Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.780
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39000340

RESUMO

Most α2-AR agonists derived from dexmedetomidine have few structural differences between them and have no selectivity for α2A/2B-AR or Gi/Gs, which can lead to side effects in drugs. To obtain novel and potent α2A-AR agonists, we performed virtual screening for human α2A-AR and α2B-AR to find α2A-AR agonists with higher selectivity. Compound P300-2342 and its three analogs significantly decreased the locomotor activity of mice (p < 0.05). Furthermore, P300-2342 and its three analogs inhibited the binding of [3H] Rauwolscine with IC50 values of 7.72 ± 0.76 and 12.23 ± 0.11 µM, respectively, to α2A-AR and α2B-AR. In α2A-AR-HEK293 cells, P300-2342 decreased forskolin-stimulated cAMP production without increasing cAMP production, which indicated that P300-2342 activated α2A-AR with coupling to the Gαi/o pathway but without Gαs coupling. P300-2342 exhibited no agonist but slight antagonist activities in α2B-AR. Similar results were obtained for the analogs of P300-2342. The docking results showed that P300-2342 formed π-hydrogen bonds with Y394, V114 in α2A-AR, and V93 in α2B-AR. Three analogs of P300-2342 formed several π-hydrogen bonds with V114, Y196, F390 in α2A-AR, and V93 in α2B-AR. We believe that these molecules can serve as leads for the further optimization of α2A-AR agonists with potentially few side effects.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2 , Simulação de Acoplamento Molecular , Receptores Adrenérgicos alfa 2 , Humanos , Animais , Células HEK293 , Receptores Adrenérgicos alfa 2/metabolismo , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Camundongos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , AMP Cíclico/metabolismo , Masculino , Ligação Proteica
2.
BMC Oral Health ; 24(1): 803, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014351

RESUMO

BACKGROUND: Auriculocondylar syndrome (ARCND) is an extremely rare autosomal dominant or recessive condition that typically manifests as question mark ears (QMEs), mandibular condyle hypoplasia, and micrognathia. Severe dental and maxillofacial malformations present considerable challenges in patients' lives and clinical treatment. Currently, only a few ARCND cases have been reported worldwide, but most of them are related to genetic mutations, clinical symptoms, and ear correction; there are few reports concerning the treatment of dentofacial deformities. CASE PRESENTATION: Here, we report a rare case of ARCND in a Chinese family. A novel insertional mutation in the guanine nucleotide-binding protein alpha-inhibiting activity polypeptide 3 (GNAI3) was identified in the patient and their brother using whole-exome sequencing. After a multidisciplinary consultation and examination, sequential orthodontic treatment and craniofacial surgery, including distraction osteogenesis and orthognathic surgery, were performed using three-dimensional (3D) digital technology to treat the patient's dentofacial deformity. A good prognosis was achieved at the 5-year follow-up, and the patient returned to normal life. CONCLUSIONS: ARCND is a monogenic and rare condition that can be diagnosed based on its clinical triad of core features. Molecular diagnosis plays a crucial role in the diagnosis of patients with inconspicuous clinical features. We present a novel insertion variation in GNAI3, which was identified in exon 2 of chromosome 110116384 in a Chinese family. Sequential therapy with preoperative orthodontic treatment combined with distraction osteogenesis and orthognathic surgery guided by 3D digital technology may be a practical and effective method for treating ARCND.


Assuntos
Deformidades Dentofaciais , Humanos , Masculino , Deformidades Dentofaciais/genética , Deformidades Dentofaciais/cirurgia , Seguimentos , Otopatias/genética , Otopatias/cirurgia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Linhagem , Orelha/anormalidades , Osteogênese por Distração/métodos , Mutação , Procedimentos Cirúrgicos Ortognáticos , China , População do Leste Asiático
3.
Int J Mol Sci ; 25(14)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39063192

