RESUMO
This study explores the therapeutic benefits of tannic acid (TnA) in an experimental protocol of chronic hypermethioninemia in rats. Rats were categorized into four groups: Group I - control, Group II - TnA 30 mg/kg, Group III - methionine (Met) 0.2-0.4 g/kg + methionine sulfoxide (MS) 0.05-0.1 g/kg, Group IV - TnA/Met + MS. Saline was administered by subcutaneous pathway into groups I and II twice daily from postnatal day 6 (P6) to P28, whereas those in groups III and IV received Met + MS. From P28 to P35, groups II and IV received TnA orally. Animals from group III presented cognitive and memory impairment assessed through object recognition and Y-maze tests (p < 0.05). Elevated levels of reactive species, lipid peroxidation, and nitrites followed by a decline in sulfhydryl content, catalase activity, and superoxide dismutase activity were observed in animals treated with Met + MS (p < 0.05). However, TnA treatment reversed all these effects (p < 0.05). In group III, there was an increase in acetylcholinesterase activity and IL-6 levels, coupled with a reduction in Na+/K+-ATPase activity (p < 0.05). TnA was able to protect against these effects (p < 0.05). The gene expression of catalase, brain-derived neurotrophic factor, and nuclear factor erythroid 2-related factor 2 was decreased in the hippocampus and striatum from group III (p < 0.05). TnA reversed almost all of these alterations (p < 0.05). These findings suggest that TnA is a therapeutic target for patients with hypermethioninemia.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Taninos , Animais , Taninos/farmacologia , Ratos , Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Masculino , Ratos Wistar , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Glicina N-Metiltransferase/deficiência , PolifenóisRESUMO
Hypermethioninemia is characterized by high plasma concentrations of methionine (Met) and its metabolites, such as methionine sulfoxide (MetO), and neurological changes, such as cerebral edema and cognitive deficits. The aim of this study was to analyze the redox status and acetylcholinesterase (AChE) activity in the hippocampus, striatum, and cerebellum of young Wistar rats subjected to an acute hypermethioninemia protocol. The animals received, by subcutaneous injection, a single dose of Met (0.4 g/kg), MetO (0.1 g/kg), and Met + MetO, and 1 or 3 hr after administration, the animals were euthanatized for brain structure obtaining. In the hippocampus, an increase in lipid peroxidation and glutathione peroxidase (GPx) activity was observed at 1 hr in the MetO and Met + MetO groups, and a reduction in the superoxide dismutase activity was found in the Met + MetO group. Met and/or MetO induced a decrease in the thiol content and GPx activity and enhanced the lipid peroxidation at 3 hr. In the striatum, a reduction in the thiol content and GPx activity, an increase in lipid peroxidation, and AChE activity were induced by Met and/or MetO at 1 or 3 hr. Additionally, in the cerebellum, an increase in the AChE in the MetO and Met + MetO groups 1 hr after administration was observed. These data help to better understand the pathophysiological mechanisms that underlie the neurological changes found in hypermethioninemia patients.
Assuntos
Acetilcolinesterase/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Cerebelo/metabolismo , Corpo Estriado/metabolismo , Glicina N-Metiltransferase/deficiência , Hipocampo/metabolismo , Animais , Glicina N-Metiltransferase/metabolismo , Homeostase/fisiologia , Peroxidação de Lipídeos/fisiologia , Oxirredução , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/metabolismoRESUMO
We investigated the ability of tannic acid (TA) to prevent oxidative and nitrosative damage in the brain, liver, kidney, and serum of a rat model of acute hypermethioninemia. Young Wistar rats were divided into four groups: I (control), II (TA 30 mg/kg), III (methionine (Met) 0.4 g/kg + methionine sulfoxide (MetO) 0.1 g/kg), and IV (TA/Met + MetO). Rats in groups II and IV received TA orally for seven days, and rats of groups I and III received an equal volume of water. After pretreatment with TA, rats from groups II and IV received a single subcutaneous injection of Met + MetO, and were euthanized 3 h afterwards. In specific brain structures and the kidneys, we observed that Met + MetO led to increased reactive oxygen species (ROS), nitrite, and lipid peroxidation levels, followed by a reduction in thiol content and antioxidant enzyme activity. On the other hand, pretreatment with TA prevented both oxidative and nitrosative damage. In the serum, Met + MetO caused a decrease in the activity of antioxidant enzymes, which was again prevented by TA pretreatment. In contrast, in the liver, there was a reduction in ROS levels and an increase in total thiol content, which was accompanied by a reduction in catalase and superoxide dismutase activities in the Met + MetO group, and pretreatment with TA was able to prevent only the reduction in catalase activity. Conclusively, pretreatment with TA has proven effective in preventing oxidative and nitrosative changes caused by the administration of Met + MetO, and may thus represent an adjunctive therapeutic approach for treatment of hypermethioninemia.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Glicina N-Metiltransferase/deficiência , Estresse Nitrosativo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Taninos/farmacologia , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Glutationa Peroxidase/genética , Glicina N-Metiltransferase/metabolismo , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Estresse Nitrosativo/genética , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/genética , Ratos , Espécies Reativas de Oxigênio/metabolismo , Soro/efeitos dos fármacos , Soro/metabolismo , Superóxido Dismutase/genéticaRESUMO
Hypermethioninemia is a disorder characterized by high plasma levels of methionine (Met) and its metabolites such as methionine sulfoxide (MetO). Studies have reported associated inflammatory complications, but the mechanisms involved in the pathophysiology of hypermethioninemia are still uncertain. The present study aims to evaluate the effect of chronic administration of Met and/or MetO on phenotypic characteristics of macrophages, in addition to oxidative stress, purinergic system, and inflammatory mediators in macrophages. In this study, Swiss male mice were subcutaneously injected with Met and MetO at concentrations of 0.35-1.2 g/kg body weight and 0.09-0.3 g/kg body weight, respectively, from the 10th-38th day post-birth, while the control group was treated with saline solution. The results revealed that Met and/or MetO induce an M1/classical activation phenotype associated with increased levels of tumor necrosis factor alpha and nitrite, and reduced arginase activity. It was also found that Met and/or MetO alter the activity of antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, as well as the levels of thiol and reactive oxygen species in macrophages. The chronic administration of Met and/or MetO also promotes alteration in the hydrolysis of ATP and ADP, as indicated by the increased activity of ectonucleotidases. These results demonstrate that chronic administration of Met and/or MetO promotes activated pro-inflammatory profile by inducing M1/classical macrophage polarization. Thus, the changes in redox status and purinergic system upon chronic Met and/or MetO exposure may contribute towards better understanding of the alterations consistent with hypermethioninemic patients.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/imunologia , Glicina N-Metiltransferase/deficiência , Macrófagos/imunologia , Metionina/análogos & derivados , Animais , Catalase/metabolismo , Polaridade Celular , Glutationa Peroxidase/metabolismo , Glicina N-Metiltransferase/imunologia , Macrófagos/efeitos dos fármacos , Masculino , Metionina/administração & dosagem , Metionina/metabolismo , Metionina/farmacologia , Camundongos , Oxirredução , Estresse Oxidativo , Fenótipo , Superóxido Dismutase/metabolismoRESUMO
The aim of this study was to investigate the effect of the chronic administration of methionine (Met) and/or its metabolite, methionine sulfoxide (MetO), on the behavior and neurochemical parameters of young rats. Rats were treated with saline (control), Met (0.2-0.4 g/kg), MetO (0.05-0.1 g/kg), and/or a combination of Met + MetO, subcutaneously twice a day from postnatal day 6 (P6) to P28. The results showed that Met, MetO, and Met + MetO impaired short-term and spatial memories (P < 0.05), reduced rearing and grooming (P < 0.05), but did not alter locomotor activity (P > 0.05). Acetylcholinesterase activity was increased in the cerebral cortex, hippocampus, and striatum following Met and/or MetO (P < 0.05) treatment, while Na+, K+-ATPase activity was reduced in the hippocampus (P < 0.05). There was an increase in the level of thiobarbituric acid reactive substances (TBARS) in the cerebral cortex in Met-, MetO-, and Met + MetO-treated rats (P < 0.05). Met and/or MetO treatment reduced superoxide dismutase, catalase, and glutathione peroxidase activity, total thiol content, and nitrite levels, and increased reactive oxygen species and TBARS levels in the hippocampus and striatum (P < 0.05). Hippocampal brain-derived neurotrophic factor was reduced by MetO and Met + MetO compared with the control group. The number of NeuN-positive cells was decreased in the CA3 in Met + MetO group and in the dentate gyrus in the Met, MetO, and Met + MetO groups compared to control group (P < 0.05). Taken together, these findings further increase our understanding of changes in the brain in hypermethioninemia by elucidating behavioral alterations, biological mechanisms, and the vulnerability of brain function to high concentrations of Met and MetO.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/complicações , Glicina N-Metiltransferase/deficiência , Hipocampo/patologia , Transtornos da Memória/etiologia , Transtornos da Memória/patologia , Metionina/análogos & derivados , Espécies Reativas de Oxigênio/metabolismo , Acetilcolinesterase/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/induzido quimicamente , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Animais , Catalase/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Feminino , Glutationa Peroxidase/deficiência , Glicina N-Metiltransferase/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Transtornos da Memória/metabolismo , Memória de Curto Prazo/efeitos dos fármacos , Metionina/metabolismo , Metionina/toxicidade , Ratos , Ratos Wistar , Memória Espacial/efeitos dos fármacos , Superóxido Dismutase/deficiência , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismoRESUMO
Elevated levels of methionine in blood characterize the hypermethioninemia, which may have genetic or non-genetic origin, as for example from high protein diet. Born rats from hypermethioninemic mothers presented cerebral oxidative stress, inhibition of Na+,K+-ATPase, memory deficit and ultrastructure cerebral changes. Melatonin is a hormone involved in circadian rhythm and has antioxidant effects. The aim of this study was to verify the possible neuroprotective effects of melatonin administration in hypermethioninemic pregnant rats on damage to biomolecules (Na+,K+-ATPase, sulfhydryl content and DNA damage index) and behavior (open field, novel object recognition and water maze tasks), as well as its effect on cells morphology by electron microscopy in offspring. Wistar female rats received methionine (2.68⯵mol/g body weight) and/or melatonin (10â¯mg/kg body weight) by subcutaneous injections during entire pregnancy. Control rats received saline. Biochemical analyzes were performed at 21 and 30 days of life of offspring and behavioral analyzes were performed only at 30 days of age in male pups. Results showed that gestational hypermethioninemia diminished Na+,K+-ATPase activity and sulfhydryl content and increased DNA damage at 21 and 30 days of life. Melatonin was able to totally prevent Na+,K+-ATPase activity alteration at 21 days and partially prevent its alteration at 30 days of rats life. Melatonin was unable in to prevent sulfhydryl and DNA damage at two ages. It also improved DNA damage, but not at level of saline animals (controls). Regarding to behavioral tests, data showed that pups exposed to gestational hypermethioninemia decreased reference memory in water maze, spent more time to the center of the open field and did not differentiate the objects in the recognition test. Melatonin was able to prevent the deficit in novel object recognition task. Electron microscopy revealed ultrastructure alterations in neurons of hypermethioninemic at both ages of offspring, whose were prevented by melatonin. These findings suggest that melatonin may be a good neuroprotective to minimize the harmful effects of gestational hypermethioninemia on offspring.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Glicina N-Metiltransferase/deficiência , Melatonina/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Complicações na Gravidez/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Melatonina/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Ratos , Ratos Wistar , Reconhecimento Psicológico/efeitos dos fármacosRESUMO
In the present work, we evaluated the effect of gestational hypermethioninemia on locomotor activity, anxiety, memory, and exploratory behavior of rat offspring through the following behavior tests: open field, object recognition, and inhibitory avoidance. Histological analysis was also done in the brain tissue of pups. Wistar female rats received methionine (2.68 µmol/g body weight) by subcutaneous injections during pregnancy. Control rats received saline. Histological analyses were made in brain tissue from 21 and 30 days of age pups. Another group was left to recover until the 30th day of life to perform behavior tests. Results from open field task showed that pups exposed to methionine during intrauterine development spent more time in the center of the arena. In the object recognition memory task, we observed that methionine administration during pregnancy reduced total exploration time of rat offspring during training session. The test session showed that methionine reduced the recognition index. Regarding to inhibitory avoidance task, the decrease in the step-down latency at 1 and 24 h after training demonstrated that maternal hypermethioninemia impaired short-term and long-term memories of rat offspring. Electron microscopy revealed alterations in the ultrastructure of neurons at 21 and 30 days of age. Our findings suggest that the cell morphological changes caused by maternal hypermethioninemia may be, at least partially, associated to the memory deficit of rat offspring.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/induzido quimicamente , Encéfalo/efeitos dos fármacos , Glicina N-Metiltransferase/deficiência , Transtornos da Memória/induzido quimicamente , Metionina/farmacologia , Efeitos Tardios da Exposição Pré-Natal , Animais , Animais Recém-Nascidos , Encéfalo/ultraestrutura , Comportamento Exploratório/efeitos dos fármacos , Feminino , Memória/efeitos dos fármacos , Memória/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Gravidez , Ratos WistarRESUMO
In the current study, we verified the effects of maternal hypermethioninemia on the number of neurons, apoptosis, nerve growth factor, and brain-derived neurotrophic factor levels, energy metabolism parameters (succinate dehydrogenase, complex II, and cytochrome c oxidase), expression and immunocontent of Na+,K+-ATPase, edema formation, inflammatory markers (tumor necrosis factor-alpha and interleukin-6), and mitochondrial hydrogen peroxide levels in the encephalon from the offspring. Pregnant Wistar rats were divided into two groups: the first one received saline (control) and the second group received 2.68 µmol methionine/g body weight by subcutaneous injections twice a day during gestation (approximately 21 days). After parturition, pups were killed at the 21st day of life for removal of encephalon. Neuronal staining (anti-NeuN) revealed a reduction in number of neurons, which was associated to decreased nerve growth factor and brain-derived neurotrophic factor levels. Maternal hypermethioninemia also reduced succinate dehydrogenase and complex II activities and increased expression and immunocontent of Na+,K+-ATPase alpha subunits. These results indicate that maternal hypermethioninemia may be a predisposing factor for damage to the brain during the intrauterine life.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Encéfalo/metabolismo , Metabolismo Energético/fisiologia , Glicina N-Metiltransferase/deficiência , Fatores de Crescimento Neural/metabolismo , Neurônios/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/induzido quimicamente , Animais , Contagem de Células , Feminino , Glicina N-Metiltransferase/metabolismo , Metionina , Oxirredução , Gravidez , Ratos , Ratos WistarRESUMO
High levels of methionine (Met) and methionine sulfoxide (MetO) are found in several genetic abnormalities. Oxidative stress is involved in the pathophysiology of many inborn errors of metabolism. However, little is known about the role of oxidative damage in hepatic and renal changes in hypermethioninemia. We investigated the effect of chronic treatment with Met and/or MetO on oxidative stress parameters in liver and kidney, as lipid peroxidation (TBARS), total sulfhydryl content (SH), reactive oxygen species (ROS) and enzymes activities superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and delta aminolevulinic dehydratase (ALA-D). Serum biochemical parameters were evaluated. Wistar rats were treated daily with two subcutaneous injections of saline (control), Met (0.2-0.4 g/kg), MetO (0.05-0.1 g/kg) and the association between these (Met plus MetO) from the 6th to the 28th day of life. Our data demonstrated an increase of glucose and urea levels in all experimental groups. Cholesterol (MetO and Met plus MetO) were decreased and triglycerides (MetO) were increased. SOD (MetO and Met plus MetO) and CAT (Met, MetO and Met plus MetO) activities were decreased, while GPx was enhanced by MetO and Met plus MetO treatment in liver. In kidney, we observed a reduction of SH levels, SOD and CAT activities and an increase of TBARS levels in all experimental groups. ROS levels in kidney were increased in MetO and Met plus MetO groups. ALA-D activity was enhanced in liver (MetO and Met plus MetO) and kidney (Met plus MetO). These findings help to understand the pathophysiology of hepatic and renal alterations present in hypermethioninemia.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Glicina N-Metiltransferase/deficiência , Metionina/análogos & derivados , Metionina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Sintase do Porfobilinogênio/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/induzido quimicamente , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Animais , Catalase/metabolismo , Colesterol/metabolismo , Ativação Enzimática/efeitos dos fármacos , Feminino , Glucose/metabolismo , Glutationa Peroxidase/metabolismo , Glicina N-Metiltransferase/metabolismo , Injeções Subcutâneas , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Peroxidação de Lipídeos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Metionina/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Compostos de Sulfidrila/metabolismo , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Triglicerídeos/metabolismo , Ureia/metabolismoRESUMO
Hypermethioninemia is a condition defined as elevated plasma methionine levels and may be a consequence of different conditions that include non-genetic and genetic causes. In severe cases, hypermethioninemia may lead to development of neurological and hepatic impairments, but mechanisms are still not well elucidated. Therefore, this review aims to reunite the knowledge acquired about the methionine-induced brain and liver toxicity focusing on the results obtained by studies from patients, in vitro experiments, and in vivo animal models. In general, some studies have shown that methionine decreases Na+,K+-ATPase activity, induces oxidative stress, increases acetylcholinesterase activity, and leads to dendritic spine downregulation in brain. Concerning to liver, hypermethioninemia seems to provoke changes in cell morphology, lipid accumulation, oxidative stress, inflammation, and ATP depletion. It is possible to infer that oxidative damage is one of the most important mechanisms responsible for methionine toxicity, since different studies showed that this amino acid induces oxidative stress in brain and liver tissues. Besides, reactive oxygen species may mediate other alterations induced by methionine, such as the reduction in brain Na+,K+-ATPase activity, and liver inflammation.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Encéfalo/metabolismo , Glicina N-Metiltransferase/deficiência , Hepatopatias/metabolismo , Fígado/metabolismo , Doenças do Sistema Nervoso/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/complicações , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Animais , Encéfalo/patologia , Glicina N-Metiltransferase/genética , Glicina N-Metiltransferase/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Metabolismo dos Lipídeos/genética , Fígado/patologia , Hepatopatias/etiologia , Hepatopatias/genética , Hepatopatias/patologia , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismoRESUMO
Hypermethioninemic patients may exhibit different neurological dysfunctions, and the mechanisms underlying these pathologies remain obscure. Glutamate and ATP are important excitatory neurotransmitters co-released at synaptic clefts, and whose activities are intrinsically related. Adenosine-the final product of ATP breakdown-is also an important neuromodulator. Here, we investigated the effects of long-term (7-day) exposure to 1.5 or 3 mM methionine (Met) on glutamate uptake in brain tissues (telencephalon, optic tectum, and cerebellum) and on ATP, ADP, and AMP catabolism by ecto-nucleotidases found in brain membrane samples, using a zebrafish model. Also, we evaluated the expression of ecto-nucleotidase (ntdp1, ntdp2mg, ntdp2mq, ntdp2mv, ntdp3, and nt5e) and adenosine receptor (adora1, adora2aa, adora2ab, adora2b) genes in the brain of zebrafish exposed to Met. In animals exposed to 3.0 mM Met, glutamate uptake in the telencephalon decreased significantly. Also, ATP and ADP (but not AMP) catabolism decreased significantly at both Met concentrations tested. The messenger RNA (mRNA) levels of ntpd genes and of the adenosine receptors adora1 and adora2aa increased significantly after Met exposure. In contrast, adora2ab mRNA levels decreased after Met exposure. Our data suggest that glutamate and ATP accumulate at synaptic clefts after Met exposure, with potential detrimental effects to the nervous system. This phenomenon might explain, at least in part, the increased susceptibility of hypermethioninemic patients to neurological symptoms.
Assuntos
Trifosfato de Adenosina/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Metionina/farmacologia , Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Animais , Glicina N-Metiltransferase/deficiência , Hidrólise/efeitos dos fármacos , Peixe-ZebraRESUMO
In this study we evaluated oxidative/nitrative stress parameters (reactive oxygen species production, lipid peroxidation, sulfhydryl content, superoxide dismutase, catalase and nitrite levels), as well as total protein content in the gastrocnemius skeletal muscle of the offspring of rats that had been subjected to gestational hypermethioninaemia. The occurrence of muscular injury and inflammation was also measured by creatine kinase activity, levels of creatinine, urea and C-reactive protein and the presence of cardiac troponin I in serum. Wistar female rats (70-90 days of age) received methionine (2.68 µmol/g body weight) or saline (control) twice a day by subcutaneous injections during the gestational period (21 days). After the rats gave birth, pups were killed at the twenty-first day of life for removal of muscle and serum. Methionine treatment increased reactive oxygen species production and lipid peroxidation and decreased sulfhydryl content, antioxidant enzymes activities and nitrite levels, as well as total protein content in skeletal muscle of the offspring. Creatine kinase activity was reduced and urea and C-reactive protein levels were increased in serum of pups. These results were accompanied by reduced muscle mass. Our findings showed that maternal gestational hypermethioninaemia induced changes in oxidative/nitrative status in gastrocnemius skeletal muscle of the offspring. This may represent a mechanism which can contribute to the myopathies and loss of muscular mass that is found in some hypermethioninaemic patients. In addition, we believe that these results may be relevant as gestational hypermethioninaemia could cause damage to the skeletal muscle during intrauterine life.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/complicações , Glicina N-Metiltransferase/deficiência , Inflamação/metabolismo , Músculo Esquelético/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Biomarcadores/análise , Modelos Animais de Doenças , Feminino , Músculo Esquelético/patologia , Estresse Oxidativo/fisiologia , Gravidez , Ratos , Ratos WistarRESUMO
In the present study we developed a chemically induced experimental model for gestational hypermethioninemia in rats and evaluated in the offspring the activities of Na(+),K(+)-ATPase and Mg(2+)-ATPase, as well as oxidative stress parameters, namely sulfhydryl content, thiobarbituric acid-reactive substances and the antioxidant enzymes superoxide dismutase and catalase in encephalon. Serum and encephalon levels of methionine and total homocysteine were also evaluated in mother rats and in the offspring. Pregnant Wistar rats received two daily subcutaneous injections of methionine throughout the gestational period (21 days). During the treatment, a group of pregnant rats received dose 1 (1.34 µmol methionine/g body weight) and the other one received dose 2 (2.68 µmol methionine/g body weight). Control group received saline. After the rats give birth, a first group of pups was killed at the 7th day of life and the second group at the 21th day of life for removal of serum and encephalon. Mother rats were killed at the 21th day postpartum for removal of serum and encephalon. Both doses 1 and 2 increased methionine levels in encephalon of the mother rats and dose 2 increased methionine levels in encephalon of the offspring. Maternal hypermethioninemia also decreased the activities of Na(+),K(+)-ATPase, Mg(2+)-ATPase and catalase, as well as reduced total sulfhydryl content in the encephalon of the pups. This chemical model seems to be appropriate for studies aiming to investigate the effect of maternal hypermethioninemia on the developing brain during gestation in order to clarify possible neurochemical changes in the offspring.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Encéfalo/enzimologia , ATPase de Ca(2+) e Mg(2+)/metabolismo , Modelos Animais de Doenças , Glicina N-Metiltransferase/deficiência , Proteínas do Tecido Nervoso/metabolismo , Complicações na Gravidez/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/induzido quimicamente , Animais , Animais Recém-Nascidos , Encéfalo/embriologia , Química Encefálica , Catalase/análise , Feminino , Glicina N-Metiltransferase/metabolismo , Homocisteína/análise , Troca Materno-Fetal , Metionina/análise , Metionina/toxicidade , Oxirredução , Estresse Oxidativo , Gravidez , Complicações na Gravidez/induzido quimicamente , Ratos , Ratos Wistar , Compostos de Sulfidrila/análise , Superóxido Dismutase/análise , Substâncias Reativas com Ácido Tiobarbitúrico/análiseRESUMO
It has been shown that elevation of plasma methionine (Met) and its metabolites may occur in several genetic abnormalities. In this study we investigated the in vitro and in vivo effects of the Met and methionine sulfoxide (MetO) on oxidative stress parameters in the liver of rats. For in vitro studies, liver homogenates were incubated with Met, MetO, and Mix (Met + MetO). For in vivo studies, the animals were divided into groups: saline, Met 0.4 g/kg, MetO 0.1 g/kg, and Met 0.4 g/kg + MetO 0.1 g/kg. The animals were euthanized 1 and 3 h after injection. In vitro results showed that Met 1 and 2 mM and Mix increased catalase (CAT) activity. Superoxide dismutase (SOD) was enhanced by Met 1 and 2 mM, MetO 0.5 mM, and Mix. Dichlorofluorescein oxidation was increased by Met 1 mM and Mix. In vivo results showed that Met, MetO, and Mix decreased TBARS levels at 1 h. Total thiol content decreased 1 h after and increased 3 h after MetO and Met plus MetO administrations. Carbonyl content was enhanced by Met and was reduced by MetO 1 h after administration. Met, MetO and Met plus MetO decreased CAT activity 1 and 3 h after administration. Furthermore, only MetO increased SOD activity. In addition, Met, MetO, and Mix decreased dichlorofluorescein oxidation at 1 and 3 h. Our data indicate that Met/MetO in vivo and in vitro modify liver homeostasis by altering the redox cellular state. However, the hepatic changes caused by these compounds suggest a short-time adaptation of this tissue.
Assuntos
Catalase/metabolismo , Fígado/metabolismo , Metionina/análogos & derivados , Metionina/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Animais , Fluoresceínas/metabolismo , Glicina N-Metiltransferase/deficiência , Glicina N-Metiltransferase/metabolismo , Fígado/patologia , Masculino , Estresse Oxidativo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/farmacologia , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismoRESUMO
Many QTLs for fatness traits have been mapped on pig chromosome 7q1.1-1.4 in various pig resource populations. Eight novel markers, including seven SNPs and one insertion or deletion within BTNL1, COL21A1, PPARD, GLP1R, MDFI, GNMT, ABCC10, and PLA2G7 genes, as well as two previously reported SNPs in SLC39A7 and HMGA1 genes, were genotyped in Large White and Meishan pig breeds. Except for two SNPs in HMGA1 and ABCC10 genes, allele frequencies of the other eight markers are highly significant different between Chinese indigenous Meishan breeds and Large White pig breeds. Eight polymorphic sites were then used for linkage and QTL mapping to refine the fatness QTL in a Large White × Meishan F(2) resource population. Five chromosome-wise significant QTLs were detected, of which the QTLs for leaf fat weight, backfat thickness at 6-7th rib and rump, and mean backfat thickness were narrowed to the interval between PPARD and GLP1R genes and the QTL for backfat thickness at thorax-waist between GNMT and PLA2G7 genes on SSC7p1.1-q1.4.