Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.983
Filtrar
1.
PLoS One ; 19(7): e0305207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38968330

RESUMO

Increasing reports of insecticide resistance continue to hamper the gains of vector control strategies in curbing malaria transmission. This makes identifying new insecticide targets or alternative vector control strategies necessary. CLassifier of Essentiality AcRoss EukaRyote (CLEARER), a leave-one-organism-out cross-validation machine learning classifier for essential genes, was used to predict essential genes in Anopheles gambiae and selected predicted genes experimentally validated. The CLEARER algorithm was trained on six model organisms: Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens, Mus musculus, Saccharomyces cerevisiae and Schizosaccharomyces pombe, and employed to identify essential genes in An. gambiae. Of the 10,426 genes in An. gambiae, 1,946 genes (18.7%) were predicted to be Cellular Essential Genes (CEGs), 1716 (16.5%) to be Organism Essential Genes (OEGs), and 852 genes (8.2%) to be essential as both OEGs and CEGs. RNA interference (RNAi) was used to validate the top three highly expressed non-ribosomal predictions as probable vector control targets, by determining the effect of these genes on the survival of An. gambiae G3 mosquitoes. In addition, the effect of knockdown of arginase (AGAP008783) on Plasmodium berghei infection in mosquitoes was evaluated, an enzyme we computationally inferred earlier to be essential based on chokepoint analysis. Arginase and the top three genes, AGAP007406 (Elongation factor 1-alpha, Elf1), AGAP002076 (Heat shock 70kDa protein 1/8, HSP), AGAP009441 (Elongation factor 2, Elf2), had knockdown efficiencies of 91%, 75%, 63%, and 61%, respectively. While knockdown of HSP or Elf2 significantly reduced longevity of the mosquitoes (p<0.0001) compared to control groups, Elf1 or arginase knockdown had no effect on survival. However, arginase knockdown significantly reduced P. berghei oocytes counts in the midgut of mosquitoes when compared to LacZ-injected controls. The study reveals HSP and Elf2 as important contributors to mosquito survival and arginase as important for parasite development, hence placing them as possible targets for vector control.


Assuntos
Anopheles , Malária , Mosquitos Vetores , Interferência de RNA , Animais , Anopheles/genética , Anopheles/parasitologia , Malária/prevenção & controle , Malária/transmissão , Malária/parasitologia , Mosquitos Vetores/genética , Mosquitos Vetores/parasitologia , Biologia Computacional/métodos , Camundongos , Humanos , Controle de Mosquitos/métodos , Genes Essenciais , Feminino , Plasmodium berghei/genética
2.
Methods Mol Biol ; 2829: 127-156, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951331

RESUMO

The baculovirus expression vector system (BEVS) has now found acceptance in both research laboratories and industry, which can be attributed to many of its key features including the limited host range of the vectors, their non-pathogenicity to humans, and the mammalian-like post-translational modification (PTMs) that can be achieved in insect cells. In fact, this system acts as a middle ground between prokaryotes and higher eukaryotes to produce complex biologics. Still, industrial use of the BEVS lags compared to other platforms. We have postulated that one reason for this has been a lack of genetic tools that can complement the study of baculovirus vectors, while a second reason is the co-production of the baculovirus vector with the desired product. While some genetic enhancements have been made to improve the BEVS as a production platform, the genome remains under-scrutinized. This chapter outlines the methodology for a CRISPR-Cas9-based transfection-infection assay to probe the baculovirus genome for essential/nonessential genes that can potentially maximize foreign gene expression under a promoter of choice.


Assuntos
Baculoviridae , Sistemas CRISPR-Cas , Vetores Genéticos , Baculoviridae/genética , Vetores Genéticos/genética , Animais , Genes Essenciais , Expressão Gênica , Transfecção/métodos , Edição de Genes/métodos , Células Sf9 , Humanos
3.
Genome Med ; 16(1): 82, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886809

RESUMO

BACKGROUND: Genome-wide functional screening using the CRISPR-Cas9 system is a powerful tool to uncover tumor-specific and common genetic dependencies across cancer cell lines. Current CRISPR-Cas9 knockout libraries, however, primarily target protein-coding genes. This limits functional genomics-based investigations of miRNA function. METHODS: We designed a novel CRISPR-Cas9 knockout library (lentiG-miR) of 8107 distinct sgRNAs targeting a total of 1769 human miRNAs and benchmarked its single guide RNA (sgRNA) composition, predicted on- and off-target activity, and screening performance against previous libraries. Using a total of 45 human cancer cell lines, representing 16 different tumor entities, we performed negative selection screens to identify miRNA fitness genes. Fitness miRNAs in each cell line were scored using a combination of supervised and unsupervised essentiality classifiers. Common essential miRNAs across distinct cancer cell lines were determined using the 90th percentile method. For subsequent validation, we performed knockout experiments for selected common essential miRNAs in distinct cancer cell lines and gene expression profiling. RESULTS: We found significantly lower off-target activity for protein-coding genes and a higher miRNA gene coverage for lentiG-miR as compared to previously described miRNA-targeting libraries, while preserving high on-target activity. A minor fraction of miRNAs displayed robust depletion of targeting sgRNAs, and we observed a high level of consistency between redundant sgRNAs targeting the same miRNA gene. Across 45 human cancer cell lines, only 217 (12%) of all targeted human miRNAs scored as a fitness gene in at least one model, and fitness effects for most miRNAs were confined to small subsets of cell lines. In contrast, we identified 49 common essential miRNAs with a homogenous fitness profile across the vast majority of all cell lines. Transcriptional profiling verified highly consistent gene expression changes in response to knockout of individual common essential miRNAs across a diverse set of cancer cell lines. CONCLUSIONS: Our study presents a miRNA-targeting CRISPR-Cas9 knockout library with high gene coverage and optimized on- and off-target activities. Taking advantage of the lentiG-miR library, we define a catalogue of miRNA fitness genes in human cancer cell lines, providing the foundation for further investigation of miRNAs in human cancer.


Assuntos
Sistemas CRISPR-Cas , MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , Linhagem Celular Tumoral , Neoplasias/genética , Técnicas de Inativação de Genes , RNA Guia de Sistemas CRISPR-Cas/genética , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica , Genes Essenciais
4.
Breast Cancer Res ; 26(1): 98, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867323

RESUMO

BACKGROUND: The differential gene expression profile of metastatic versus primary breast tumors represents an avenue for discovering new or underappreciated pathways underscoring processes of metastasis. However, as tumor biopsy samples are a mixture of cancer and non-cancer cells, most differentially expressed genes in metastases would represent confounders involving sample biopsy site rather than cancer cell biology. METHODS: By paired analysis, we defined a top set of differentially expressed genes in breast cancer metastasis versus primary tumors using an RNA-sequencing dataset of 152 patients from The Breast International Group Aiming to Understand the Molecular Aberrations dataset (BIG-AURORA). To filter the genes higher in metastasis for genes essential for breast cancer proliferation, we incorporated CRISPR-based data from breast cancer cell lines. RESULTS: A significant fraction of genes with higher expression in metastasis versus paired primary were essential by CRISPR. These 264 genes represented an essential signature of breast cancer metastasis. In contrast, nonessential metastasis genes largely involved tumor biopsy site. The essential signature predicted breast cancer patient outcome based on primary tumor expression patterns. Pathways underlying the essential signature included proteasome degradation, the electron transport chain, oxidative phosphorylation, and cancer metabolic reprogramming. Transcription factors MYC, MAX, HDAC3, and HCFC1 each bound significant fractions of essential genes. CONCLUSIONS: Associations involving the essential gene signature of breast cancer metastasis indicate true biological changes intrinsic to cancer cells, with important implications for applying existing therapies or developing alternate therapeutic approaches.


Assuntos
Neoplasias da Mama , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica , Transcriptoma , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Biomarcadores Tumorais/genética , Genes Essenciais/genética , Linhagem Celular Tumoral , Transdução de Sinais/genética , Prognóstico
5.
Nucleic Acids Res ; 52(12): 6886-6905, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38769058

RESUMO

In Drosophila, a group of zinc finger architectural proteins recruits the CP190 protein to the chromatin, an interaction that is essential for the functional activity of promoters and insulators. In this study, we describe a new architectural C2H2 protein called Madf and Zinc-Finger Protein 1 (Mzfp1) that interacts with CP190. Mzfp1 has an unusual structure that includes six C2H2 domains organized in a C-terminal cluster and two tandem MADF domains. Mzfp1 predominantly binds to housekeeping gene promoters located in both euchromatin and heterochromatin genome regions. In vivo mutagenesis studies showed that Mzfp1 is an essential protein, and both MADF domains and the CP190 interaction region are required for its functional activity. The C2H2 cluster is sufficient for the specific binding of Mzfp1 to regulatory elements, while the second MADF domain is required for Mzfp1 recruitment to heterochromatin. Mzfp1 binds to the proximal part of the Fub boundary that separates regulatory domains of the Ubx and abd-A genes in the Bithorax complex. Mzfp1 participates in Fub functions in cooperation with the architectural proteins Pita and Su(Hw). Thus, Mzfp1 is a new architectural C2H2 protein involved in the organization of active promoters and insulators in Drosophila.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Elementos Isolantes , Proteínas Nucleares , Regiões Promotoras Genéticas , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Elementos Isolantes/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Genes Essenciais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ligação Proteica , Regulação da Expressão Gênica , Eucromatina/metabolismo , Eucromatina/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas Associadas aos Microtúbulos
6.
J Clin Microbiol ; 62(6): e0172523, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38780286

RESUMO

The environmental bacterium Klebsiella oxytoca displays an alarming increase of antibiotic-resistant strains that frequently cause outbreaks in intensive care units. Due to its prevalence in the environment and opportunistic presence in humans, molecular surveillance (including resistance marker screening) and high-resolution cluster analysis are of high relevance. Furthermore, K. oxytoca previously described in studies is rather a species complex (KoSC) than a single species comprising at least six closely related species that are not easily differentiated by standard typing methods. To reach a discriminatory power high enough to identify and resolve clusters within these species, whole genome sequencing is necessary. The resolution is achievable with core genome multilocus sequence typing (cgMLST) extending typing of a few housekeeping genes to thousands of core genome genes. CgMLST is highly standardized and provides a nomenclature enabling cross laboratory reproducibility and data exchange for routine diagnostics. Here, we established a cgMLST scheme not only capable of resolving the KoSC species but also producing reliable and consistent results for published outbreaks. Our cgMLST scheme consists of 2,536 core genome and 2,693 accessory genome targets, with a percentage of good cgMLST targets of 98.31% in 880 KoSC genomes downloaded from the National Center for Biotechnology Information (NCBI). We also validated resistance markers against known resistance gene patterns and successfully linked genetic results to phenotypically confirmed toxic strains carrying the til gene cluster. In conclusion, our novel cgMLST enables highly reproducible typing of four different clinically relevant species of the KoSC and thus facilitates molecular surveillance and cluster investigations.


Assuntos
Genoma Bacteriano , Klebsiella oxytoca , Tipagem de Sequências Multilocus , Tipagem de Sequências Multilocus/métodos , Klebsiella oxytoca/genética , Klebsiella oxytoca/classificação , Klebsiella oxytoca/isolamento & purificação , Humanos , Genoma Bacteriano/genética , Filogenia , Infecções por Klebsiella/microbiologia , Sequenciamento Completo do Genoma , Técnicas de Tipagem Bacteriana/métodos , Genes Essenciais/genética , Reprodutibilidade dos Testes
7.
Sci Rep ; 14(1): 12454, 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816574

RESUMO

Housekeeping protein-coding genes are stably expressed genes in cells and tissues that are thought to be engaged in fundamental cellular biological functions. They are often utilized as normalization references in molecular biology research and are especially important in integrated bioinformatic investigations. Prior studies have examined human housekeeping protein-coding genes by analyzing various gene expression datasets. The inclusion of different tissue types significantly impacted the discovery of housekeeping genes. In this report, we investigated particularly individual human subject expression differences in protein-coding genes across different tissue types. We used GTEx V8 gene expression datasets obtained from more than 16,000 human normal tissue samples. Furthermore, the Gini index is utilized to investigate the expression variations of protein-coding genes between tissue and individual donor subjects. Housekeeping protein-coding genes found using Gini index profiles may vary depending on the tissue subtypes investigated, particularly given the diverse sample size collections across the GTEx tissue subtypes. We subsequently selected major tissues and identified subsets of housekeeping genes with stable expression levels among human donors within those tissues. In this work, we provide alternative sets of housekeeping protein-coding genes that show more consistent expression patterns in human subjects across major solid organs. Weblink: https://hpsv.ibms.sinica.edu.tw .


Assuntos
Genes Essenciais , Humanos , Perfilação da Expressão Gênica/métodos , Biologia Computacional/métodos , Especificidade de Órgãos/genética , Bases de Dados Genéticas
8.
Mol Plant Pathol ; 25(5): e13460, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38695626

RESUMO

Reverse genetic approaches are common tools in genomics for elucidating gene functions, involving techniques such as gene deletion followed by screening for aberrant phenotypes. If the generation of gene deletion mutants fails, the question arises whether the failure stems from technical issues or because the gene of interest (GOI) is essential, meaning that the deletion causes lethality. In this report, we introduce a novel method for assessing gene essentiality using the phytopathogenic ascomycete Magnaporthe oryzae. The method is based on the observation that telomere vectors are lost in transformants during cultivation without selection pressure. We tested the hypothesis that essential genes can be identified in deletion mutants co-transformed with a telomere vector. The M. oryzae gene MoPKC, described in literature as essential, was chosen as GOI. Using CRISPR/Cas9 technology transformants with deleted GOI were generated and backed up by a telomere vector carrying a copy of the GOI and conferring fenhexamid resistance. Transformants in which the GOI deletion in the genome was not successful lost the telomere vector on media without fenhexamid. In contrast, transformants with confirmed GOI deletion retained the telomere vector even in absence of fenhexamid selection. In the latter case, the maintenance of the telomere indicates that the GOI is essential for the surveillance of the fungi, as it would have been lost otherwise. The method presented here allows to test for essentiality of genes when no mutants can be obtained from gene deletion approaches, thereby expanding the toolbox for studying gene function in ascomycetes.


Assuntos
Ascomicetos , Genes Essenciais , Vetores Genéticos , Fenótipo , Telômero , Telômero/genética , Vetores Genéticos/genética , Sistemas CRISPR-Cas/genética , Genes Fúngicos/genética , Deleção de Genes , Magnaporthe/genética , Magnaporthe/patogenicidade
9.
Genet Med ; 26(7): 101141, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38629401

RESUMO

PURPOSE: Existing resources that characterize the essentiality status of genes are based on either proliferation assessment in human cell lines, viability evaluation in mouse knockouts, or constraint metrics derived from human population sequencing studies. Several repositories document phenotypic annotations for rare disorders; however, there is a lack of comprehensive reporting on lethal phenotypes. METHODS: We queried Online Mendelian Inheritance in Man for terms related to lethality and classified all Mendelian genes according to the earliest age of death recorded for the associated disorders, from prenatal death to no reports of premature death. We characterized the genes across these lethality categories, examined the evidence on viability from mouse models and explored how this information could be used for novel gene discovery. RESULTS: We developed the Lethal Phenotypes Portal to showcase this curated catalog of human essential genes. Differences in the mode of inheritance, physiological systems affected, and disease class were found for genes in different lethality categories, as well as discrepancies between the lethal phenotypes observed in mouse and human. CONCLUSION: We anticipate that this resource will aid clinicians in the diagnosis of early lethal conditions and assist researchers in investigating the properties that make these genes essential for human development.


Assuntos
Genes Letais , Doenças Genéticas Inatas , Fenótipo , Humanos , Animais , Camundongos , Doenças Genéticas Inatas/genética , Bases de Dados Genéticas , Modelos Animais de Doenças , Genes Essenciais/genética
10.
PLoS One ; 19(4): e0301912, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38598492

RESUMO

BACKGROUND: Atherosclerosis (AS) is a primary contributor to cardiovascular disease, leading to significant global mortality rates. Developing effective diagnostic indicators and models for AS holds the potential to substantially reduce the fatalities and disabilities associated with cardiovascular disease. Blood sample analysis has emerged as a promising avenue for facilitating diagnosis and assessing disease prognosis. Nonetheless, it lacks an accurate model or tool for AS diagnosis. Hence, the principal objective of this study is to develop a convenient, simple, and accurate model for the early detection of AS. METHODS: We downloaded the expression data of blood samples from GEO databases. By dividing the mean values of housekeeping genes (meanHGs) and applying the comBat function, we aimed to reduce the batch effect. After separating the datasets into training, evaluation, and testing sets, we applied differential expression analyses (DEA) between AS and control samples from the training dataset. Then, a gradient-boosting model was used to evaluate the importance of genes and identify the hub genes. Using different machine learning algorithms, we constructed a prediction model with the highest accuracy in the testing dataset. Finally, we make the machine learning models publicly accessible by shiny app construction. RESULTS: Seven datasets (GSE9874, GSE12288, GSE20129, GSE23746, GSE27034, GSE90074, and GSE202625), including 403 samples with AS and 325 healthy subjects, were obtained by comprehensive searching and filtering by specific requirements. The batch effect was successfully removed by dividing the meanHGs and applying the comBat function. 331 genes were found to be related to atherosclerosis by the DEA analysis between AS and health samples. The top 6 genes with the highest importance values from the gradient boosting model were identified. Out of the seven machine learning algorithms tested, the random forest model exhibited the most impressive performance in the testing datasets, achieving an accuracy exceeding 0.8. While the batch effect reduction analysis in our study could have contributed to the increased accuracy values, our comparison results further highlight the superiority of our model over the genes provided in published studies. This underscores the effectiveness of our approach in delivering superior predictive performance. The machine-learning models were then uploaded to the Shiny app's server, making it easy for users to distinguish AS samples from normal samples. CONCLUSIONS: A prognostic Shiny application, built upon six potential atherosclerosis-associated genes, has been developed, offering an accurate diagnosis of atherosclerosis.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Humanos , Genes Essenciais , Algoritmos , Aterosclerose/diagnóstico , Aterosclerose/genética , Bases de Dados Factuais
11.
Microbiol Spectr ; 12(6): e0400623, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38652457

RESUMO

Cystic fibrosis (CF), an inherited genetic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator gene, results in sticky and thick mucosal fluids. This environment facilitates the colonization of various microorganisms, some of which can cause acute and chronic lung infections, while others may positively impact the disease. Rothia mucilaginosa, an oral commensal, is relatively abundant in the lungs of CF patients. Recent studies have unveiled its anti-inflammatory properties using in vitro three-dimensional lung epithelial cell cultures and in vivo mouse models relevant to chronic lung diseases. Apart from this, R. mucilaginosa has been associated with severe infections. However, its metabolic capabilities and genotype-phenotype relationships remain largely unknown. To gain insights into its cellular metabolism and genetic content, we developed the first manually curated genome-scale metabolic model, iRM23NL. Through growth kinetics and high-throughput phenotypic microarray testings, we defined its complete catabolic phenome. Subsequently, we assessed the model's effectiveness in accurately predicting growth behaviors and utilizing multiple substrates. We used constraint-based modeling techniques to formulate novel hypotheses that could expedite the development of antimicrobial strategies. More specifically, we detected putative essential genes and assessed their effect on metabolism under varying nutritional conditions. These predictions could offer novel potential antimicrobial targets without laborious large-scale screening of knockouts and mutant transposon libraries. Overall, iRM23NL demonstrates a solid capability to predict cellular phenotypes and holds immense potential as a valuable resource for accurate predictions in advancing antimicrobial therapies. Moreover, it can guide metabolic engineering to tailor R. mucilaginosa's metabolism for desired performance.IMPORTANCECystic fibrosis (CF) is a genetic disorder characterized by thick mucosal secretions, leading to chronic lung infections. Rothia mucilaginosa is a common bacterium found in various parts of the human body, acting as a normal part of the flora. In people with weakened immune systems, it can become an opportunistic pathogen, while it is prevalent and active in CF airways. Recent studies have highlighted its anti-inflammatory properties in the lower pulmonary system, indicating the intricate relationship between microbes and human health. Herein, we have developed the first manually curated metabolic model of R. mucilaginosa. Our study examined the previously unknown relationships between the bacterium's genotype and phenotype and identified essential genes that impact the metabolism under various conditions. With this, we opt for paving the way for developing new strategies in antimicrobial therapy and metabolic engineering, leading to enhanced therapeutic outcomes in cystic fibrosis and related conditions.


Assuntos
Fibrose Cística , Genoma Bacteriano , Micrococcaceae , Fibrose Cística/microbiologia , Humanos , Micrococcaceae/genética , Micrococcaceae/metabolismo , Genoma Bacteriano/genética , Genes Essenciais/genética , Animais , Camundongos , Fenótipo
12.
Sci Rep ; 14(1): 9199, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649399

RESUMO

The distinctive nature of cancer as a disease prompts an exploration of the special characteristics the genes implicated in cancer exhibit. The identification of cancer-associated genes and their characteristics is crucial to further our understanding of this disease and enhanced likelihood of therapeutic drug targets success. However, the rate at which cancer genes are being identified experimentally is slow. Applying predictive analysis techniques, through the building of accurate machine learning models, is potentially a useful approach in enhancing the identification rate of these genes and their characteristics. Here, we investigated gene essentiality scores and found that they tend to be higher for cancer-associated genes compared to other protein-coding human genes. We built a dataset of extended gene properties linked to essentiality and used it to train a machine-learning model; this model reached 89% accuracy and > 0.85 for the Area Under Curve (AUC). The model showed that essentiality, evolutionary-related properties, and properties arising from protein-protein interaction networks are particularly effective in predicting cancer-associated genes. We were able to use the model to identify potential candidate genes that have not been previously linked to cancer. Prioritising genes that score highly by our methods could aid scientists in their cancer genes research.


Assuntos
Genes Essenciais , Aprendizado de Máquina , Neoplasias , Humanos , Neoplasias/genética , Mapas de Interação de Proteínas/genética , Evolução Molecular , Biologia Computacional/métodos
13.
Nat Commun ; 15(1): 3577, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678031

RESUMO

Genetic interactions mediate the emergence of phenotype from genotype, but technologies for combinatorial genetic perturbation in mammalian cells are challenging to scale. Here, we identify background-independent paralog synthetic lethals from previous CRISPR genetic interaction screens, and find that the Cas12a platform provides superior sensitivity and assay replicability. We develop the in4mer Cas12a platform that uses arrays of four independent guide RNAs targeting the same or different genes. We construct a genome-scale library, Inzolia, that is ~30% smaller than a typical CRISPR/Cas9 library while also targeting ~4000 paralog pairs. Screens in cancer cells demonstrate discrimination of core and context-dependent essential genes similar to that of CRISPR/Cas9 libraries, as well as detection of synthetic lethal and masking/buffering genetic interactions between paralogs of various family sizes. Importantly, the in4mer platform offers a fivefold reduction in library size compared to other genetic interaction methods, substantially reducing the cost and effort required for these assays.


Assuntos
Proteínas de Bactérias , Sistemas CRISPR-Cas , Endodesoxirribonucleases , Técnicas de Inativação de Genes , Humanos , Técnicas de Inativação de Genes/métodos , RNA Guia de Sistemas CRISPR-Cas/genética , Biblioteca Gênica , Linhagem Celular Tumoral , Genes Essenciais , Células HEK293 , Epistasia Genética , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo
14.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612878

RESUMO

We developed a procedure for locating genes on Drosophila melanogaster polytene chromosomes and described three types of chromosome structures (gray bands, black bands, and interbands), which differed markedly in morphological and genetic properties. This was reached through the use of our original methods of molecular and genetic analysis, electron microscopy, and bioinformatics data processing. Analysis of the genome-wide distribution of these properties led us to a bioinformatics model of the Drosophila genome organization, in which the genome was divided into two groups of genes. One was constituted by 65, in which the genome was divided into two groups, 62 genes that are expressed in most cell types during life cycle and perform basic cellular functions (the so-called "housekeeping genes"). The other one was made up of 3162 genes that are expressed only at particular stages of development ("developmental genes"). These two groups of genes are so different that we may state that the genome has two types of genetic organization. Different are the timings of their expression, chromatin packaging levels, the composition of activating and deactivating proteins, the sizes of these genes, the lengths of their introns, the organization of the promoter regions of the genes, the locations of origin recognition complexes (ORCs), and DNA replication timings.


Assuntos
Drosophila , Genes Essenciais , Animais , Drosophila/genética , Drosophila melanogaster/genética , Cromatina , Íntrons
15.
BMC Biol ; 22(1): 78, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600550

RESUMO

BACKGROUND: Regulation of transcription is central to the emergence of new cell types during development, and it often involves activation of genes via proximal and distal regulatory regions. The activity of regulatory elements is determined by transcription factors (TFs) and epigenetic marks, but despite extensive mapping of such patterns, the extraction of regulatory principles remains challenging. RESULTS: Here we study differentially and similarly expressed genes along with their associated epigenomic profiles, chromatin accessibility and DNA methylation, during lineage specification at gastrulation in mice. Comparison of the three lineages allows us to identify genomic and epigenomic features that distinguish the two classes of genes. We show that differentially expressed genes are primarily regulated by distal elements, while similarly expressed genes are controlled by proximal housekeeping regulatory programs. Differentially expressed genes are relatively isolated within topologically associated domains, while similarly expressed genes tend to be located in gene clusters. Transcription of differentially expressed genes is associated with differentially open chromatin at distal elements including enhancers, while that of similarly expressed genes is associated with ubiquitously accessible chromatin at promoters. CONCLUSION: Based on these associations of (linearly) distal genes' transcription start sites (TSSs) and putative enhancers for developmental genes, our findings allow us to link putative enhancers to their target promoters and to infer lineage-specific repertoires of putative driver transcription factors, within which we define subgroups of pioneers and co-operators.


Assuntos
Epigenômica , Genes Essenciais , Animais , Camundongos , Cromatina/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica
16.
Cancer Lett ; 588: 216776, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38432581

RESUMO

Due to the limited effectiveness of current treatments, the survival rate of patients with metastatic castration-resistant prostate cancer (mCRPC) is significantly reduced. Consequently, it is imperative to identify novel therapeutic targets for managing these patients. Since the invasive ability of cells is crucial for establishing and maintaining metastasis, the aim of this study was to identify the essential regulators of invasive abilities of mCRPC cells by conducting two independent high-throughput CRISPR/Cas9 screenings. Furthermore, some of the top hits were validated using siRNA technology, with protein arginine methyltransferase 7 (PRMT7) emerging as the most promising candidate. We demonstrated that its inhibition or depletion via genetic or pharmacological approaches significantly reduces invasive, migratory and proliferative abilities of mCRPC cells in vitro. Moreover, we confirmed that PRMT7 ablation reduces cell dissemination in chicken chorioallantoic membrane and mouse xenograft assays. Molecularly, PRMT7 reprograms the expression of several adhesion molecules by methylating various transcription factors, such as FoxK1, resulting in the loss of adhesion from the primary tumor and increased motility of mCRPC cells. Furthermore, PRMT7 higher expression correlates with tumor aggressivity and poor overall survival in prostate cancer patients. Thus, this study demonstrates that PRMT7 is a potential therapeutic target and potential biomarker for mPCa.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Proteína-Arginina N-Metiltransferases , Masculino , Animais , Camundongos , Humanos , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Sistemas CRISPR-Cas , Genes Essenciais , Detecção Precoce de Câncer
17.
Radiat Res ; 201(5): 487-498, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38471523

RESUMO

In gene expression (GE) studies, housekeeping genes (HKGs) are required for normalization purposes. In large-scale inter-laboratory comparison studies, significant differences in dose estimates are reported and divergent HKGs are employed by the teams. Among them, the 18S rRNA HKG is known for its robustness. However, the high abundance of 18S rRNA copy numbers requires dilution, which is time-consuming and a possible source of errors. This study was conducted to identify the most promising HKGs showing the least radiation-induced GE variance after radiation exposure. In the screening stage of this study, 35 HKGs were analyzed. This included selected HKGs (ITFG1, MRPS5, and DPM1) used in large-scale biodosimetry studies which were not covered on an additionally employed pre-designed 96-well platform comprising another 32 HKGs used for different exposures. Altogether 41 samples were examined, including 27 ex vivo X-ray irradiated blood samples (0, 0.5, 4 Gy), six X-irradiated samples (0, 0.5, 5 Gy) from two cell lines (U118, A549), as well as eight non-irradiated tissue samples to encompass multiple biological entities. In the independent validation stage, the most suitable candidate genes were examined from another 257 blood samples, taking advantage of already stored material originating from three studies. These comprise 100 blood samples from ex vivo X-ray irradiated (0-4 Gy) healthy donors, 68 blood samples from 5.8 Gy irradiated (cobalt-60) Rhesus macaques (RM) (LD29/60) collected 0-60 days postirradiation, and 89 blood samples from chemotherapy-(CTx) treated breast tumor patients. CTx and radiation-induced GE changes in previous studies appeared comparable. RNA was isolated, converted into cDNA, and GE was quantified employing TaqMan assays and quantitative RT-PCR. We calculated the standard deviation (SD) and the interquartile range (IQR) as measures of GE variance using raw cycle threshold (Ct) values and ranked the HKGs accordingly. Dose, time, age, and sex-dependent GE changes were examined employing the parametrical t-test and non-parametrical Kruskal Wallis test, as well as linear regression analysis. Generally, similar ranking results evolved using either SD or IQR GE measures of variance, indicating a tight distribution of GE values. PUM1 and PGK1 showed the lowest variance among the first ten most suitable genes in the screening phase. MRPL19 revealed low variance among the first ten most suitable genes in the screening phase only for blood and cells, but certain comparisons indicated a weak association of MRPL19 with dose (P = 0.02-0.09). In the validation phase, these results could be confirmed. Here, IQR Ct values from, e.g., X-irradiated blood samples were 0.6 raw Ct values for PUM1 and PGK1, which is considered to represent GE differences as expected due to methodological variance. Overall, when compared, the GE variance of both genes was either comparable or lower compared to 18S rRNA. Compared with the IQR GE values of PUM1 and PGKI, twofold-fivefold increased values were calculated for the biodosimetry HKG HPRT1, and comparable values were calculated for biodosimetry HKGs ITFG1, MRPS5, and DPM1. Significant dose-dependent associations were found for ITFG1 and MRPS5 (P = 0.001-0.07) and widely absent or weak (P = 0.02-0.07) for HPRT1 and DPM1. In summary, PUM1 and PGK1 appeared most promising for radiation exposure studies among the 35 HKGs examined, considering GE variance and adverse associations of GE with dose.


Assuntos
Genes Essenciais , Fosfoglicerato Quinase , Proteínas de Ligação a RNA , Exposição à Radiação , Adulto , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Relação Dose-Resposta à Radiação , Genes Essenciais/efeitos da radiação , Exposição à Radiação/efeitos adversos , Radiometria , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/efeitos da radiação , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/efeitos da radiação , Macaca mulatta , Fosfoglicerato Quinase/genética , Fosfoglicerato Quinase/efeitos da radiação
18.
Fungal Genet Biol ; 172: 103890, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38503389

RESUMO

A sporeless strain is an important breeding target in the mushroom industry. However, basidiospore production in the oyster mushroom Pleurotus ostreatus has been shown to be impaired by single-gene mutations in only two meiosis-related genes, mer3 and msh4. This study proposed a strategy for identifying the genes essential for basidiospore formation after meiotic division to determine new targets for molecular breeding. RNA-seq analysis was performed to identify P. ostreatus genes that are specifically expressed in the gill tissue of fruiting bodies, where basidiospore formation occurs. Transcriptome data during fruiting development of Coprinopsis cinerea, in which the meiotic steps progress synchronously, were then used to identify genes that are active in the postmeiotic stages. Based on these comparative analyses, five P. ostreatus genes were identified. Plasmids containing expression cassettes for hygromycin B-resistance screening, Cas9, and single-guide RNA targeting each gene were introduced into the protoplasts of dikaryotic strain, PC9×#64, to generate dikaryotic gene disruptants. Among the obtained transformants, three dikaryotic pcl1 disruptants and two cro6c disruptants did not produce basidiospores. Microscopic analyses indicated that spore formation was arrested at particular stages in these gene disruptants. These results indicate that these two genes are essential for mature spore formation in this fungus.


Assuntos
Carpóforos , Meiose , Pleurotus , Esporos Fúngicos , Pleurotus/genética , Pleurotus/crescimento & desenvolvimento , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Meiose/genética , Carpóforos/genética , Carpóforos/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Genes Fúngicos/genética , Genes Essenciais/genética , Transcriptoma/genética
19.
Sci Rep ; 14(1): 7436, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548901

RESUMO

CRISPR/Cas9 technology has effectively targeted cancer-specific oncogenic hotspot mutations or insertion-deletions. However, their limited prevalence in tumors restricts their application. We propose a novel approach targeting passenger single nucleotide variants (SNVs) in haploinsufficient or essential genes to broaden therapeutic options. By disrupting haploinsufficient or essential genes through the cleavage of DNA in the SNV region using CRISPR/Cas9, we achieved the selective elimination of cancer cells without affecting normal cells. We found that, on average, 44.8% of solid cancer patients are eligible for our approach, a substantial increase compared to the 14.4% of patients with CRISPR/Cas9-applicable oncogenic hotspot mutations. Through in vitro and in vivo experiments, we validated our strategy by targeting a passenger mutation in the essential ribosomal gene RRP9 and haploinsufficient gene SMG6. This demonstrates the potential of our strategy to selectively eliminate cancer cells and expand therapeutic opportunities.


Assuntos
Sistemas CRISPR-Cas , Neoplasias , Humanos , Genes Essenciais , Mutação , Nucleotídeos , Edição de Genes , Neoplasias/genética , Neoplasias/terapia
20.
Methods Mol Biol ; 2760: 345-369, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468098

RESUMO

The identification of essential genes is a key challenge in systems and synthetic biology, particularly for engineering metabolic pathways that convert feedstocks into valuable products. Assessment of gene essentiality at a genome scale requires large and costly growth assays of knockout strains. Here we describe a strategy to predict the essentiality of metabolic genes using binary classification algorithms. The approach combines elements from genome-scale metabolic models, directed graphs, and machine learning into a predictive model that can be trained on small knockout data. We demonstrate the efficacy of this approach using the most complete metabolic model of Escherichia coli and various machine learning algorithms for binary classification.


Assuntos
Algoritmos , Aprendizado de Máquina , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Essenciais , Redes e Vias Metabólicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...