RESUMO

Wool is generated by hair follicles (HFs), which are crucial in defining the length, diameter, and morphology of wool fibers. However, the regulatory mechanism of HF growth and development remains largely unknown. Dermal papilla cells (DPCs) are a specialized cell type within HFs that play a crucial role in governing the growth and development of HFs. This study aims to investigate the proliferation and induction ability of ovine DPCs to enhance our understanding of the potential regulatory mechanisms underlying ovine HF growth and development. Previous research has demonstrated that microRNA-181a (miR-181a) was differentially expressed in skin tissues with different wool phenotypes, which indicated that miR-181a might play a crucial role in wool morphogenesis. In this study, we revealed that miR-181a inhibited the proliferation and induction ability of ovine DPCs by quantitative Real-time PCR (qRT-PCR), cell counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, and alkaline phosphatase staining. Then, we also confirmed G protein subunit alpha i2 (GNAI2) is a target gene of miR-181a by dual luciferase reporter assay, qRT-PCR, and Western blot, and that it could promote the proliferation and induction ability of ovine DPCs. In addition, GNAI2 could also activate the Wnt/ß-Catenin signaling pathway in ovine DPCs. This study showed that miR-181a can inhibit the proliferation and induction ability of ovine DPCs by targeting GNAI2 through the Wnt/ß-Catenin signaling pathway.


Assuntos
Proliferação de Células , Folículo Piloso , MicroRNAs , Via de Sinalização Wnt , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Ovinos , Folículo Piloso/metabolismo , Folículo Piloso/citologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Derme/citologia , Derme/metabolismo , Células Cultivadas , Lã/metabolismo , beta Catenina/metabolismo , beta Catenina/genética
4.
Sci Rep ; 14(1): 17097, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048611

RESUMO

GNAO1 encodes G protein subunit alpha O1 (Gαo). Pathogenic variations in GNAO1 cause developmental delay, intractable seizures, and progressive involuntary movements from early infancy. Because the functional role of GNAO1 in the developing brain remains unclear, therapeutic strategies are still unestablished for patients presenting with GNAO1-associated encephalopathy. We herein report that siRNA-mediated depletion of Gnao1 perturbs the expression of transcripts associated with Rho GTPase signaling in Neuro2a cells. Consistently, siRNA treatment hampered neurite outgrowth and extension. Growth cone formation was markedly disrupted in monolayer neurons differentiated from iPSCs from a patient with a pathogenic variant of Gαo (p.G203R). This variant disabled neuro-spherical assembly, acquisition of the organized structure, and polarized signals of phospho-MLC2 in cortical organoids from the patient's iPSCs. We confirmed that the Rho kinase inhibitor Y27632 restored these morphological phenotypes. Thus, Gαo determines the self-organizing process of the developing brain by regulating the Rho-associated pathway. These data suggest that Rho GTPase pathway might be an alternative target of therapy for patients with GNAO1-associated encephalopathy.


Assuntos
Diferenciação Celular , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP , Células-Tronco Pluripotentes Induzidas , Neurônios , Transdução de Sinais , Proteínas rho de Ligação ao GTP , Humanos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Neurônios/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/genética , Camundongos , Animais , Quinases Associadas a rho/metabolismo , Organoides/metabolismo , Amidas/farmacologia , Piridinas
5.
J Phys Chem Lett ; 15(30): 7652-7658, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39037351

RESUMO

Oligomerization is one of the important mechanisms for G protein-coupled receptors (GPCRs) to modulate their activity in signal transduction. However, details of how and why the oligomerization of GPCRs regulates their functions under physiological conditions remain largely unknown. Here, using single-molecule photobleaching technology, we show that chemokine ligand 5 (CCL5) and chemokine ligand 8 (CCL8) are similar to the previously reported chemokine ligand 11 (CCL11) and chemokine ligand 24 (CCL24), which can regulate the oligomerization of chemokine receptor 3 (CCR3). Our results further demonstrate that downstream proteins, ß-arrestin 2 and Gi protein complex, on the CCR3 signal transduction pathway, can inversely regulate the oligomeric states of CCR3 induced by its binding ligands. This unexpected discovery suggests complex relationships between the oligomeric behaviors of CCR3 and the components of ligands-CCR3-downstream proteins, reflecting the potentially functional impact of the oligomerization on the multiple activation pathways of GPCR, such as biased activation.


