia (DRG) and vaginal mucosa (VM) (pull). We show that the RR2/CXCL11 prime-pull therapeutic vaccine strategy elicited a significant reduction in virus shedding in the vaginal mucosa and decreased the severity and frequency of recurrent genital herpes. This protection was associated with increased frequencies of functional tissue-resident (TRM cells) and effector (TEM cells) memory CD4+ and CD8+ T cells infiltrating latently infected DRG tissues and the healed regions of the vaginal mucosa. These findings shed light on the role of tissue-resident and effector memory CD4+ and CD8+ T cells in DRG tissues and the VM in protection against recurrent genital herpes and propose the prime-pull therapeutic vaccine strategy in combating genital herpes.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Quimiocina CXCL11 , Herpes Genital , Herpesvirus Humano 2 , Animais , Herpes Genital/imunologia , Herpes Genital/prevenção & controle , Cobaias , Herpesvirus Humano 2/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Quimiocina CXCL11/imunologia , Quimiocina CXCL11/metabolismo , Linfócitos T CD4-Positivos/imunologia , Gânglios Espinais/imunologia , Gânglios Espinais/virologia , Ribonucleotídeo Redutases/metabolismo , Vagina/virologia , Vagina/imunologia , Vacinação , Modelos Animais de Doenças , Células T de Memória/imunologia
17.
J Ethnopharmacol ; 330: 118218, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38677570

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Zanthoxylum bungeanum Maxim. (Z. bungeanum), a member of the Rutaceae family, has a rich history of traditional use in Asia for treating arthritis and toothache conditions. As characteristic chemical components, numerous kinds of alkaloids have been extracted from plants and their diverse biological activities have been reported. However, research on the isoquinoline alkaloid, a specific type of alkaloids, in Z. bungeanum was scarce. AIM OF THE STUDY: The study aimed to isolate a novel isoquinoline alkaloid from Z. bungeanum and explore its pharmacological activity in vitro and analgesic activity in vivo. MATERIALS AND METHODS: Isoquinoline alkaloid isolation and identification from Z. bungeanum were conducted using chromatographic and spectroscopic methods. The whole-cell patch-clamp technique was applied to assess its impact on neuronal excitability, and endogenous voltage-gated potassium (Kv) and sodium (Nav) currents in acutely isolated mouse small-diameter dorsal root ganglion (DRG) neurons. Its inhibitory impacts on channels were further validated with HEK293 cells stably expressing Nav1.7 and Nav1.8, and Chinese hamster ovary (CHO) cells transiently expressing Kv2.1. The formalin inflammatory pain model was utilized to evaluate the potential analgesic activity in vivo. RESULTS: A novel isoquinoline alkaloid named HJ-69 (N-13-(3-methoxyprop-1-yl)rutaecarpine) was isolated and identified from Z. bungeanum for the first time. HJ-69 significantly suppressed the firing frequency and amplitudes of action potentials in DRG neurons. Consistently, it state-dependently inhibited endogenous Nav currents of DRG neurons, with half maximal inhibitory concentration (IC50) values of 13.06 ± 2.06 µM and 30.19 ± 2.07 µM for the inactivated and resting states, respectively. HJ-69 significantly suppressed potassium currents in DRG neurons, which notably inhibited the delayed rectifier potassium (IK) currents (IC50 = 6.95 ± 1.29 µM) and slightly affected the transient outward potassium (IA) currents (IC50 = 523.50 ± 39.16 µM). Furtherly, HJ-69 exhibited similar potencies on heterologously expressed Nav1.7, Nav1.8, and Kv2.1 channels, which correspondingly represent the main components in neurons. Notably, intraperitoneal administration of 30 mg/kg and 100 mg/kg HJ-69 significantly alleviated pain behaviors in the mouse inflammatory pain model induced by formalin. CONCLUSION: The study concluded that HJ-69 is a novel and active isoquinoline alkaloid, and the inhibition of Nav and Kv channels contributes to its analgesic activity. HJ-69 may be a promising prototype for future analgesic drug discovery based on the isoquinoline alkaloid.


Assuntos
Analgésicos , Gânglios Espinais , Dor , Zanthoxylum , Animais , Zanthoxylum/química , Humanos , Células HEK293 , Analgésicos/farmacologia , Analgésicos/química , Analgésicos/isolamento & purificação , Analgésicos/uso terapêutico , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Camundongos , Masculino , Dor/tratamento farmacológico , Isoquinolinas/farmacologia , Isoquinolinas/isolamento & purificação , Isoquinolinas/química , Alcaloides/farmacologia , Alcaloides/isolamento & purificação , Alcaloides/química , Alcaloides/uso terapêutico , Bloqueadores dos Canais de Potássio/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Inflamação/tratamento farmacológico , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/isolamento & purificação , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/química , Camundongos Endogâmicos C57BL , Cricetulus
18.
Brain Res ; 1834: 148915, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582414

RESUMO

Bestrophin-1 and anoctamin-1 are members of the calcium-activated chloride channels (CaCCs) family and are involved in inflammatory and neuropathic pain. However, their role in pain hypersensitivity induced by REM sleep deprivation (REMSD) has not been studied. This study aimed to determine if anoctamin-1 and bestrophin-1 are involved in the pain hypersensitivity induced by REMSD. We used the multiple-platform method to induce REMSD. REM sleep deprivation for 48 h induced tactile allodynia and a transient increase in corticosterone concentration at the beginning of the protocol (12 h) in female and male rats. REMSD enhanced c-Fos and α2δ-1 protein expression but did not change activating transcription factor 3 (ATF3) and KCC2 expression in dorsal root ganglia and dorsal spinal cord. Intrathecal injection of CaCCinh-A01, a non-selective bestrophin-1 blocker, and T16Ainh-A01, a specific anoctamin-1 blocker, reverted REMSD-induced tactile allodynia. However, T16Ainh-A01 had a higher antiallodynic effect in male than female rats. In addition, REMSD increased bestrophin-1 protein expression in DRG but not in DSC in male and female rats. In marked contrast, REMSD decreased anoctamin-1 protein expression in DSC but not in DRG, only in female rats. Bestrophin-1 and anoctamin-1 promote pain and maintain tactile allodynia induced by REM sleep deprivation in both male and female rats, but their expression patterns differ between the sexes.


Assuntos
Bestrofinas , Gânglios Espinais , Hiperalgesia , Privação do Sono , Medula Espinal , Animais , Privação do Sono/metabolismo , Privação do Sono/complicações , Hiperalgesia/metabolismo , Masculino , Feminino , Ratos , Gânglios Espinais/metabolismo , Medula Espinal/metabolismo , Bestrofinas/metabolismo , Canais de Cloreto/metabolismo , Sono REM/fisiologia , Ratos Wistar , Anoctamina-1 , Canais de Cálcio Tipo L
19.
EMBO Rep ; 25(5): 2375-2390, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38594391

RESUMO

Cancer patients undergoing treatment with antineoplastic drugs often experience chemotherapy-induced neuropathic pain (CINP), and the therapeutic options for managing CINP are limited. Here, we show that systemic paclitaxel administration upregulates the expression of neurotrophin-3 (Nt3) mRNA and NT3 protein in the neurons of dorsal root ganglia (DRG), but not in the spinal cord. Blocking NT3 upregulation attenuates paclitaxel-induced mechanical, heat, and cold nociceptive hypersensitivities and spontaneous pain without altering acute pain and locomotor activity in male and female mice. Conversely, mimicking this increase produces enhanced responses to mechanical, heat, and cold stimuli and spontaneous pain in naive male and female mice. Mechanistically, NT3 triggers tropomyosin receptor kinase C (TrkC) activation and participates in the paclitaxel-induced increases of C-C chemokine ligand 2 (Ccl2) mRNA and CCL2 protein in the DRG. Given that CCL2 is an endogenous initiator of CINP and that Nt3 mRNA co-expresses with TrkC and Ccl2 mRNAs in DRG neurons, NT3 likely contributes to CINP through TrkC-mediated activation of the Ccl2 gene in DRG neurons. NT3 may be thus a potential target for CINP treatment.


Assuntos
Quimiocina CCL2 , Gânglios Espinais , Neuralgia , Neurônios , Neurotrofina 3 , Paclitaxel , Receptor trkC , Animais , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Neuralgia/induzido quimicamente , Neuralgia/metabolismo , Neuralgia/genética , Paclitaxel/efeitos adversos , Paclitaxel/farmacologia , Neurotrofina 3/metabolismo , Neurotrofina 3/genética , Masculino , Camundongos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Feminino , Receptor trkC/metabolismo , Receptor trkC/genética , Antineoplásicos/efeitos adversos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética
20.
Mol Pain ; 20: 17448069241249455, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38597175

RESUMO

Although the molecular mechanisms of chronic pain have been extensively studied, a global picture of alternatively spliced genes and events in the peripheral and central nervous systems of chronic pain is poorly understood. The current study analyzed the changing pattern of alternative splicing (AS) in mouse brain, dorsal root ganglion, and spinal cord tissue under inflammatory and neuropathic pain. In total, we identified 6495 differentially alternatively spliced (DAS) genes. The molecular functions of shared DAS genes between these two models are mainly enriched in calcium signaling pathways, synapse organization, axon regeneration, and neurodegeneration disease. Additionally, we identified 509 DAS in differentially expressed genes (DEGs) shared by these two models, accounting for a small proportion of total DEGs. Our findings supported the hypothesis that the AS has an independent regulation pattern different from transcriptional regulation. Taken together, these findings indicate that AS is one of the important molecular mechanisms of chronic pain in mammals. This study presents a global description of AS profile changes in the full path of neuropathic and inflammatory pain models, providing new insights into the underlying mechanisms of chronic pain and guiding genomic clinical diagnosis methods and rational medication.


Assuntos
Processamento Alternativo , Perfilação da Expressão Gênica , Inflamação , Camundongos Endogâmicos C57BL , Neuralgia , Transcriptoma , Animais , Neuralgia/genética , Neuralgia/metabolismo , Processamento Alternativo/genética , Inflamação/genética , Transcriptoma/genética , Masculino , Gânglios Espinais/metabolismo , Camundongos , Medula Espinal/metabolismo , Medula Espinal/patologia , Regulação da Expressão Gênica , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...