Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.330
Filtrar
1.
ScientificWorldJournal ; 2024: 2209301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774420

RESUMO

Ophthalmomyiasis is the result of fly larvae feeding on the tissues of the eye. Commonly associated with poor hygiene and open wounds, this condition is rare and often stigmatized. Treatment can be straightforward, and full recovery is common. Identifying the species responsible for ophthalmomyiasis is important for the medical, forensic, and entomological communities. Here, we present a case of ophthalmomyiasis where 30-40 blow fly (Diptera: Calliphoridae) larvae were removed from the eye of a human male. A representative subsample of five larvae was used for taxonomic identification via two approaches (a) DNA analysis, via sequencing of the complete mitochondrial genome (mtGenome) and comparison of the mtGenome and mitochondrial COI barcode region to GenBank, and (b) morphology, examination of the posterior spiracles using microscopy, and comparison to published larval descriptions of blow flies. Two species of blow flies were identified from the DNA analysis: Lucilia coeruleiviridis and Phormia regina. Morphological examination could only confirm L. coeruleiviridis as being present. To our knowledge, finding two blow fly species causing ophthalmomyiasis in a single individual has not been previously reported in the scientific literature. Neither P. regina nor L. coeruleiviridis prefers living tissue for larva development, but since they fill similar ecological niches, perhaps this was a show of competition rather than a normal feeding habit. Knowing these blow fly species can resort to this behavior, and that it can affect human populations, is valuable to the education of patients and providers.


Assuntos
Calliphoridae , Larva , Animais , Calliphoridae/genética , Masculino , Humanos , Miíase/parasitologia , Miíase/diagnóstico , América do Norte , Filogenia , Dípteros/parasitologia , Genoma Mitocondrial
2.
Sci Rep ; 14(1): 11634, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773202

RESUMO

Oribatid mites are an ancient group that already roamed terrestrial ecosystems in the early and middle Devonian. The superfamily of Ameronothroidea, a supposedly monophyletic lineage, represents the only group of oribatid mites that has successfully invaded the marine coastal environment. By using mitogenome data and nucleic ribosomal RNA genes (18S, 5.8S, 28S), we show that Ameronothroidea are a paraphyletic assemblage and that the land-to-sea transition happened three times independently. Common ancestors of the tropical Fortuyniidae and Selenoribatidae were the first to colonize the coasts and molecular calibration of our phylogeny dates this event to a period in the Triassic and Jurassic era (225-146 mya), whereas present-day distribution indicates that this event might have happened early in this period during the Triassic, when the supercontinent Pangaea still existed. The cold temperate northern hemispheric Ameronothridae colonized the marine littoral later in the late Jurassic-Early Cretaceous and had an ancient distribution on Laurasian coasts. The third and final land-to-sea transition happened in the same geological period, but approx. 30 my later when ancestors of Podacaridae invaded coastal marine environments of the Gondwanan landmasses.


Assuntos
Metagenômica , Ácaros , Filogenia , Animais , Ácaros/genética , Ácaros/classificação , Metagenômica/métodos , Genoma Mitocondrial , Mitocôndrias/genética , Metagenoma , Evolução Molecular , Ecossistema
3.
BMC Ecol Evol ; 24(1): 66, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773381

RESUMO

BACKGROUND: Dorcus stag beetles in broad sense are one of the most diverse group in Lucanidae and important saproxylic insects playing a crucial role in nutrient recycling and forest biomonitoring. However, the dazzling morphological differentiations have caused numerous systematic confusion within the big genus, especially the puzzlingly generic taxonomy. So far, there is lack of molecular phylogenetic study to address the chaotic situation. In this study, we undertook mitochondrial genome sequencing of 42 representative species including 18 newly-sequenced ones from Eastern Asia and reconstructed the phylogenetic framework of stag beetles in Dorcus sensu lato for the first time. RESULTS: The mitogenome datasets of Dorcus species have indicated the variable mitogenomic lengths ranged from 15,785 to 19,813 bp. Each mitogenome contained 13 PCGs, 2 rRNAs, 22 tRNAs, and a control region, and all PCGs were under strong purifying selection (Ka/Ks < 1). Notably, we have identified the presence of a substantial intergenic spacer (IGS) between the trnAser (UCN) and NAD1 genes, with varying lengths ranging from 129 bp (in D. hansi) to 158 bp (in D. tityus). The mitogenomic phylogenetic analysis of 42 species showed that Eastern Asia Dorcus was monophyletic, and divided into eight clades with significant genetic distance. Four of them, Clade VIII, VII, VI and I are clustered by the representative species of Serrognathus Motschulsky, Kirchnerius Schenk, Falcicornis Séguy and Dorcus s.s. respectively, which supported their fully generic positions as the previous morphological study presented. The topology also showed the remaining clades were distinctly separated from the species of Dorcus sensu lato, which implied that each of them might demonstrate independent generic status. The Linnaeus nomenclatures were suggested as Eurydorcus Didier stat. res., Eurytrachellelus Didier stat. res., Hemisodorcus Thomson stat. res. and Velutinodorcus Maes stat. res. For Clade V, IV, III and II respectively. CONCLUSION: This study recognized the monophyly of Dorcus stag beetles and provided a framework for the molecular phylogeny of this group for the first time. The newly generated mitogenomic data serves as a valuable resource for future investigations on lucanid beetles. The generic relationship would facilitate the systematics of Dorcus stag beetles and thus be useful for exploring their evolutionary, ecological, and conservation aspects.


Assuntos
Besouros , Genoma Mitocondrial , Filogenia , Animais , Besouros/genética , Besouros/classificação , Genoma Mitocondrial/genética , Ásia Oriental
4.
Int J Mol Sci ; 25(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38732163

RESUMO

The Chinese giant salamander (Andrias davidianus), listed as an endangered species under "secondary protection" in China, faces significant threats due to ecological deterioration and the expansion of human activity. Extensive field investigations are crucial to ascertain the current status in the wild and to implement effective habitat protection measures to safeguard this species and support its population development. Traditional survey methods often fall short due to the elusive nature of the A. davidianus, presenting challenges that are time-consuming and generally ineffective. To overcome these obstacles, this study developed a real-time monitoring method that uses environmental DNA (eDNA) coupled with recombinase polymerase amplification and lateral flow strip (RPA-LFD). We designed five sets of species-specific primers and probes based on mitochondrial genome sequence alignments of A. davidianus and its close relatives. Our results indicated that four of these primer/probe sets accurately identified A. davidianus, distinguishing it from other tested caudata species using both extracted DNA samples and water samples from a tank housing an individual. This method enables the specific detection of A. davidianus genomic DNA at concentrations as low as 0.1 ng/mL within 50 min, without requiring extensive laboratory equipment. Applied in a field survey across four sites in Huangshan City, Anhui Province, where A. davidianus is known to be distributed, the method successfully detected the species at three of the four sites. The development of these primer/probe sets offers a practical tool for field surveying and monitoring, facilitating efforts in population recovery and resource conservation for A. davidianus.


Assuntos
Urodelos , Animais , Urodelos/genética , China , Espécies em Perigo de Extinção , DNA Ambiental/genética , DNA Ambiental/análise , DNA Mitocondrial/genética , Genoma Mitocondrial
5.
BMC Genomics ; 25(1): 456, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730418

RESUMO

In this study, we investigated the codon bias of twelve mitochondrial core protein coding genes (PCGs) in eight Pleurotus strains, two of which are from the same species. The results revealed that the codons of all Pleurotus strains had a preference for ending in A/T. Furthermore, the correlation between codon base compositions and codon adaptation index (CAI), codon bias index (CBI) and frequency of optimal codons (FOP) indices was also detected, implying the influence of base composition on codon bias. The two P. ostreatus species were found to have differences in various base bias indicators. The average effective number of codons (ENC) of mitochondrial core PCGs of Pleurotus was found to be less than 35, indicating strong codon preference of mitochondrial core PCGs of Pleurotus. The neutrality plot analysis and PR2-Bias plot analysis further suggested that natural selection plays an important role in Pleurotus codon bias. Additionally, six to ten optimal codons (ΔRSCU > 0.08 and RSCU > 1) were identified in eight Pleurotus strains, with UGU and ACU being the most widely used optimal codons in Pleurotus. Finally, based on the combined mitochondrial sequence and RSCU value, the genetic relationship between different Pleurotus strains was deduced, showing large variations between them. This research has improved our understanding of synonymous codon usage characteristics and evolution of this important fungal group.


Assuntos
Uso do Códon , Genoma Mitocondrial , Pleurotus , Pleurotus/genética , Códon/genética , Composição de Bases , Especificidade da Espécie , Seleção Genética , Evolução Molecular , Variação Genética
6.
BMC Plant Biol ; 24(1): 361, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38702620

RESUMO

BACKGROUND: Solanum muricatum is an emerging horticultural fruit crop with rich nutritional and antioxidant properties. Although the chromosome-scale genome of this species has been sequenced, its mitochondrial genome sequence has not been reported to date. RESULTS: PacBio HiFi sequencing was used to assemble the circular mitogenome of S. muricatum, which was 433,466 bp in length. In total, 38 protein-coding, 19 tRNA, and 3 rRNA genes were annotated. The reticulate mitochondrial conformations with multiple junctions were verified by polymerase chain reaction, and codon usage, sequence repeats, and gene migration from chloroplast to mitochondrial genome were determined. A collinearity analysis of eight Solanum mitogenomes revealed high structural variability. Overall, 585 RNA editing sites in protein coding genes were identified based on RNA-seq data. Among them, mttB was the most frequently edited (52 times), followed by ccmB (46 times). A phylogenetic analysis based on the S. muricatum mitogenome and those of 39 other taxa (including 25 Solanaceae species) revealed the evolutionary and taxonomic status of S. muricatum. CONCLUSIONS: We provide the first report of the assembled and annotated S. muricatum mitogenome. This information will help to lay the groundwork for future research on the evolutionary biology of Solanaceae species. Furthermore, the results will assist the development of molecular breeding strategies for S. muricatum based on the most beneficial agronomic traits of this species.


Assuntos
Genoma Mitocondrial , Filogenia , Edição de RNA , Solanum , Solanum/genética , Genoma de Planta
7.
Malar J ; 23(1): 134, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704592

RESUMO

BACKGROUND: Studies on haemosporidian diversity, including origin of human malaria parasites, malaria's zoonotic dynamic, and regional biodiversity patterns, have used target gene approaches. However, current methods have a trade-off between scalability and data quality. Here, a long-read Next-Generation Sequencing protocol using PacBio HiFi is presented. The data processing is supported by a pipeline that uses machine-learning for analysing the reads. METHODS: A set of primers was designed to target approximately 6 kb, almost the entire length of the haemosporidian mitochondrial genome. Amplicons from different samples were multiplexed in an SMRTbell® library preparation. A pipeline (HmtG-PacBio Pipeline) to process the reads is also provided; it integrates multiple sequence alignments, a machine-learning algorithm that uses modified variational autoencoders, and a clustering method to identify the mitochondrial haplotypes/species in a sample. Although 192 specimens could be studied simultaneously, a pilot experiment with 15 specimens is presented, including in silico experiments where multiple data combinations were tested. RESULTS: The primers amplified various haemosporidian parasite genomes and yielded high-quality mt genome sequences. This new protocol allowed the detection and characterization of mixed infections and co-infections in the samples. The machine-learning approach converged into reproducible haplotypes with a low error rate, averaging 0.2% per read (minimum of 0.03% and maximum of 0.46%). The minimum recommended coverage per haplotype is 30X based on the detected error rates. The pipeline facilitates inspecting the data, including a local blast against a file of provided mitochondrial sequences that the researcher can customize. CONCLUSIONS: This is not a diagnostic approach but a high-throughput method to study haemosporidian sequence assemblages and perform genotyping by targeting the mitochondrial genome. Accordingly, the methodology allowed for examining specimens with multiple infections and co-infections of different haemosporidian parasites. The pipeline enables data quality assessment and comparison of the haplotypes obtained to those from previous studies. Although a single locus approach, whole mitochondrial data provide high-quality information to characterize species pools of haemosporidian parasites.


Assuntos
Genoma Mitocondrial , Haemosporida , Sequenciamento de Nucleotídeos em Larga Escala , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Haemosporida/genética , Haemosporida/classificação , Biodiversidade , Aprendizado de Máquina
8.
PeerJ ; 12: e17076, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708350

RESUMO

Although genome-scale data generation is becoming more tractable for phylogenetics, there are large quantities of single gene fragment data in public repositories and such data are still being generated. We therefore investigated whether single mitochondrial genes are suitable proxies for phylogenetic reconstruction as compared to the application of full mitogenomes. With near complete taxon sampling for the southern African dwarf chameleons (Bradypodion), we estimated and compared phylogenies for the complete mitogenome with topologies generated from individual mitochondrial genes and various combinations of these genes. Our results show that the topologies produced by single genes (ND2, ND4, ND5, COI, and COIII) were analogous to the complete mitogenome, suggesting that these genes may be reliable markers for generating mitochondrial phylogenies in lieu of generating entire mitogenomes. In contrast, the short fragment of 16S commonly used in herpetological systematics, produced a topology quite dissimilar to the complete mitogenome and its concatenation with ND2 weakened the resolution of ND2. We therefore recommend the avoidance of this 16S fragment in future phylogenetic work.


Assuntos
Genoma Mitocondrial , Lagartos , Filogenia , Animais , Genoma Mitocondrial/genética , Lagartos/genética , Genes Mitocondriais/genética
9.
Mol Biol Rep ; 51(1): 601, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693276

RESUMO

BACKGROUND: Hemibagrus punctatus (Jerdon, 1849) is a critically endangered bagrid catfish endemic to the Western Ghats of India, whose population is declining due to anthropogenic activities. The current study aims to compare the mitogenome of H. punctatus with that of other Bagrid catfishes and provide insights into their evolutionary relationships. METHODS AND RESULTS: Samples were collected from Hemmige Karnataka, India. In the present study, the mitogenome of H. punctatus was successfully assembled, and its phylogenetic relationships with other Bagridae species were studied. The total genomic DNA of samples was extracted following the phenol-chloroform isoamyl alcohol method. Samples were sequenced, and the Illumina paired-end reads were assembled to a contig length of 16,517 bp. The mitochondrial genome was annotated using MitoFish and MitoAnnotator (Iwasaki et al., 2013). A robust phylogenetic analysis employing NJ (Maximum composite likelihood) and ASAP methods supports the classification of H. punctatus within the Bagridae family, which validates the taxonomic status of this species. In conclusion, this research enriches our understanding of H. punctatus mitogenome, shedding light on its evolutionary dynamics within the Bagridae family and contributing to the broader knowledge of mitochondrial genes in the context of evolutionary biology. CONCLUSIONS: The study's findings contribute to a better understanding of the mitogenome of H. punctatus and provide insights into the evolutionary relationships within other Hemibagrids.


Assuntos
Peixes-Gato , Espécies em Perigo de Extinção , Genoma Mitocondrial , Filogenia , Animais , Genoma Mitocondrial/genética , Peixes-Gato/genética , Peixes-Gato/classificação , Índia , Análise de Sequência de DNA/métodos , DNA Mitocondrial/genética , Evolução Molecular , RNA de Transferência/genética
10.
Sci Rep ; 14(1): 9961, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38693183

RESUMO

Ticks have a profound impact on public health. Haemaphysalis is one of the most widespread genera in Asia, including Japan. The taxonomy and genetic differentiation of Haemaphysalis spp. is challenging. For instance, previous studies struggled to distinguish Haemaphysalis japonica and Haemaphysalis megaspinosa due to the dearth of nucleotide sequence polymorphisms in widely used barcoding genes. The classification of H. japonica japonica and its related sub-species Haemaphysalis japonica douglasi or Haemaphysalis jezoensis is also confused due to their high morphological similarity and a lack of molecular data that support the current classification. We used mitogenomes and microbiomes of H. japonica and H. megaspinosa to gain deeper insights into the phylogenetic relationships and genetic divergence between two species. Phylogenetic analyses of concatenated nucleotide sequences of protein-coding genes and ribosomal DNA genes distinguished H. japonica and H. megaspinosa as monophyletic clades, with further subdivision within the H. japonica clade. The 16S rRNA and NAD5 genes were valuable markers for distinguishing H. japonica and H. megaspinosa. Population genetic structure analyses indicated that genetic variation within populations accounted for a large proportion of the total variation compared to variation between populations. Microbiome analyses revealed differences in alpha and beta diversity between H. japonica and H. megaspinosa: H. japonica had the higher diversity. Coxiella sp., a likely endosymbiont, was found in both Haemaphysalis species. The abundance profiles of likely endosymbionts, pathogens, and commensals differed between H. japonica and H. megaspinosa: H. megaspinosa was more diverse.


Assuntos
Ixodidae , Microbiota , Filogenia , RNA Ribossômico 16S , Animais , Ixodidae/microbiologia , Ixodidae/genética , Microbiota/genética , RNA Ribossômico 16S/genética , Genoma Mitocondrial , Variação Genética
11.
Sci Rep ; 14(1): 10217, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702416

RESUMO

Mitochondrial DNA sequences are frequently transferred into the nuclear genome, generating nuclear mitochondrial DNA sequences (NUMTs). Here, we analysed, for the first time, NUMTs in the domestic yak genome. We obtained 499 alignment matches covering 340.2 kbp of the yak nuclear genome. After a merging step, we identified 167 NUMT regions with a total length of ~ 503 kbp, representing 0.02% of the nuclear genome. We discovered copies of all mitochondrial regions and found that most NUMT regions are intergenic or intronic and mostly untranscribed. 98 different NUMT regions from domestic yak showed high homology with cow and/or wild yak genomes, suggesting selection or hybridization between domestic/wild yak and cow. To rule out the possibility that the identified NUMTs could be artifacts of the domestic yak genome assembly, we validated experimentally five NUMT regions by PCR amplification. As NUMT regions show high similarity to the mitochondrial genome can potentially pose a risk to domestic yak DNA mitochondrial studies, special care is therefore needed to select primers for PCR amplification of mitochondrial DNA sequences.


Assuntos
Núcleo Celular , DNA Mitocondrial , Genoma Mitocondrial , Animais , Bovinos/genética , DNA Mitocondrial/genética , Núcleo Celular/genética , Animais Domésticos/genética , Análise de Sequência de DNA/métodos
12.
Sci Rep ; 14(1): 11480, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769390

RESUMO

This study focuses on exploring the uniparental genetic lineages of Hungarian-speaking minorities residing in rural villages of Baranja (Croatia) and the Zobor region (Slovakia). We aimed to identify ancestral lineages by examining genetic markers distributed across the entire mitogenome and on the Y-chromosome. This allowed us to discern disparities in regional genetic structures within these communities. By integrating our newly acquired genetic data from a total of 168 participants with pre-existing Eurasian and ancient DNA datasets, our goal was to enrich the understanding of the genetic history trajectories of Carpathian Basin populations. Our findings suggest that while population-based analyses may not be sufficiently robust to detect fine-scale uniparental genetic patterns with the sample sizes at hand, phylogenetic analysis of well-characterized Y-chromosomal Short Tandem Repeat (STR) data and entire mitogenome sequences did uncover multiple lineage ties to far-flung regions and eras. While the predominant portions of both paternal and maternal DNA align with the East-Central European spectrum, rarer subhaplogroups and lineages have unveiled ancient ties to both prehistoric and historic populations spanning Europe and Eastern Eurasia. This research augments the expansive field of phylogenetics, offering critical perspectives on the genetic constitution and heritage of the communities in East-Central Europe.


Assuntos
Cromossomos Humanos Y , Genoma Mitocondrial , Filogenia , Humanos , Cromossomos Humanos Y/genética , Hungria , Masculino , Genética Populacional , Feminino , DNA Mitocondrial/genética , DNA Antigo/análise , Repetições de Microssatélites/genética , Haplótipos
13.
Zool Res ; 45(4): 711-723, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38766761

RESUMO

The genus Silurus, an important group of catfish, exhibits heterogeneous distribution in Eurasian freshwater systems. This group includes economically important and endangered species, thereby attracting considerable scientific interest. Despite this interest, the lack of a comprehensive phylogenetic framework impedes our understanding of the mechanisms underlying the extensive diversity found within this genus. Herein, we analyzed 89 newly sequenced and 20 previously published mitochondrial genomes (mitogenomes) from 13 morphological species to reconstruct the phylogenetic relationships, biogeographic history, and species diversity of Silurus. Our phylogenetic reconstructions identified eight clades, supported by both maximum-likelihood and Bayesian inference. Sequence-based species delimitation analyses yielded multiple molecular operational taxonomic units (MOTUs) in several taxa, including the Silurus asotus complex (four MOTUs) and Silurus microdorsalis (two MOTUs), suggesting that species diversity is underestimated in the genus. A reconstructed time-calibrated tree of Silurus species provided an age estimate of the most recent common ancestor of approximately 37.61 million years ago (Ma), with divergences among clades within the genus occurring between 11.56 Ma and 29.44 Ma, and divergences among MOTUs within species occurring between 3.71 Ma and 11.56 Ma. Biogeographic reconstructions suggested that the ancestral area for the genus likely encompassed China and the Korean Peninsula, with multiple inferred dispersal events to Europe and Central and Western Asia between 21.78 Ma and 26.67 Ma and to Japan between 2.51 Ma and 18.42 Ma. Key factors such as the Eocene-Oligocene extinction event, onset and intensification of the monsoon system, and glacial cycles associated with sea-level fluctuations have likely played significant roles in shaping the evolutionary history of the genus Silurus.


Assuntos
Peixes-Gato , Filogenia , Filogeografia , Animais , Peixes-Gato/genética , Peixes-Gato/classificação , Genoma Mitocondrial , Variação Genética , Distribuição Animal
14.
Nat Genet ; 56(5): 889-899, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38741018

RESUMO

The extent of cell-to-cell variation in tumor mitochondrial DNA (mtDNA) copy number and genotype, and the phenotypic and evolutionary consequences of such variation, are poorly characterized. Here we use amplification-free single-cell whole-genome sequencing (Direct Library Prep (DLP+)) to simultaneously assay mtDNA copy number and nuclear DNA (nuDNA) in 72,275 single cells derived from immortalized cell lines, patient-derived xenografts and primary human tumors. Cells typically contained thousands of mtDNA copies, but variation in mtDNA copy number was extensive and strongly associated with cell size. Pervasive whole-genome doubling events in nuDNA associated with stoichiometrically balanced adaptations in mtDNA copy number, implying that mtDNA-to-nuDNA ratio, rather than mtDNA copy number itself, mediated downstream phenotypes. Finally, multimodal analysis of DLP+ and single-cell RNA sequencing identified both somatic loss-of-function and germline noncoding variants in mtDNA linked to heteroplasmy-dependent changes in mtDNA copy number and mitochondrial transcription, revealing phenotypic adaptations to disrupted nuclear/mitochondrial balance.


Assuntos
Núcleo Celular , Variações do Número de Cópias de DNA , DNA Mitocondrial , Genoma Mitocondrial , Neoplasias , Análise de Célula Única , Humanos , DNA Mitocondrial/genética , Análise de Célula Única/métodos , Variações do Número de Cópias de DNA/genética , Núcleo Celular/genética , Neoplasias/genética , Neoplasias/patologia , Linhagem Celular Tumoral , Animais , Mitocôndrias/genética , Sequenciamento Completo do Genoma/métodos , Camundongos , Heteroplasmia/genética
15.
PLoS Genet ; 20(5): e1011266, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701107

RESUMO

While mitochondrial genome content and organization is quite diverse across all Eukaryotes, most bilaterian animal mitochondrial genomes (mitogenomes) exhibit highly conserved gene content and organisation, with genes typically encoded on a single circular chromosome. However, many species of parasitic lice (Insecta: Phthiraptera) are among the notable exceptions, having mitogenomes fragmented into multiple circular chromosomes. To better understand the process of mitogenome fragmentation, we conducted a large-scale genomic study of a major group of lice, Amblycera, with extensive taxon sampling. Analyses of the evolution of mitogenome structure across a phylogenomic tree of 90 samples from 53 genera revealed evidence for multiple independent origins of mitogenome fragmentation, some inferred to have occurred less than five million years ago. We leveraged these many independent origins of fragmentation to compare the rates of DNA substitution and gene rearrangement, specifically contrasting branches with fragmented and non-fragmented mitogenomes. We found that lineages with fragmented mitochondrial genomes had significantly higher rates of mitochondrial sequence evolution. In addition, lineages with fragmented mitochondrial genomes were more likely to have mitogenome gene rearrangements than those with single-chromosome mitochondrial genomes. By combining phylogenomics and mitochondrial genomics we provide a detailed portrait of mitogenome evolution across this group of insects with a remarkably unstable mitogenome structure, identifying processes of molecular evolution that are correlated with mitogenome fragmentation.


Assuntos
Evolução Molecular , Genoma Mitocondrial , Filogenia , Genoma Mitocondrial/genética , Animais , Ftirápteros/genética , Ftirápteros/classificação , Rearranjo Gênico , DNA Mitocondrial/genética , Fragmentação do DNA
16.
BMC Genomics ; 25(1): 481, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750421

RESUMO

BACKGROUND: There is no consensus as to the origin of the domestic yak (Bos grunniens). Previous studies on yak mitochondria mainly focused on mitochondrial displacement loop (D-loop), a region with low phylogenetic resolution. Here, we analyzed the entire mitochondrial genomes of 509 yaks to obtain greater phylogenetic resolution and a comprehensive picture of geographical diversity. RESULTS: A total of 278 haplotypes were defined in 509 yaks from 21 yak breeds. Among them, 28 haplotypes were shared by different varieties, and 250 haplotypes were unique to specific varieties. The overall haplotype diversity and nucleotide diversity of yak were 0.979 ± 0.0039 and 0.00237 ± 0.00076, respectively. Phylogenetic tree and network analysis showed that yak had three highly differentiated genetic branches with high support rate. The differentiation time of clades I and II were about 0.4328 Ma, and the differentiation time of clades (I and II) and III were 0.5654 Ma. Yushu yak is shared by all haplogroups. Most (94.70%) of the genetic variation occurred within populations, and only 5.30% of the genetic variation occurred between populations. The classification showed that yaks and wild yaks were first clustered together, and yaks were clustered with American bison as a whole. Altitude had the highest impact on the distribution of yaks. CONCLUSIONS: Yaks have high genetic diversity and yak populations have experienced population expansion and lack obvious phylogeographic structure. During the glacial period, yaks had at least three or more glacial refugia.


Assuntos
Variação Genética , Genoma Mitocondrial , Haplótipos , Filogenia , Filogeografia , Animais , Bovinos/genética , Herança Materna , Feminino , DNA Mitocondrial/genética
17.
Invertebr Syst ; 382024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38740060

RESUMO

Mitochondrial DNA gene organisation is an important source of phylogenetic information for various metazoan taxa at different evolutionary timescales, though this has not been broadly tested for all insect groups nor within a phylogenetic context. The cosmopolitan subfamily Doryctinae is a highly diverse group of braconid wasps mainly represented by ectoparasitoids of xylophagous beetle larvae. Previous molecular studies based on Sanger and genome-wide (ultraconserved elements, UCE; and mitochondrial genomes) sequence data have recovered a non-monophyletic Doryctinae, though the relationships involved have always been weakly supported. We characterised doryctine mitogenomes and conducted separate phylogenetic analyses based on mitogenome and UCE sequence data of ~100 representative doryctine genera to assess the monophyly and higher-level classification of the subfamily. We identified rearrangements of mitochondrial transfer RNAs (tRNAs) that support a non-monophyletic Doryctinae consisting of two separate non-related clades with strong geographic structure ('New World' and 'Old World' clades). This geographic structure was also consistently supported by the phylogenetic analyses preformed with mitogenome and UCE sequence data. These results highlight the utility of the mitogenome gene rearrangements as a potential source of phylogenetic information at different evolutionary timescales.


Assuntos
Genoma Mitocondrial , Filogenia , Vespas , Animais , Vespas/genética , Genoma Mitocondrial/genética , Genoma de Inseto
18.
Invertebr Syst ; 382024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38744494

RESUMO

Ulopinae is a distinctive subfamily of leafhoppers that is widely distributed across the Afrotropical, Palearctic, Indomalayan and Australasian regions. The ulopine fauna of Australia is entirely endemic and includes two tribes of striking appearance, the Ulopini and Cephalelini. Knowledge of these groups is fragmentary and in many instances, no information is available beyond original descriptions. We assess the monophyly, phylogenetic placement and species-level diversity of the Ulopini genus Austrolopa . Phylogenetic analyses based on sequence data from target nuclear loci (18S , 28S , H2A and H3 ) and mitochondrial genomes (15 genes) for 23 membracoid taxa yielded congruent topologies. Our results provide strong evidence for the monophyly of Ulopinae and a clade consisting of Ulopini + Cephalelini. However, a non-monophyletic Cephalelini arises from within a polyphyletic Ulopini. Austrolopa was strongly recovered as monophyletic in all analyses, a result also supported by morphological features. The genus currently includes six species, three of which are described based on morphological and molecular data: Austrolopa botanica , sp. nov. , Austrolopa rotunda , sp. nov. and Austrolopa sublima , sp. nov. A lectotype designation is provided for Austrolopa kingensis Evans, 1937, sp. reval. Our findings illustrate that the Australian Ulopinae is far more diverse than currently circumscribed and several species of Austrolopa are yet to be recognised. ZooBank: urn:lsid:zoobank.org:pub:1480285B-8F61-4659-A929-2B1EF3168868.


Assuntos
Hemípteros , Filogenia , Animais , Hemípteros/genética , Hemípteros/classificação , Hemípteros/anatomia & histologia , Austrália , Especificidade da Espécie , Genoma Mitocondrial/genética
19.
Invertebr Syst ; 382024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38744500

RESUMO

The integration of morphological and molecular lines of evidence has enabled the family Deltocyathidae to be erected to accommodate Deltocyathus species that were previously ascribed to the family Caryophylliidae. However, although displaying the same morphological characteristics as other species of Deltocyathus , molecular data suggested that D. magnificus was phylogenetically distant from Deltocyathidae, falling within the family Turbinoliidae instead. To elucidate the enigmatic evolutionary history of this species and skeletal microstructural features, the phylogenetic relationships of Deltocyathidae and Turbinoliidae were investigated using nuclear ultraconserved and exon loci and complete mitochondrial genomes. Both nuclear and mitochondrial phylogenomic reconstructions confirmed the position of D. magnificus within turbinolids. Furthermore, a novel mitochondrial gene order was uncovered for Deltocyathidae species. This gene order was not present in Turbinoliidae or in D. magnificus that both have the scleractinian canonical gene order, further indicating the taxonomic utility of mitochondrial gene order. D. magnificus is therefore formally moved to the family Turbinoliidae and accommodated in a new genus (Dennantotrochus Kitahara, Vaga & Stolarski, gen. nov.). Surprisingly, turbinolids and deltocyathids do not differ in microstructural organisation of the skeleton that consists of densely packed, individualised rapid accretion deposits and thickening deposits composed of fibres perpendicular to the skeleton surface. Therefore, although both families are clearly evolutionarily divergent, macromorphological features indicate a case of skeletal convergence while these may still share conservative biomineralisation mechanisms. ZooBank: urn:lsid:zoobank.org:pub:5F1C0E25-3CC6-4D1F-B1F0-CD9D0014678E.


Assuntos
Antozoários , Filogenia , Animais , Antozoários/genética , Antozoários/classificação , Genoma Mitocondrial/genética , Evolução Biológica
20.
Mol Biol Rep ; 51(1): 659, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748061

RESUMO

BACKGROUND: Mitochondrial DNA (mtDNA) has become a significant tool for exploring genetic diversity and delineating evolutionary links across diverse taxa. Within the group of cold-water fish species that are native to the Indian Himalayan region, Schizothorax esocinus holds particular importance due to its ecological significance and is potentially vulnerable to environmental changes. This research aims to clarify the phylogenetic relationships within the Schizothorax genus by utilizing mitochondrial protein-coding genes. METHODS: Standard protocols were followed for the isolation of DNA from S. esocinus. For the amplification of mtDNA, overlapping primers were used, and then subsequent sequencing was performed. The genetic features were investigated by the application of bioinformatic approaches. These approaches covered the evaluation of nucleotide composition, codon usage, selective pressure using nonsynonymous substitution /synonymous substitution (Ka/Ks) ratios, and phylogenetic analysis. RESULTS: The study specifically examined the 13 protein-coding genes of Schizothorax species which belongs to the Schizothoracinae subfamily. Nucleotide composition analysis showed a bias towards A + T content, consistent with other cyprinid fish species, suggesting evolutionary conservation. Relative Synonymous Codon Usage highlighted leucine as the most frequent (5.18%) and cysteine as the least frequent (0.78%) codon. The positive AT-skew and the predominantly negative GC-skew indicated the abundance of A and C. Comparative analysis revealed significant conservation of amino acids in multiple genes. The majority of amino acids were hydrophobic rather than polar. The purifying selection was revealed by the genetic distance and Ka/Ks ratios. Phylogenetic study revealed a significant genetic divergence between S. esocinus and other Schizothorax species with interspecific K2P distances ranging from 0.00 to 8.87%, with an average of 5.76%. CONCLUSION: The present study provides significant contributions to the understanding of mitochondrial genome diversity and genetic evolution mechanisms in Schizothoracinae, hence offering vital insights for the development of conservation initiatives aimed at protecting freshwater fish species.


Assuntos
Filogenia , Animais , Proteínas Mitocondriais/genética , Composição de Bases/genética , DNA Mitocondrial/genética , Uso do Códon/genética , Truta/genética , Truta/classificação , Códon/genética , Genoma Mitocondrial/genética , Evolução Molecular , Proteínas de Peixes/genética , Genômica/métodos , Variação Genética/genética , Cyprinidae/genética , Cyprinidae/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...