Assuntos
Multimerização Proteica , Receptores CCR3 , Transdução de Sinais , Receptores CCR3/metabolismo , Receptores CCR3/química , Humanos , Ligantes , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , beta-Arrestina 2/metabolismo , beta-Arrestina 2/química
6.
J Pharmacol Exp Ther ; 390(2): 250-259, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38866563

RESUMO

Mutations in the GNAO1 gene, which encodes the abundant brain G-protein Gα o, result in neurologic disorders characterized by developmental delay, epilepsy, and movement abnormalities. There are over 50 mutant alleles associated with GNAO1 disorders; the R209H mutation results in dystonia, choreoathetosis, and developmental delay without seizures. Mice heterozygous for the human mutant allele (Gnao1 +/R209H) exhibit hyperactivity in open field tests but no seizures. We developed self-complementary adeno-associated virus serotype 9 (scAAV9) vectors expressing two splice variants of human GNAO1 Gα o isoforms 1 (GoA, GNAO1.1) and 2 (GoB, GNAO1.2). Bilateral intrastriatal injections of either scAAV9-GNAO1.1 or scAAV9-GNAO1.2 significantly reversed mutation-associated hyperactivity in open field tests. GNAO1 overexpression did not increase seizure susceptibility, a potential side effect of GNAO1 vector treatment. This represents the first report of successful preclinical gene therapy for GNAO1 encephalopathy applied in vivo. Further studies are needed to uncover the molecular mechanism that results in behavior improvements after scAAV9-mediated Gα o expression and to refine the vector design. SIGNIFICANCE STATEMENT: GNAO1 mutations cause a spectrum of developmental, epilepsy, and movement disorders. Here we show that intrastriatal delivery of scAAV9-GNAO1 to express the wild-type Gα o protein reduces the hyperactivity of the Gnao1 +/R209H mouse model, which carries one of the most common movement disorder-associated mutations. This is the first report of a gene therapy for GNAO1 encephalopathy applied in vivo on a patient-allele model.


Assuntos
Dependovirus , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP , Heterozigoto , Animais , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Camundongos , Dependovirus/genética , Humanos , Masculino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Hipercinese/genética , Mutação , Terapia Genética/métodos , Camundongos Endogâmicos C57BL , Locomoção/genética
7.
Sci Signal ; 17(839): eade8041, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833528

RESUMO

A long-standing question in the field of signal transduction is how distinct signaling pathways interact with each other to control cell behavior. Growth factor receptors and G protein-coupled receptors (GPCRs) are the two major signaling hubs in eukaryotes. Given that the mechanisms by which they signal independently have been extensively characterized, we investigated how they may cross-talk with each other. Using linear ion trap mass spectrometry and cell-based biophysical, biochemical, and phenotypic assays, we found at least three distinct ways in which epidermal growth factor affected canonical G protein signaling by the Gi-coupled GPCR CXCR4 through the phosphorylation of Gαi. Phosphomimicking mutations in two residues in the αE helix of Gαi (tyrosine-154/tyrosine-155) suppressed agonist-induced Gαi activation while promoting constitutive Gßγ signaling. Phosphomimicking mutations in the P loop (serine-44, serine-47, and threonine-48) suppressed Gi activation entirely, thus completely segregating growth factor and GPCR pathways. As expected, most of the phosphorylation events appeared to affect intrinsic properties of Gαi proteins, including conformational stability, nucleotide binding, and the ability to associate with and to release Gßγ. However, one phosphomimicking mutation, targeting the carboxyl-terminal residue tyrosine-320, promoted mislocalization of Gαi from the plasma membrane, a previously uncharacterized mechanism of suppressing GPCR signaling through G protein subcellular compartmentalization. Together, these findings elucidate not only how growth factor and chemokine signals cross-talk through the phosphorylation-dependent modulation of Gαi but also how such cross-talk may generate signal diversity.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP , Receptores CXCR4 , Transdução de Sinais , Fosforilação , Humanos , Células HEK293 , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Animais
8.
J Phys Chem B ; 128(25): 6071-6081, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38877985

RESUMO

The G protein-coupled receptors (GPCRs) play a pivotal role in numerous biological processes as crucial cell membrane receptors. However, the dynamic mechanisms underlying the activation of GPR183, a specific GPCR, remain largely elusive. To address this, we employed computational simulation techniques to elucidate the activation process and key events associated with GPR183, including conformational changes from inactive to active state, binding interactions with the Gi protein complex, and GDP release. Our findings demonstrate that the association between GPR183 and the Gi protein involves the formation of receptor-specific conformations, the gradual proximity of the Gi protein to the binding pocket, and fine adjustments of the protein conformation, ultimately leading to a stable GPR183-Gi complex characterized by a high energy barrier. The presence of Gi protein partially promotes GPR183 activation, which is consistent with the observation of GPCR constitutive activity test experiments, thus illustrating the reliability of our calculations. Moreover, our study suggests the existence of a stable partially activated state preceding complete activation, providing novel avenues for future investigations. In addition, the relevance of GPR183 for various diseases, such as colitis, the response of eosinophils to Mycobacterium tuberculosis infection, antiviral properties, and pulmonary inflammation, has been emphasized, underscoring its therapeutic potential. Consequently, understanding the activation process of GPR183 through molecular dynamic simulations offers valuable kinetic insights that can aid in the development of targeted therapies.


Assuntos
Simulação de Dinâmica Molecular , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Humanos , Conformação Proteica , Guanosina Difosfato/metabolismo , Guanosina Difosfato/química , Ligação Proteica , Sítios de Ligação , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química
9.
J Clin Invest ; 134(15)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874642

RESUMO

GNAO1 mutated in pediatric encephalopathies encodes the major neuronal G protein Gαo. Of the more than 80 pathogenic mutations, most are single amino acid substitutions spreading across the Gαo sequence. We performed extensive characterization of Gαo mutants, showing abnormal GTP uptake and hydrolysis and deficiencies in binding Gßγ and RGS19. Plasma membrane localization of Gαo was decreased for a subset of mutations that leads to epilepsy; dominant interactions with GPCRs also emerged for the more severe mutants. Pathogenic mutants massively gained interaction with Ric8A and, surprisingly, Ric8B proteins, relocalizing them from cytoplasm to Golgi. Of these 2 mandatory Gα-subunit chaperones, Ric8A is normally responsible for the Gαi/Gαo, Gαq, and Gα12/Gα13 subfamilies, and Ric8B solely responsible for Gαs/Gαolf. Ric8 mediates the disease dominance when engaging in neomorphic interactions with pathogenic Gαo through imbalance of the neuronal G protein signaling networks. As the strength of Gαo-Ric8B interactions correlates with disease severity, our study further identifies an efficient biomarker and predictor for clinical manifestations in GNAO1 encephalopathies. Our work uncovers the neomorphic molecular mechanism of mutations underlying pediatric encephalopathies and offers insights into other maladies caused by G protein malfunctioning and further genetic diseases.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP , Animais , Feminino , Humanos , Masculino , Encefalopatias/genética , Encefalopatias/metabolismo , Encefalopatias/patologia , Drosophila melanogaster , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Mutação
10.
Nature ; 631(8020): 459-466, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38776963

RESUMO

Bitter taste receptors, particularly TAS2R14, play central roles in discerning a wide array of bitter substances, ranging from dietary components to pharmaceutical agents1,2. TAS2R14 is also widely expressed in extragustatory tissues, suggesting its extra roles in diverse physiological processes and potential therapeutic applications3. Here we present cryogenic electron microscopy structures of TAS2R14 in complex with aristolochic acid, flufenamic acid and compound 28.1, coupling with different G-protein subtypes. Uniquely, a cholesterol molecule is observed occupying what is typically an orthosteric site in class A G-protein-coupled receptors. The three potent agonists bind, individually, to the intracellular pockets, suggesting a distinct activation mechanism for this receptor. Comprehensive structural analysis, combined with mutagenesis and molecular dynamic simulation studies, elucidate the broad-spectrum ligand recognition and activation of the receptor by means of intricate multiple ligand-binding sites. Our study also uncovers the specific coupling modes of TAS2R14 with gustducin and Gi1 proteins. These findings should be instrumental in advancing knowledge of bitter taste perception and its broader implications in sensory biology and drug discovery.


Assuntos
Ácidos Aristolóquicos , Colesterol , Ácido Flufenâmico , Receptores Acoplados a Proteínas G , Paladar , Humanos , Ácidos Aristolóquicos/metabolismo , Ácidos Aristolóquicos/química , Ácidos Aristolóquicos/farmacologia , Sítios de Ligação/efeitos dos fármacos , Colesterol/química , Colesterol/metabolismo , Colesterol/farmacologia , Microscopia Crioeletrônica , Ácido Flufenâmico/química , Ácido Flufenâmico/metabolismo , Ácido Flufenâmico/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestrutura , Paladar/efeitos dos fármacos , Paladar/fisiologia , Transducina/química , Transducina/metabolismo
11.
Nat Commun ; 15(1): 3544, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740791

RESUMO

G-protein-coupled receptors (GPCRs) play pivotal roles in various physiological processes. These receptors are activated to different extents by diverse orthosteric ligands and allosteric modulators. However, the mechanisms underlying these variations in signaling activity by allosteric modulators remain largely elusive. Here, we determine the three-dimensional structure of the µ-opioid receptor (MOR), a class A GPCR, in complex with the Gi protein and an allosteric modulator, BMS-986122, using cryogenic electron microscopy. Our results reveal that BMS-986122 binding induces changes in the map densities corresponding to R1673.50 and Y2545.58, key residues in the structural motifs conserved among class A GPCRs. Nuclear magnetic resonance analyses of MOR in the absence of the Gi protein reveal that BMS-986122 binding enhances the formation of the interaction between R1673.50 and Y2545.58, thus stabilizing the fully-activated conformation, where the intracellular half of TM6 is outward-shifted to allow for interaction with the Gi protein. These findings illuminate that allosteric modulators like BMS-986122 can potentiate receptor activation through alterations in the conformational dynamics in the core region of GPCRs. Together, our results demonstrate the regulatory mechanisms of GPCRs, providing insights into the rational development of therapeutics targeting GPCRs.


Assuntos
Microscopia Crioeletrônica , Receptores Opioides mu , Receptores Opioides mu/metabolismo , Receptores Opioides mu/química , Receptores Opioides mu/genética , Regulação Alostérica , Humanos , Ligação Proteica , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Células HEK293 , Ligantes , Modelos Moleculares , Conformação Proteica
13.
Nature ; 629(8011): 474-480, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600384

RESUMO

The µ-opioid receptor (µOR) is an important target for pain management1 and molecular understanding of drug action on µOR will facilitate the development of better therapeutics. Here we show, using double electron-electron resonance and single-molecule fluorescence resonance energy transfer, how ligand-specific conformational changes of µOR translate into a broad range of intrinsic efficacies at the transducer level. We identify several conformations of the cytoplasmic face of the receptor that interconvert on different timescales, including a pre-activated conformation that is capable of G-protein binding, and a fully activated conformation that markedly reduces GDP affinity within the ternary complex. Interaction of ß-arrestin-1 with the µOR core binding site appears less specific and occurs with much lower affinity than binding of Gi.


Assuntos
Ligantes , Conformação Proteica , Receptores Opioides mu , Humanos , beta-Arrestina 1/química , beta-Arrestina 1/metabolismo , Sítios de Ligação , Transferência Ressonante de Energia de Fluorescência , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Guanosina Difosfato/metabolismo , Guanosina Difosfato/química , Modelos Moleculares , Ligação Proteica , Receptores Opioides mu/metabolismo , Receptores Opioides mu/química , Imagem Individual de Molécula
14.
Arch Oral Biol ; 163: 105974, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636252

RESUMO

OBJECTIVES: The aim of this study was to investigate the regulatory role of G protein subunit alpha i3 (GNAI3) in periodontitis. DESIGN: Following the induction of human periodontal ligament stem cells (hPDLSCs) with lipopolysaccharide (LPS), the mRNA and protein expressions of GNAI3 and Lin28A were detected by real-time quantitative polymerase chain reaction (RT-qPCR) and western blot. The transfection efficiency of Oe-GNAI3 and sh-Lin28A was examined by virtue of RT-qPCR and western blot. With the application of ELISA and flow cytometry, the releases of inflammatory cytokines and cell apoptosis were appraised. Alkaline phosphatase (ALP) staining and alizarin red S (ARS) staining were conducted to evaluate osteogenic differentiation. Next, the binding ability of Lin28A with GNAI3 mRNA was estimated by radioimmunoprecipitation (RIP) assay while the stability of GNAI3 mRNA was assessed utilizing RT-qPCR. Western blot was employed for the measurement of inflammation-, apoptosis- and nuclear factor-kappaB (NF-κB)/NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome pathway-related proteins and osteogenic markers. RESULTS: The expression of GNAI3 was down-regulated in LPS-induced hPDLSCs. After the transfection with Oe-GNAI3, the inflammation and apoptosis in LPS-induced hPDLSCs were inhibited while osteogenic differentiation was promoted. Moreover, Lin28A could stabilize GNAI3 mRNA and Lin28A knockdown significantly reduced GNAI3 expression. Further experiments verified that the inhibitory effects of GNAI3 overexpression on LPS-induced cellular inflammation and cell apoptosis as well as the promotive effects on osteogenic differentiation in hPDLSCs were all partially counteracted by Lin28A depletion, which may possibly be mediated via the regulation of the NF-κB/NLRP3 inflammasome pathway. CONCLUSION: GNAI3 that mediated by Lin28A regulates the inflammation and osteogenic differentiation in LPS-induced hPDLSCs by mediating the NF-κB/NLRP3 inflammasome pathway.


Assuntos
Diferenciação Celular , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP , Inflamassomos , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Osteogênese , Ligamento Periodontal , Proteínas de Ligação a RNA , Células-Tronco , Humanos , Apoptose/efeitos dos fármacos , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Inflamassomos/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Osteogênese/efeitos dos fármacos , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Periodontite/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo
15.
Br J Pharmacol ; 181(15): 2676-2696, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38627101

RESUMO

BACKGROUND AND PURPOSE: Neuropathic pain, a debilitating condition with unmet medical needs, can be characterised as hyperexcitability of nociceptive neurons caused by dysfunction of ion channels. Voltage-gated potassium channels type 7 (Kv7), responsible for maintaining neuronal resting membrane potential and thus excitability, reside under tight control of G protein-coupled receptors (GPCRs). Calcium-sensing receptor (CaSR) is a GPCR that regulates the activity of numerous ion channels, but whether CaSR can control Kv7 channel function has been unexplored until now. EXPERIMENTAL APPROACH: Experiments were conducted in recombinant cell models, mouse dorsal root ganglia (DRG) neurons and human induced pluripotent stem cell (hiPSC)-derived nociceptive-like neurons using patch-clamp electrophysiology and molecular biology techniques. KEY RESULTS: Our results demonstrate that CaSR is expressed in recombinant cell models, hiPSC-derived nociceptive-like neurons and mouse DRG neurons, and its activation induced depolarisation via Kv7.2/7.3 channel inhibition. The CaSR-Kv7.2/7.3 channel crosslink was mediated via the Gi/o protein-adenylate cyclase-cyclicAMP-protein kinase A signalling cascade. Suppression of CaSR function demonstrated a potential to rescue hiPSC-derived nociceptive-like neurons from algogenic cocktail-induced hyperexcitability. CONCLUSION AND IMPLICATIONS: This study demonstrates that the CaSR-Kv7.2/7.3 channel crosslink, via a Gi/o protein signalling pathway, effectively regulates neuronal excitability, providing a feasible pharmacological target for neuronal hyperexcitability management in neuropathic pain.


Assuntos
Gânglios Espinais , Células-Tronco Pluripotentes Induzidas , Receptores de Detecção de Cálcio , Transdução de Sinais , Humanos , Receptores de Detecção de Cálcio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Camundongos , Gânglios Espinais/metabolismo , Gânglios Espinais/citologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Nociceptores/metabolismo , Células Cultivadas , Células HEK293
16.
Nature ; 629(8011): 481-488, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632411

RESUMO

The human calcium-sensing receptor (CaSR) detects fluctuations in the extracellular Ca2+ concentration and maintains Ca2+ homeostasis1,2. It also mediates diverse cellular processes not associated with Ca2+ balance3-5. The functional pleiotropy of CaSR arises in part from its ability to signal through several G-protein subtypes6. We determined structures of CaSR in complex with G proteins from three different subfamilies: Gq, Gi and Gs. We found that the homodimeric CaSR of each complex couples to a single G protein through a common mode. This involves the C-terminal helix of each Gα subunit binding to a shallow pocket that is formed in one CaSR subunit by all three intracellular loops (ICL1-ICL3), an extended transmembrane helix 3 and an ordered C-terminal region. G-protein binding expands the transmembrane dimer interface, which is further stabilized by phospholipid. The restraint imposed by the receptor dimer, in combination with ICL2, enables G-protein activation by facilitating conformational transition of Gα. We identified a single Gα residue that determines Gq and Gs versus Gi selectivity. The length and flexibility of ICL2 allows CaSR to bind all three Gα subtypes, thereby conferring capacity for promiscuous G-protein coupling.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP , Receptores de Detecção de Cálcio , Humanos , Cálcio/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Receptores de Detecção de Cálcio/metabolismo , Receptores de Detecção de Cálcio/química , Proteínas Heterotriméricas de Ligação ao GTP/química , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Sítios de Ligação , Estrutura Secundária de Proteína , Especificidade por Substrato
17.
Mol Diagn Ther ; 28(3): 329-337, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581611

RESUMO

INTRODUCTION: GNAO1 encephalopathy is characterized by severe hypotonia, psychomotor retardation, epilepsy, and movement disorders. Genetic variations in GNAO1 have been linked to neurological symptoms including movement disorders like dystonia. The correlation between the E246K mutation in the Gα subunit and aberrant signal transduction of G proteins has been established but no data are reported regarding the efficacy of medical treatment with tetrabenazine. METHODS: Molecular modeling studies were performed to elucidate the molecular mechanisms underlying this mutation. We developed drug efficacy models using molecular dynamic simulations that replicated the behavior of wild-type and mutated proteins in the presence or absence of ligands. RESULTS AND DISCUSSION: We demonstrated that the absence of the mutation leads to normal signal transduction upon receptor activation by the endogenous ligand, but not in the presence of tetrabenazine. In contrast, the presence of the mutation resulted in abnormal signal transduction in the presence of the endogenous ligand, which was corrected by the drug tetrabenazine. Tetrabenazine was identified as a promising therapeutic option for pediatric patients suffering from encephalopathy due to an E246K mutation in the GNAO1 gene validated through molecular dynamics. This is a potential first example of the use of this technique in a rare neurological pediatric disease.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP , Simulação de Dinâmica Molecular , Tetrabenazina , Humanos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Tetrabenazina/uso terapêutico , Mutação , Encefalopatias/tratamento farmacológico , Encefalopatias/genética , Medicina de Precisão/métodos , Transdução de Sinais/efeitos dos fármacos
18.
Elife ; 122024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651641

RESUMO

Inhibitory G alpha (GNAI or Gαi) proteins are critical for the polarized morphogenesis of sensory hair cells and for hearing. The extent and nature of their actual contributions remains unclear, however, as previous studies did not investigate all GNAI proteins and included non-physiological approaches. Pertussis toxin can downregulate functionally redundant GNAI1, GNAI2, GNAI3, and GNAO proteins, but may also induce unrelated defects. Here, we directly and systematically determine the role(s) of each individual GNAI protein in mouse auditory hair cells. GNAI2 and GNAI3 are similarly polarized at the hair cell apex with their binding partner G protein signaling modulator 2 (GPSM2), whereas GNAI1 and GNAO are not detected. In Gnai3 mutants, GNAI2 progressively fails to fully occupy the sub-cellular compartments where GNAI3 is missing. In contrast, GNAI3 can fully compensate for the loss of GNAI2 and is essential for hair bundle morphogenesis and auditory function. Simultaneous inactivation of Gnai2 and Gnai3 recapitulates for the first time two distinct types of defects only observed so far with pertussis toxin: (1) a delay or failure of the basal body to migrate off-center in prospective hair cells, and (2) a reversal in the orientation of some hair cell types. We conclude that GNAI proteins are critical for hair cells to break planar symmetry and to orient properly before GNAI2/3 regulate hair bundle morphogenesis with GPSM2.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP , Células Ciliadas Auditivas , Morfogênese , Animais , Camundongos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/fisiologia , Polaridade Celular , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética
19.
Cell Commun Signal ; 22(1): 218, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581012

RESUMO

Signal transduction through G protein-coupled receptors (GPCRs) has been a major focus in cell biology for decades. Numerous disorders are associated with GPCRs that utilize Gi proteins to inhibit adenylyl cyclase (AC) as well as regulate other effectors. Several early studies have successfully defined the AC-interacting domains of several members of Gαi by measuring the loss of activity upon homologous replacements of putative regions of constitutive active Gαi mutants. However, whether such findings can indeed be translated into the context of a receptor-activated Gαi have not been rigorously verified. To address this issue, an array of known and new chimeric mutations was introduced into GTPase-deficient Q204L (QL) and R178C (RC) mutants of Gαi1, followed by examinations on their ability to inhibit AC. Surprisingly, most chimeras failed to abolish the constitutive activity brought on by the QL mutation, while some were able to eliminate the inhibitory activity of RC mutants. Receptor-mediated inhibition of AC was similarly observed in the same chimeric constructs harbouring the pertussis toxin (PTX)-resistant C351I mutation. Moreover, RC-bearing loss-of-function chimeras appeared to be hyper-deactivated by endogenous RGS protein. Molecular docking revealed a potential interaction between AC and the α3/ß5 loop of Gαi1. Subsequent cAMP assays support a cooperative action of the α3/ß5 loop, the α4 helix, and the α4/ß6 loop in mediating AC inhibition by Gαi1-i3. Our results unveiled a notable functional divergence between constitutively active mutants and receptor-activated Gαi1 to inhibit AC, and identified a previously unknown AC-interacting domain of Gαi subunits. These results collectively provide valuable insights on the mechanism of AC inhibition in the cellular environment.


Assuntos
Adenilil Ciclases , GTP Fosfo-Hidrolases , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Transporte , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo
20.
J Biol Chem ; 300(5): 107211, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522511

RESUMO

Highly homologous members of the Gαi family, Gαi1-3, have distinct tissue distributions and physiological functions, yet their biochemical and functional properties are very similar. We recently identified PDZ-RhoGEF (PRG) as a novel Gαi1 effector that is poorly activated by Gαi2. In a proteomic proximity labeling screen we observed a strong preference for Gαi1 relative to Gαi2 with respect to engagement of a broad range of potential targets. We investigated the mechanistic basis for this selectivity using PRG as a representative target. Substitution of either the helical domain (HD) from Gαi1 into Gαi2 or substitution of a single amino acid, A230 in Gαi2 with the corresponding D in Gαi1, largely rescues PRG activation and interactions with other potential Gαi targets. Molecular dynamics simulations combined with Bayesian network models revealed that in the GTP bound state, separation at the HD-Ras-like domain (RLD) interface is more pronounced in Gαi2 than Gαi1. Mutation of A230 to D in Gαi2 stabilizes HD-RLD interactions via ionic interactions with R145 in the HD which in turn modify the conformation of Switch III. These data support a model where D229 in Gαi1 interacts with R144 and stabilizes a network of interactions between HD and RLD to promote protein target recognition. The corresponding A230 in Gαi2 is unable to stabilize this network leading to an overall lower efficacy with respect to target interactions. This study reveals distinct mechanistic properties that could underly differential biological and physiological consequences of activation of Gαi1 or Gαi2 by G protein-coupled receptors.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP , Transdução de Sinais , Humanos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Simulação de Dinâmica Molecular , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/química , Células HEK293 , Domínios Proteicos , Estabilidade Proteica , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA