Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.850
Filtrar
1.
Nat Commun ; 15(1): 8237, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300074

RESUMO

Cells possess multiple mitochondrial DNA (mtDNA) copies, which undergo semi-autonomous replication and stochastic inheritance. This enables mutant mtDNA variants to arise and selfishly compete with cooperative (wildtype) mtDNA. Selfish mitochondrial genomes are subject to selection at different levels: they compete against wildtype mtDNA directly within hosts and indirectly through organism-level selection. However, determining the relative contributions of selection at different levels has proven challenging. We overcome this challenge by combining mathematical modeling with experiments designed to isolate the levels of selection. Applying this approach to many selfish mitochondrial genotypes in Caenorhabditis elegans reveals an unexpected diversity of evolutionary mechanisms. Some mutant genomes persist at high frequency for many generations, despite a host fitness cost, by aggressively outcompeting cooperative genomes within hosts. Conversely, some mutant genomes persist by evading inter-organismal selection. Strikingly, the mutant genomes vary dramatically in their susceptibility to genetic drift. Although different mechanisms can cause high frequency of selfish mtDNA, we show how they give rise to characteristically different distributions of mutant frequency among individuals. Given that heteroplasmic frequency represents a key determinant of phenotypic severity, this work outlines an evolutionary theoretic framework for predicting the distribution of phenotypic consequences among individuals carrying a selfish mitochondrial genome.


Assuntos
Caenorhabditis elegans , DNA Mitocondrial , Evolução Molecular , Genoma Mitocondrial , Mutação , Animais , Caenorhabditis elegans/genética , DNA Mitocondrial/genética , Seleção Genética , Deriva Genética , Modelos Genéticos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Genótipo
2.
PLoS One ; 19(9): e0308626, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39240839

RESUMO

Cultivated beet (Beta vulgaris L. ssp. vulgaris) originated from sea beet (B. vulgaris ssp. maritima (L.) Arcang), a wild beet species widely distributed along the coasts of the Mediterranean Sea and Atlantic Ocean, as well as northern Africa. Understanding the evolution of sea beet will facilitate its efficient use in sugarbeet improvement. We used SNPs (single nucleotide polymorphisms) covering the whole genome to analyze 599 sea beet accessions collected from the north Atlantic Ocean and Mediterranean Sea coasts. All B. maritima accessions can be grouped into eight clusters with each corresponding to a specific geographic region. Clusters 2, 3 and 4 with accessions mainly collected from Mediterranean coasts are genetically close to each other as well as to Cluster 6 that contained mainly cultivated beet. Other clusters were relatively distinct from cultivated beets with Clusters 1 and 5 containing accessions from north Atlantic Ocean coasts, Clusters 7 and Cluster 8 mainly have accessions from northern Egypt and southern Europe, and northwest Morocco, respectively. Distribution of B. maritima subpopulations aligns well with the direction of marine currents that was considered a main dynamic force in spreading B. maritima during evolution. Estimation of genetic diversity indices supported the formation of B. maritima subpopulations due to local genetic drift, historic migration, and limited gene flow. Our results indicated that B. maritima originated from southern Europe and then spread to other regions through marine currents to form subpopulations. This research provides vital information for conserving, collecting, and utilizing wild sea beet to sustain sugarbeet improvement.


Assuntos
Beta vulgaris , Fluxo Gênico , Deriva Genética , Polimorfismo de Nucleotídeo Único , Beta vulgaris/genética , Mar Mediterrâneo , Oceano Atlântico , Variação Genética
3.
PeerJ ; 12: e17918, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39221262

RESUMO

The evolution of a population by means of genetic drift and natural selection operating on a gene regulatory network (GRN) of an individual has not been scrutinized in depth. Thus, the relative importance of various evolutionary forces and processes on shaping genetic variability in GRNs is understudied. In this study, we implemented a simulation framework, called EvoNET, that simulates forward-in-time the evolution of GRNs in a population. The fitness effect of mutations is not constant, rather fitness of each individual is evaluated on the phenotypic level, by measuring its distance from an optimal phenotype. Each individual goes through a maturation period, where its GRN may reach an equilibrium, thus deciding its phenotype. Afterwards, individuals compete to produce the next generation. We examine properties of the GRN evolution, such as robustness against the deleterious effect of mutations and the role of genetic drift. We are able to confirm previous hypotheses regarding the effect of mutations and we provide new insights on the interplay between random genetic drift and natural selection.


Assuntos
Redes Reguladoras de Genes , Deriva Genética , Modelos Genéticos , Seleção Genética , Redes Reguladoras de Genes/genética , Mutação , Evolução Molecular , Fenótipo , Simulação por Computador , Humanos
4.
Science ; 385(6710): 770-775, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39146405

RESUMO

The functions of proteins generally depend on their assembly into complexes. During evolution, some complexes have transitioned from homomers encoded by a single gene to heteromers encoded by duplicate genes. This transition could occur without adaptive evolution through intermolecular compensatory mutations. Here, we experimentally duplicated and evolved a homodimeric enzyme to determine whether and how this could happen. We identified hundreds of deleterious mutations that inactivate individual homodimers but produce functional enzymes when coexpressed as duplicated proteins that heterodimerize. The structure of one such heteromer reveals how both losses of function are buffered through the introduction of asymmetry in the complex that allows them to subfunctionalize. Constructive neutral evolution can thus occur by gene duplication followed by only one deleterious mutation per duplicate.


Assuntos
Duplicação Gênica , Deriva Genética , Mutação com Perda de Função , Multimerização Proteica , Multimerização Proteica/genética , Citosina Desaminase/química , Citosina Desaminase/genética
5.
Proc Natl Acad Sci U S A ; 121(34): e2411487121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39136984

RESUMO

When biological populations expand into new territory, the evolutionary outcomes can be strongly influenced by genetic drift, the random fluctuations in allele frequencies. Meanwhile, spatial variability in the environment can also significantly influence the competition between subpopulations vying for space. Little is known about the interplay of these intrinsic and extrinsic sources of noise in population dynamics: When does environmental heterogeneity dominate over genetic drift or vice versa, and what distinguishes their population genetics signatures? Here, in the context of neutral evolution, we examine the interplay between a population's intrinsic, demographic noise and an extrinsic, quenched random noise provided by a heterogeneous environment. Using a multispecies Eden model, we simulate a population expanding over a landscape with random variations in local growth rates and measure how this variability affects genealogical tree structure, and thus genetic diversity. We find that, for strong heterogeneity, the genetic makeup of the expansion front is to a great extent predetermined by the set of fastest paths through the environment. The landscape-dependent statistics of these optimal paths then supersede those of the population's intrinsic noise as the main determinant of evolutionary dynamics. Remarkably, the statistics for coalescence of genealogical lineages, derived from those deterministic paths, strongly resemble the statistics emerging from demographic noise alone in uniform landscapes. This cautions interpretations of coalescence statistics and raises new challenges for inferring past population dynamics.


Assuntos
Dinâmica Populacional , Modelos Genéticos , Deriva Genética , Genética Populacional/métodos , Variação Genética , Frequência do Gene , Humanos , Evolução Biológica
6.
PLoS Pathog ; 20(8): e1012424, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39102439

RESUMO

Manipulating evolutionary forces imposed by hosts on pathogens like genetic drift and selection could avoid the emergence of virulent pathogens. For instance, increasing genetic drift could decrease the risk of pathogen adaptation through the random fixation of deleterious mutations or the elimination of favorable ones in the pathogen population. However, no experimental proof of this approach is available for a plant-pathogen system. We studied the impact of pepper (Capsicum annuum) lines carrying the same major resistance gene but contrasted genetic backgrounds on the evolution of Potato virus Y (PVY). The pepper lines were chosen for the contrasted levels of genetic drift (inversely related to Ne, the effective population size) they exert on PVY populations, as well as for their contrasted resistance efficiency (inversely related to the initial replicative fitness, Wi, of PVY in these lines). Experimental evolution was performed by serially passaging 64 PVY populations every month on six contrasted pepper lines during seven months. These PVY populations exhibited highly divergent evolutionary trajectories, ranging from viral extinctions to replicative fitness gains. The sequencing of the PVY VPg cistron, where adaptive mutations are likely to occur, allowed linking these replicative fitness gains to parallel adaptive nonsynonymous mutations. Evolutionary trajectories were well explained by the genetic drift imposed by the host. More specifically, Ne, Wi and their synergistic interaction played a major role in the fate of PVY populations. When Ne was low (i.e. strong genetic drift), the final PVY replicative fitness remained close to the initial replicative fitness, whereas when Ne was high (i.e. low genetic drift), the final PVY replicative fitness was high independently of the replicative fitness of the initially inoculated virus. We show that combining a high resistance efficiency (low Wi) and a strong genetic drift (low Ne) is the best solution to increase resistance durability, that is, to avoid virus adaptation on the long term.


Assuntos
Capsicum , Deriva Genética , Doenças das Plantas , Potyvirus , Capsicum/virologia , Capsicum/genética , Potyvirus/genética , Potyvirus/patogenicidade , Doenças das Plantas/virologia , Doenças das Plantas/genética , Interações Hospedeiro-Patógeno/genética , Resistência à Doença/genética , Adaptação Fisiológica/genética , Mutação
7.
Genes Genomics ; 46(10): 1225-1237, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39215948

RESUMO

BACKGROUND: Fighting cock breeds have considerable historical and cultural place in Thailand. Breeds such as Lueng Hang Khao (LHK) and Pradu Hang Dam (PDH) are known for their impressive plumage and unique meat quality, suggesting selection for fighting and other purposes. However, information regarding the genetic diversity and clustering in indigenous and local Thai chickens used for cockfighting is unclear. OBJECTIVE: To investigates the genetic diversity and differentiation in Thai fighting cock breeds, including populations for cockfighting, ornamental aspects, and consumption. METHODS: Thai fighting cook breeds, including LHK and PDH chickens were analyzed using genotyping with 28 microsatellite loci. Data were compared to a gene pool library from "The Siam Chicken Bioresource Project" to understand the impact of human selection on genetic differentiation. Fighting cock strains from different breeds may cluster owing to shared breeding goals. RESULT: The analysis of several chicken breeds showed subpopulation differentiation driven by artificial selection and genetic drift, affecting the genetic landscape and causing genetic hitchhiking. Eleven of 28 microsatellite loci showed hitchhiking selection, indicating directional selection in fighting cocks. Additionally, analyses revealed admixture with domestic chicken breeds and minimal influence of red junglefowl in the gene pool of Thai fighting chickens. These findings inform breed improvement, selection strategies, genetic resource management, and maintaining genetic diversity in fighting cocks. CONCLUSION: Analysis of Thai Fighting chicken breeds revealed a correlation between utilization and subpopulation differentiation. Specifically, selection for cockfighting and ornamental traits appears to explain the observed genetic structure within these breeds.


Assuntos
Cruzamento , Galinhas , Repetições de Microssatélites , Animais , Galinhas/genética , Tailândia , Variação Genética , Seleção Genética , Deriva Genética , Genótipo , População do Sudeste Asiático
8.
Theor Popul Biol ; 159: 74-90, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39208993

RESUMO

This study describes a compact method for determining joint probabilities of identity-by-state (IBS) within and between loci in populations evolving under genetic drift, crossing-over, mutation, and regular inbreeding (partial self-fertilization). Analogues of classical indices of associations among loci arise as functions of these joint identities. This coalescence-based analysis indicates that multi-locus associations reflect simultaneous coalescence events across loci. Measures of association depend on genetic diversity rather than allelic frequencies, as do linkage disequilibrium and its relatives. Scaled indices designed to show monotonic dependence on rates of crossing-over, inbreeding, and mutation may prove useful for interpreting patterns of genome-scale variation.


Assuntos
Endogamia , Mutação , Desequilíbrio de Ligação , Modelos Genéticos , Frequência do Gene , Genética Populacional , Deriva Genética , Variação Genética , Loci Gênicos , Humanos
9.
Mol Ecol ; 33(17): e17483, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39056407

RESUMO

Adaptive differentiation of traits and underlying loci can occur at a small geographical scale if natural selection is stronger than countervailing gene flow and drift. We investigated this hypothesis using coupled quantitative genetic and genomic approaches for a wind-pollinated tree species, Quercus rubra, along the steep, narrow gradient of the Lake Superior coast that encompasses four USDA Hardiness Zones within 100 km. For the quantitative genetic component of this study, we examined phenotypic differentiation among eight populations in a common garden, measuring seed mass, germination, height, stem diameter, leaf number, specific leaf area and survival. For the genomic component, we quantified genetic differentiation for 26 populations from the same region using RAD-seq. Because hybridisation with Quercus ellipsoidalis occurs in other parts of the species' range, we included two populations of this congener for comparison. In the common garden study, we found a strong signal of population differentiation that was significantly associated with at least one climate factor for nine of 10 measured traits. In contrast, we found no evidence of genomic differentiation among populations based on FST or any other measures. However, both distance-based and genotype-environment association analyses identified loci showing the signature of selection, with one locus in common across five analyses. This locus was associated with the minimum temperature of the coldest month, a factor that defines the climate zones and was also significant in the common garden analyses. In addition, we documented introgression from Q. ellipsoidalis into Q. rubra, with rates of introgression correlated with the climate gradient. In sum, this study reveals signatures of selection at the quantitative trait and genomic level consistent with climate adaptation, a pattern that is more often documented at a much broader geographical scale, especially in long-lived wind-pollinated species.


Assuntos
Fluxo Gênico , Genética Populacional , Fenótipo , Quercus , Seleção Genética , Quercus/genética , Genótipo , Deriva Genética , Variação Genética , Lagos , Genômica
10.
Theor Popul Biol ; 159: 13-24, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39019334

RESUMO

We introduce a multi-allele Wright-Fisher model with mutation and selection such that allele frequencies at a single locus are traced by the path of a hybrid jump-diffusion process. The state space of the process is given by the vertices and edges of a topological graph, i.e. edges are unit intervals. Vertices represent monomorphic population states and positions on the edges mark the biallelic proportions of ancestral and derived alleles during polymorphic segments. In this setting, mutations can only occur at monomorphic loci. We derive the stationary distribution in mutation-selection-drift equilibrium and obtain the expected allele frequency spectrum under large population size scaling. For the extended model with multiple independent loci we derive rigorous upper bounds for a wide class of associated measures of genetic variation. Within this framework we present mathematically precise arguments to conclude that the presence of directional selection reduces the magnitude of genetic variation, as constrained by the bounds for neutral evolution.


Assuntos
Frequência do Gene , Variação Genética , Genética Populacional , Modelos Genéticos , Seleção Genética , Mutação , Alelos , Deriva Genética , Humanos , Densidade Demográfica
11.
Genome Res ; 34(6): 851-862, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38955466

RESUMO

Island populations often experience different ecological and demographic conditions than their counterparts on the continent, resulting in divergent evolutionary forces affecting their genomes. Random genetic drift and selection both may leave their imprints on island populations, although the relative impact depends strongly on the specific conditions. Here we address their contributions to the island syndrome in a rodent with an unusually clear history of isolation. Common voles (Microtus arvalis) were introduced by humans on the Orkney archipelago north of Scotland >5000 years ago and rapidly evolved to exceptionally large size. Our analyses show that the genomes of Orkney voles were dominated by genetic drift, with extremely low diversity, variable Tajima's D, and very high divergence from continental conspecifics. Increased d N/d S ratios over a wide range of genes in Orkney voles indicated genome-wide relaxation of purifying selection. We found evidence of hard sweeps on key genes of the lipid metabolism pathway only in continental voles. The marked increase of body size in Orkney-a typical phenomenon of the island syndrome-may thus be associated to the relaxation of positive selection on genes related to this pathway. On the other hand, a hard sweep on immune genes of Orkney voles likely reflects the divergent ecological conditions and possibly the history of human introduction. The long-term isolated Orkney voles show that adaptive changes may still impact the evolutionary trajectories of such populations despite the pervasive consequences of genetic drift at the genome level.


Assuntos
Arvicolinae , Evolução Molecular , Ilhas , Seleção Genética , Animais , Arvicolinae/genética , Deriva Genética , Genoma , Escócia , Variação Genética
12.
Heredity (Edinb) ; 133(2): 88-98, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38961235

RESUMO

Many endangered species live in fragmented and isolated populations with low genetic variability, signs of inbreeding, and small effective population sizes - all features elevating their extinction risk. The flat-headed loach (Oreonectes platycephalus), a small noemacheilid fish, is widely across southern China, but only in the headwaters of hillstreams; as a result, they are spatially isolated from conspecific populations. We surveyed single nucleotide polymorphisms in 16 Hong Kong populations of O. platycephalus to determine whether loach populations from different streams were genetically isolated from each other, showed low levels of genetic diversity, signs of inbreeding, and had small contemporary effective population sizes. Estimates of average observed heterozygosity (HO = 0.0473), average weighted nucleotide diversity (πw = 0.0546) and contemporary effective population sizes (Ne = 10.2 ~ 129.8) were very low, and several populations showed clear signs of inbreeding as judged from relatedness estimates. The degree of genetic differentiation among populations was very high (average FST = 0.668), even over short geographic distances (<1.5 km), with clear patterns of isolation by distance. These results suggest that Hong Kong populations of O. platycephalus have experienced strong genetic drift and loss of genetic variability because sea-level rise after the last glaciation reduced connectedness among paleodrainages, isolating populations in headwaters. All this, together with the fact that the levels of genetic diversity and contemporary effective population sizes within O. platycephalus populations are lower than most other freshwater fishes, suggests that they face high local extinction risk and have limited capacity for future adaptation.


Assuntos
Cipriniformes , Espécies em Perigo de Extinção , Variação Genética , Genética Populacional , Polimorfismo de Nucleotídeo Único , Densidade Demográfica , Animais , Cipriniformes/genética , Hong Kong , Endogamia , Deriva Genética , Adaptação Fisiológica/genética
13.
Mol Ecol ; 33(16): e17464, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38994885

RESUMO

Adaptive evolution can facilitate species' range expansions across environmentally heterogeneous landscapes. However, serial founder effects can limit the efficacy of selection, and the evolution of increased dispersal during range expansions may result in gene flow swamping local adaptation. Here, we study how genetic drift, gene flow and selection interact during the cane toad's (Rhinella marina) invasion across the heterogeneous landscape of Australia. Following its introduction in 1935, the cane toad colonised eastern Australia and established several stable range edges. The ongoing, more rapid range expansion in north-central Australia has occurred concomitant with an evolved increase in dispersal capacity. Using reduced representation genomic data of Australian cane toads from the expansion front and from two areas of their established range, we test the hypothesis that high gene flow constrains local adaptation at the expansion front relative to established areas. Genetic analyses indicate the three study areas are genetically distinct but show similar levels of allelic richness, heterozygosity and inbreeding. Markedly higher gene flow or recency of colonisation at the expansion front have likely hindered local adaptation at the time of sampling, as indicated by reduced slopes of genetic-environment associations (GEAs) estimated using a novel application of geographically weighted regression that accounts for allele surfing; GEA slopes are significantly steeper in established parts of the range. Our work bolsters evidence supporting adaptation of invasive species post-introduction and adds novel evidence for differing strengths of evolutionary forces among geographic areas with different invasion histories.


Assuntos
Fluxo Gênico , Deriva Genética , Genética Populacional , Espécies Introduzidas , Animais , Austrália , Bufo marinus/genética , Seleção Genética , Adaptação Fisiológica/genética , Variação Genética , Alelos
14.
Protein Sci ; 33(7): e5083, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38924211

RESUMO

The effect of population bottlenecks and genome reduction on enzyme function is poorly understood. Candidatus Liberibacter solanacearum is a bacterium with a reduced genome that is transmitted vertically to the egg of an infected psyllid-a population bottleneck that imposes genetic drift and is predicted to affect protein structure and function. Here, we define the function of Ca. L. solanacearum dihydrodipicolinate synthase (CLsoDHDPS), which catalyzes the committed branchpoint reaction in diaminopimelate and lysine biosynthesis. We demonstrate that CLsoDHDPS is expressed in Ca. L. solanacearum and expression is increased ~2-fold in the insect host compared to in planta. CLsoDHDPS has decreased thermal stability and increased aggregation propensity, implying mutations have destabilized the enzyme but are compensated for through elevated chaperone expression and a stabilized oligomeric state. CLsoDHDPS uses a ternary-complex kinetic mechanism, which is to date unique among DHDPS enzymes, has unusually low catalytic ability, but an unusually high substrate affinity. Structural studies demonstrate that the active site is more open, and the structure of CLsoDHDPS with both pyruvate and the substrate analogue succinic-semialdehyde reveals that the product is both structurally and energetically different and therefore evolution has in this case fashioned a new enzyme. Our study suggests the effects of genome reduction and genetic drift on the function of essential enzymes and provides insights on bacteria-host co-evolutionary associations. We propose that bacteria with endosymbiotic lifestyles present a rich vein of interesting enzymes useful for understanding enzyme function and/or informing protein engineering efforts.


Assuntos
Deriva Genética , Genoma Bacteriano , Lisina , Simbiose , Lisina/biossíntese , Lisina/metabolismo , Lisina/genética , Hidroliases/genética , Hidroliases/química , Hidroliases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Animais
15.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38935572

RESUMO

Two important characteristics of metapopulations are extinction-(re)colonization dynamics and gene flow between subpopulations. These processes can cause strong shifts in genome-wide allele frequencies that are generally not observed in "classical" (large, stable, and panmictic) populations. Subpopulations founded by one or a few individuals, the so-called propagule model, are initially expected to show intermediate allele frequencies at polymorphic sites until natural selection and genetic drift drive allele frequencies toward a mutation-selection-drift equilibrium characterized by a negative exponential-like distribution of the site frequency spectrum. We followed changes in site frequency spectrum distribution in a natural metapopulation of the cyclically parthenogenetic pond-dwelling microcrustacean Daphnia magna using biannual pool-seq samples collected over a 5-yr period from 118 ponds occupied by subpopulations of known age. As expected under the propagule model, site frequency spectra in newly founded subpopulations trended toward intermediate allele frequencies and shifted toward right-skewed distributions as the populations aged. Immigration and subsequent hybrid vigor altered this dynamic. We show that the analysis of site frequency spectrum dynamics is a powerful approach to understand evolution in metapopulations. It allowed us to disentangle evolutionary processes occurring in a natural metapopulation, where many subpopulations evolve in parallel. Thereby, stochastic processes like founder and immigration events lead to a pattern of subpopulation divergence, while genetic drift leads to converging site frequency spectrum distributions in the persisting subpopulations. The observed processes are well explained by the propagule model and highlight that metapopulations evolve differently from classical populations.


Assuntos
Daphnia , Frequência do Gene , Deriva Genética , Seleção Genética , Animais , Daphnia/genética , Fluxo Gênico , Modelos Genéticos , Genética Populacional/métodos , Dinâmica Populacional , Genoma , Evolução Biológica , Evolução Molecular
16.
Theor Popul Biol ; 158: 150-169, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880430

RESUMO

The coalescent is a stochastic process representing ancestral lineages in a population undergoing neutral genetic drift. Originally defined for a well-mixed population, the coalescent has been adapted in various ways to accommodate spatial, age, and class structure, along with other features of real-world populations. To further extend the range of population structures to which coalescent theory applies, we formulate a coalescent process for a broad class of neutral drift models with arbitrary - but fixed - spatial, age, sex, and class structure, haploid or diploid genetics, and any fixed mating pattern. Here, the coalescent is represented as a random sequence of mappings [Formula: see text] from a finite set G to itself. The set G represents the "sites" (in individuals, in particular locations and/or classes) at which these alleles can live. The state of the coalescent, Ct:G→G, maps each site g∈G to the site containing g's ancestor, t time-steps into the past. Using this representation, we define and analyze coalescence time, coalescence branch length, mutations prior to coalescence, and stationary probabilities of identity-by-descent and identity-by-state. For low mutation, we provide a recipe for computing identity-by-descent and identity-by-state probabilities via the coalescent. Applying our results to a diploid population with arbitrary sex ratio r, we find that measures of genetic dissimilarity, among any set of sites, are scaled by 4r(1-r) relative to the even sex ratio case.


Assuntos
Deriva Genética , Genética Populacional , Modelos Genéticos , Mutação , Processos Estocásticos , Humanos , Diploide
17.
Proc Biol Sci ; 291(2024): 20240397, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864333

RESUMO

In birds, males are homogametic and carry two copies of the Z chromosome ('ZZ'), while females are heterogametic and exhibit a 'ZW' genotype. The Z chromosome evolves at a faster rate than similarly sized autosomes, a phenomenon termed 'fast-Z evolution'. This is thought to be caused by two independent processes-greater Z chromosome genetic drift owing to a reduced effective population size, and stronger Z chromosome positive selection owing to the exposure of partially recessive alleles to selection. Here, we investigate the relative contributions of these processes by considering the effect of role-reversed polyandry on fast-Z in shorebirds, a paraphyletic group of wading birds that exhibit unusually diverse mating systems. We find stronger fast-Z effects under role-reversed polyandry, which is consistent with particularly strong selection on polyandrous females driving the fixation of recessive beneficial alleles. This result contrasts with previous research in birds, which has tended to implicate a primary role of genetic drift in driving fast-Z variation. We suggest that this discrepancy can be interpreted in two ways-stronger sexual selection acting on polyandrous females overwhelms an otherwise central role of genetic drift, and/or sexual antagonism is also contributing significantly to fast-Z and is exacerbated in sexually dimorphic species.


Assuntos
Charadriiformes , Comportamento Sexual Animal , Animais , Feminino , Masculino , Charadriiformes/fisiologia , Charadriiformes/genética , Cromossomos Sexuais , Seleção Genética , Evolução Biológica , Deriva Genética , Seleção Sexual
18.
J Evol Biol ; 37(8): 967-977, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824398

RESUMO

In response to environmental and human-imposed selective pressures, agroecosystem pests frequently undergo rapid evolution, with some species having a remarkable capacity to rapidly develop pesticide resistance. Temporal sampling of genomic data can comprehensively capture such adaptive changes over time, for example, by elucidating allele frequency shifts in pesticide resistance loci in response to different pesticides. Here, we leveraged museum specimens spanning over a century of collections to generate temporal contrasts between pre- and post-insecticide populations of an agricultural pest moth, Helicoverpa armigera. We used targeted exon sequencing of 254 samples collected across Australia from the pre-1950s (prior to insecticide introduction) to the 1990s, encompassing decades of changing insecticide use. Our sequencing approach focused on genes that are known to be involved in insecticide resistance, environmental sensation, and stress tolerance. We found an overall lack of spatial and temporal population structure change across Australia. In some decades (e.g., 1960s and 1970s), we found a moderate reduction of genetic diversity, implying stochasticity in evolutionary trajectories due to genetic drift. Temporal genome scans showed extensive evidence of selection following insecticide use, although the majority of selected variants were low impact. Finally, alternating trajectories of allele frequency change were suggestive of potential antagonistic pleiotropy. Our results provide new insights into recent evolutionary responses in an agricultural pest and show how temporal contrasts using museum specimens can improve mechanistic understanding of rapid evolution.


Assuntos
Resistência a Inseticidas , Inseticidas , Mariposas , Museus , Seleção Genética , Animais , Mariposas/genética , Mariposas/efeitos dos fármacos , Inseticidas/farmacologia , Resistência a Inseticidas/genética , Austrália , Deriva Genética
19.
J Mol Evol ; 92(4): 371-380, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38844681

RESUMO

Genome size variation in eukaryotes has myriad effects on organismal biology from the genomic to whole-organism level. Large genome size may be associated with lower selection efficiency because lower effective population sizes allow fixation of deleterious mutations via genetic drift, increasing genome size and decreasing selection efficiency. Because of a hypothesized negative relationship between genome size and recombination rate per base pair, increased genome size could also increase the effect of linked selection in the genome, decreasing the efficiency with which natural selection can fix or remove mutations. We used a transcriptomic dataset of 15 and a subset of six Neotropical salamander species ranging in genome size from 12 to 87 pg to study the relationship between genome size and efficiency of selection. We estimated dN/dS of salamanders with small and large genomes and tested for relaxation of selection in the larger genomes. Contrary to our expectations, we did not find a significant relationship between genome size and selection efficiency or strong evidence for higher dN/dS values in species with larger genomes for either species set. We also found little evidence for relaxation of selection in species with larger genomes. A positive correlation between genome size and range size (a proxy of population size) in this group disagrees with predictions of stronger drift in species with larger genomes. Our results highlight the complex interactions between the many forces shaping genomic variation in organisms with genomic gigantism.


Assuntos
Tamanho do Genoma , Seleção Genética , Urodelos , Animais , Urodelos/genética , Deriva Genética , Densidade Demográfica , Genoma/genética , Genômica/métodos
20.
Evolution ; 78(9): 1594-1605, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38863398

RESUMO

How sex chromosomes evolve compared to autosomes remains an unresolved question in population genetics. Most studies focus on only a handful of taxa, resulting in uncertainty over whether observed patterns reflect general processes or idiosyncrasies in particular clades. For example, in female heterogametic (ZW) systems, bird Z chromosomes tend to evolve quickly but not adaptively, while in Lepidopterans they evolve adaptively, but not always quickly. To understand how these observations fit into broader evolutionary patterns, we explore Z chromosome evolution outside of these two well-studied clades. We utilize a publicly available genome, gene expression, population, and outgroup data in the salmon louse Lepeophtheirus salmonis, an important agricultural pest copepod. We find that the Z chromosome is faster evolving than autosomes, but that this effect is driven by increased drift rather than adaptive evolution. Due to high rates of female reproductive failure, the Z chromosome exhibits a slightly lower effective population size than the autosomes which is nonetheless to decrease efficiency of hemizygous selection acting on the Z. These results highlight the usefulness of organismal life history in calibrating population genetic expectations and demonstrate the value of the ever-expanding wealth of publicly available data to help resolve outstanding evolutionary questions.


Assuntos
Copépodes , Deriva Genética , Cromossomos Sexuais , Animais , Copépodes/genética , Feminino , Cromossomos Sexuais/genética , Evolução Molecular , Masculino , Evolução Biológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA