Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.478
Filtrar
1.
Glycobiology ; 34(6)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38760939

RESUMO

Genetic deficiency of alpha-L-iduronidase causes mucopolysaccharidosis type I (MPS-I) disease, due to accumulation of glycosaminoglycans (GAGs) including chondroitin/dermatan sulfate (CS/DS) and heparan sulfate (HS) in cells. Currently, patients are treated by infusion of recombinant iduronidase or by hematopoietic stem cell transplantation. An alternative approach is to reduce the L-iduronidase substrate, through limiting the biosynthesis of iduronic acid. Our earlier study demonstrated that ebselen attenuated GAGs accumulation in MPS-I cells, through inhibiting iduronic acid producing enzymes. However, ebselen has multiple pharmacological effects, which prevents its application for MPS-I. Thus, we continued the study by looking for novel inhibitors of dermatan sulfate epimerase 1 (DS-epi1), the main responsible enzyme for production of iduronic acid in CS/DS chains. Based on virtual screening of chemicals towards chondroitinase AC, we constructed a library with 1,064 compounds that were tested for DS-epi1 inhibition. Seventeen compounds were identified to be able to inhibit 27%-86% of DS-epi1 activity at 10 µM. Two compounds were selected for further investigation based on the structure properties. The results show that both inhibitors had a comparable level in inhibition of DS-epi1while they had negligible effect on HS epimerase. The two inhibitors were able to reduce iduronic acid biosynthesis in CS/DS and GAG accumulation in WT and MPS-I fibroblasts. Docking of the inhibitors into DS-epi1 structure shows high affinity binding of both compounds to the active site. The collected data indicate that these hit compounds may be further elaborated to a potential lead drug used for attenuation of GAGs accumulation in MPS-I patients.


Assuntos
Inibidores Enzimáticos , Fibroblastos , Glicosaminoglicanos , Mucopolissacaridose I , Mucopolissacaridose I/tratamento farmacológico , Mucopolissacaridose I/metabolismo , Mucopolissacaridose I/patologia , Humanos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Glicosaminoglicanos/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Carboidratos Epimerases/metabolismo , Carboidratos Epimerases/antagonistas & inibidores , Carboidratos Epimerases/genética , Simulação de Acoplamento Molecular , Antígenos de Neoplasias , Proteínas de Ligação a DNA , Proteínas de Neoplasias
2.
Sci Rep ; 14(1): 11839, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782973

RESUMO

The intestinal extracellular matrix (ECM) helps maintain appropriate tissue barrier function and regulate host-microbial interactions. Chondroitin sulfate- and dermatan sulfate-glycosaminoglycans (CS/DS-GAGs) are integral components of the intestinal ECM, and alterations in CS/DS-GAGs have been shown to significantly influence biological functions. Although pathologic ECM remodeling is implicated in inflammatory bowel disease (IBD), it is unknown whether changes in the intestinal CS/DS-GAG composition are also linked to IBD in humans. Our aim was to characterize changes in the intestinal ECM CS/DS-GAG composition in intestinal biopsy samples from patients with IBD using mass spectrometry. We characterized intestinal CS/DS-GAGs in 69 pediatric and young adult patients (n = 13 control, n = 32 active IBD, n = 24 IBD in remission) and 6 adult patients. Here, we report that patients with active IBD exhibit a significant decrease in the relative abundance of CS/DS isomers associated with matrix stability (CS-A and DS) compared to controls, while isomers implicated in matrix instability and inflammation (CS-C and CS-E) were significantly increased. This imbalance of intestinal CS/DS isomers was restored among patients in clinical remission. Moreover, the abundance of pro-stabilizing CS/DS isomers negatively correlated with clinical disease activity scores, whereas both pro-inflammatory CS-C and CS-E content positively correlated with disease activity scores. Thus, pediatric patients with active IBD exhibited increased pro-inflammatory and decreased pro-stabilizing CS/DS isomer composition, and future studies are needed to determine whether changes in the CS/DS-GAG composition play a pathogenic role in IBD.


Assuntos
Sulfatos de Condroitina , Glicosaminoglicanos , Doenças Inflamatórias Intestinais , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Sulfatos de Condroitina/metabolismo , Masculino , Feminino , Adulto , Adolescente , Criança , Glicosaminoglicanos/metabolismo , Adulto Jovem , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Matriz Extracelular/metabolismo , Intestinos/patologia
3.
Mar Drugs ; 22(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38786589

RESUMO

Glycosaminoglycans (GAGs) are valuable bioactive polysaccharides with promising biomedical and pharmaceutical applications. In this study, we analyzed GAGs using HPLC-MS/MS from the bone (B), muscle (M), skin (S), and viscera (V) of Scophthalmus maximus (SM), Paralichthysi (P), Limanda ferruginea (LF), Cleisthenes herzensteini (G), Platichthys bicoloratus (PB), Pleuronichthys cornutus (PC), and Cleisthenes herzensteini (CH). Unsaturated disaccharide products were obtained by enzymatic hydrolysis of the GAGs and subjected to compositional analysis of chondroitin sulfate (CS), heparin sulfate (HS), and hyaluronic acid (HA), including the sulfation degree of CS and HS, as well as the content of each GAG. The contents of GAGs in the tissues and the sulfation degree differed significantly among the fish. The bone of S. maximus contained more than 12 µg of CS per mg of dry tissue. Although the fish typically contained high levels of CSA (CS-4S), some fish bone tissue exhibited elevated levels of CSC (CS-6S). The HS content was found to range from 10-150 ug/g, primarily distributed in viscera, with a predominant non-sulfated structure (HS-0S). The structure of HA is well-defined without sulfation modification. These analytical results are independent of biological classification. We provide a high-throughput rapid detection method for tissue samples using HPLC-MS/MS to rapidly screen ideal sources of GAG. On this basis, four kinds of CS were prepared and purified from flounder bone, and their molecular weight was determined to be 23-28 kDa by HPGPC-MALLS, and the disaccharide component unit was dominated by CS-6S, which is a potential substitute for CSC derived from shark cartilage.


Assuntos
Sulfatos de Condroitina , Linguado , Glicosaminoglicanos , Espectrometria de Massas em Tandem , Animais , Sulfatos de Condroitina/química , Sulfatos de Condroitina/isolamento & purificação , Glicosaminoglicanos/isolamento & purificação , Glicosaminoglicanos/química , Cromatografia Líquida de Alta Pressão , Osso e Ossos/química , Pele/química , Pele/metabolismo , Ácido Hialurônico/química , Ácido Hialurônico/isolamento & purificação , Músculos/química
4.
Carbohydr Polym ; 335: 122106, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616080

RESUMO

More than 3000 proteins are now known to bind to glycosaminoglycans (GAGs). Yet, GAG-protein systems are rather poorly understood in terms of selectivity of recognition, molecular mechanism of action, and translational promise. High-throughput screening (HTS) technologies are critically needed for studying GAG biology and developing GAG-based therapeutics. Microarrays, developed within the past two decades, have now improved to the point of being the preferred tool in the HTS of biomolecules. GAG microarrays, in which GAG sequences are immobilized on slides, while similar to other microarrays, have their own sets of challenges and considerations. GAG microarrays are rapidly becoming the first choice in studying GAG-protein systems. Here, we review different modalities and applications of GAG microarrays presented to date. We discuss advantages and disadvantages of this technology, explain covalent and non-covalent immobilization strategies using different chemically reactive groups, and present various assay formats for qualitative and quantitative interpretations, including selectivity screening, binding affinity studies, competitive binding studies etc. We also highlight recent advances in implementing this technology, cataloging of data, and project its future promise. Overall, the technology of GAG microarray exhibits enormous potential of evolving into more than a mere screening tool for studying GAG - protein systems.


Assuntos
Bioensaio , Glicosaminoglicanos , Ligação Competitiva , Análise em Microsséries , Pesquisa
5.
J Cosmet Dermatol ; 23(6): 2170-2180, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38572527

RESUMO

BACKGROUND: Eyelashes play a crucial role in self-image and ocular protection. Enhancements to their structure are of both cosmetic and clinical interest. AIMS: To assess the efficacy of a peptide and glycosaminoglycan-based eyelash enhancer serum in improving eyelash structure. PATIENTS/METHODS: This open-label clinical trial involved 30 females aged 25-65. Eyelashes were assessed at baseline (D0), 4 weeks (D28), and 12 weeks (D84) using specialized software and high-resolution imagery. Measurements included lash number, width, length, volume, arc, and angle. RESULTS: At 12 weeks, significant increases were observed in lash length (+8.3%), number (+5%), width (+10.1%), volume (+14.1%), arc (+13.4%), and angle (+28.3%) compared to baseline. Global Eyelash Assessment (GEA) scores significantly improved, and patient treatment satisfaction increased from 73.34% at D28 to 84.33% at D84. No adverse effects were reported. CONCLUSIONS: The eyelash growth enhancer serum demonstrated significant efficacy in improving eyelash structure by Week 12, with early signs of improvement evident by Week 4. The high patient satisfaction levels underscore the perceived effectiveness of the product.


Assuntos
Pestanas , Glicosaminoglicanos , Satisfação do Paciente , Humanos , Feminino , Pestanas/crescimento & desenvolvimento , Pestanas/efeitos dos fármacos , Pessoa de Meia-Idade , Adulto , Idoso , Peptídeos/administração & dosagem , Resultado do Tratamento
6.
Res Vet Sci ; 173: 105257, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636324

RESUMO

Decellularization is an innovative method to create natural scaffolds by removing all cellular materials while preserving the composition and three-dimensional ultrastructure of the extracellular matrix (ECM). The obtention of decellularized reproductive organs in cats might facilitate the development of assisted reproductive techniques not only in this species but also in other felids. The aim was to compare the efficiency of three decellularization protocols on reproductive organs (ovary, oviduct, and uterine horn) in domestic cats. The decellularization protocol involved 0.1% sodium dodecyl sulfate and 1%Triton X-100. Protocol 1 (P1) entailed 2-cycles of decellularization using these detergents. Protocol 2 (P2) was like P1 but included 3-cycles. Protocol 3 (P3) was similar to P2, with the addition of deoxyribonuclease incubation. Reproductive organs from nine cats were separated into two sides. One side served as the control (non-decellularized organ) while the contralateral side was the treated group (decellularized organ). The treated organs were subdivided into 3 groups (n = 3 per group) for each protocol. Both control and treated samples were analyzed for DNA content, histology (nuclear and ECM (collagen, elastin, and glycosaminoglycans (GAGs)) density), ultrastructure by electron microscopy, and cytotoxicity. The results of the study showed that P3 was the only protocol that displayed no nucleus residue and significantly reduced DNA content in decellularized samples (in all the studied organs) compared to the control (P < 0.05). The ECM content in the ovaries remained similar across all protocols compared with controls (P > 0.05). However, elastic fibers and GAGs decreased in decellularized oviducts (P < 0.05), while collagen levels remained unchanged (P > 0.05). Regarding the uterus, the ECM content decreased in decellularized uterine horns from P3 (P < 0.05). Electron microscopy revealed that the microarchitecture of the decellularized samples was maintained compared to controls. The decellularized tissues, upon being washed for 24 h, showed cytocompatibility following co-incubation with sperm. In conclusion, when comparing different decellularization methods, P3 proved to be the most efficient in removing nuclear material from reproductive organs compared to P1 and P2. P3 demonstrated its success in decellularizing ovarian samples by significantly decreasing DNA content while maintaining ECM components and tissue microarchitecture. However, P3 was less effective in maintaining ECM contents in decellularized oviducts and uterine horns.


Assuntos
Matriz Extracelular , Útero , Animais , Feminino , Gatos , Útero/citologia , Ovário/citologia , Ovário/ultraestrutura , Oviductos/citologia , Oviductos/ultraestrutura , DNA/análise , Octoxinol , Dodecilsulfato de Sódio , Glicosaminoglicanos/análise , Matriz Extracelular Descelularizada/química
7.
Orphanet J Rare Dis ; 19(1): 179, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685110

RESUMO

Mucopolysaccharidoses (MPSs) are caused by a deficiency in the enzymes needed to degrade glycosaminoglycans (GAGs) in the lysosome. The storage of GAGs leads to the involvement of several systems and even to the death of the patient. In recent years, an increasing number of therapies have increased the treatment options available to patients. Early treatment is beneficial in improving the prognosis, but children with MPSs are often delayed in their diagnosis. Therefore, there is an urgent need to develop a method for early screening and diagnosis of the disease. Tandem mass spectrometry (MS/MS) is an analytical method that can detect multiple substrates or enzymes simultaneously. GAGs are reliable markers of MPSs. MS/MS can be used to screen children at an early stage of the disease, to improve prognosis by treating them before symptoms appear, to evaluate the effectiveness of treatment, and for metabolomic analysis or to find suitable biomarkers. In the future, MS/MS could be used to further identify suitable biomarkers for MPSs for early diagnosis and to detect efficacy.


Assuntos
Mucopolissacaridoses , Espectrometria de Massas em Tandem , Humanos , Mucopolissacaridoses/diagnóstico , Mucopolissacaridoses/metabolismo , Espectrometria de Massas em Tandem/métodos , Biomarcadores/metabolismo , Glicosaminoglicanos/metabolismo
8.
Front Immunol ; 15: 1378591, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686377

RESUMO

Introduction: Pulmonary diseases represent a significant burden to patients and the healthcare system and are one of the leading causes of mortality worldwide. Particularly, the COVID-19 pandemic has had a profound global impact, affecting public health, economies, and daily life. While the peak of the crisis has subsided, the global number of reported COVID-19 cases remains significantly high, according to medical agencies around the world. Furthermore, despite the success of vaccines in reducing the number of deaths caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there remains a gap in the treatment of the disease, especially in addressing uncontrolled inflammation. The massive recruitment of leukocytes to lung tissue and alveoli is a hallmark factor in COVID-19, being essential for effectively responding to the pulmonary insult but also linked to inflammation and lung damage. In this context, mice models are a crucial tool, offering valuable insights into both the pathogenesis of the disease and potential therapeutic approaches. Methods: Here, we investigated the anti-inflammatory effect of the glycosaminoglycan (GAG)-binding chemokine fragment CXCL9(74-103), a molecule that potentially decreases neutrophil transmigration by competing with chemokines for GAG-binding sites, in two models of pneumonia caused by coronavirus infection. Results: In a murine model of betacoronavirus MHV-3 infection, the treatment with CXCL9(74-103) decreased the accumulation of total leukocytes, mainly neutrophils, to the alveolar space and improved several parameters of lung dysfunction 3 days after infection. Additionally, this treatment also reduced the lung damage. In the SARS-CoV-2 model in K18-hACE2-mice, CXCL9(74-103) significantly improved the clinical manifestations of the disease, reducing pulmonary damage and decreasing viral titers in the lungs. Discussion: These findings indicate that CXCL9(74-103) resulted in highly favorable outcomes in controlling pneumonia caused by coronavirus, as it effectively diminishes the clinical consequences of the infections and reduces both local and systemic inflammation.


Assuntos
COVID-19 , Quimiocina CXCL9 , Modelos Animais de Doenças , Glicosaminoglicanos , Pulmão , SARS-CoV-2 , Animais , Camundongos , COVID-19/imunologia , SARS-CoV-2/imunologia , Glicosaminoglicanos/metabolismo , Quimiocina CXCL9/metabolismo , Pulmão/patologia , Pulmão/virologia , Pulmão/imunologia , Pulmão/metabolismo , Inflamação/imunologia , Humanos , Tratamento Farmacológico da COVID-19 , Camundongos Endogâmicos C57BL , Feminino
9.
Int J Biol Macromol ; 266(Pt 2): 131283, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561119

RESUMO

Glycosaminoglycan (GAG) lyases are important tools for investigating the structure of GAGs and preparing low-molecular-weight GAGs. The PL35 family, a recently established polysaccharide lyase family, should be further investigated. In this study, we discovered a new GAG lyase, CHa1, which belongs to the PL35 family. When expressed heterologously in Escherichia coli (BL21), CHa1 exhibited high expression levels and solubility. The optimal activity was observed in Tris-HCl buffer (pH 7.0) or sodium phosphate buffer (pH 8.0) at 30 °C. The specific activities towards HA, CSA, CSC, CSD, CSE, and HS were 3.81, 13.03, 36.47, 18.46, 6.46, and 0.50 U/mg protein, respectively. CHa1 digests substrate chains randomly that acting as an endolytic lyase and shows a significant preference for GlcA-containing structures, prefers larger oligosaccharides (≥UDP8) and can generate a series of oligosaccharides composed mainly of the A unit when digesting CSA. These oligosaccharides include ΔC-A, ΔC-A-A, ΔC-A-A-A, ΔC-A-A-A-A, and ΔC-A-A-A-A-A. The residues Tyr257 and His421 play crucial roles in the catalytic process, and Ser211, Asn212, Asn213, Trp214, Gln216, Lys360, Arg460 and Gln462 may participate in the binding process of CHa1. This study on CHa1 contributes to our understanding of the PL35 family and provides valuable tools for investigating the structure of GAGs.


Assuntos
Polissacarídeo-Liases , Polissacarídeo-Liases/química , Polissacarídeo-Liases/metabolismo , Polissacarídeo-Liases/genética , Especificidade por Substrato , Acetilgalactosamina/química , Acetilgalactosamina/metabolismo , Escherichia coli/genética , Glicosaminoglicanos/metabolismo , Glicosaminoglicanos/química , Sequência de Aminoácidos , Oligossacarídeos/química , Oligossacarídeos/metabolismo
10.
Cell Signal ; 118: 111149, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522808

RESUMO

G protein-coupled receptors (GPCR) and glycosaminoglycans (GAGs) are two essential components of the cell surface that regulate physiological processes in the body. GPCRs are the most extensive family of transmembrane receptors that control cellular responses to extracellular stimuli, while GAGs are polysaccharides that contribute to the function of the extracellular matrix (ECM). Due to their proximity to the plasma membrane, GAGs participate in signal transduction by interacting with various extracellular molecules and cell surface receptors. GAGs can directly interact with certain GPCRs or their ligands (chemokines, peptide hormones and neuropeptides, structural proteins, and enzymes) from the glutamate receptor family, the rhodopsin receptor family, the adhesion receptor family, and the secretin receptor family. These interactions have recently become an emerging topic, providing a new avenue for understanding how GPCR signaling is regulated. This review discusses our current state of knowledge about the role of GAGs in GPCR signaling and function.


Assuntos
Glicosaminoglicanos , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Membrana Celular/metabolismo , Rodopsina/metabolismo
11.
Mar Drugs ; 22(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38535480

RESUMO

Thromboembolic conditions are the most common cause of death in developed countries. Anticoagulant therapy is the treatment of choice, and heparinoids and warfarin are the most adopted drugs. Sulphated polysaccharides extracted from marine organisms have been demonstrated to be effective alternatives, blocking thrombus formation by inhibiting some factors involved in the coagulation cascade. In this study, four acidic glycan fractions from the marine sponge Sarcotragus spinosulus were purified by anion-exchange chromatography, and their anticoagulant properties were investigated through APTT and PT assays and compared with both standard glycosaminoglycans and holothurian sulphated polysaccharides. Moreover, their topographic localization was assessed through histological analysis, and their cytocompatibility was tested on a human fibroblast cell line. A positive correlation between the amount of acid glycans and the inhibitory effect towards both the intrinsic and extrinsic coagulation pathways was observed. The most effective anticoagulant activity was shown by a highly charged fraction, which accounted for almost half (about 40%) of the total hexuronate-containing polysaccharides. Its preliminary structural characterization, performed through infrared spectroscopy and nuclear magnetic resonance, suggested that it may consist of a fucosylated chondroitin sulphate, whose unique structure may be responsible for the anticoagulant activity reported herein for the first time.


Assuntos
Poríferos , Humanos , Animais , Polissacarídeos , Glicosaminoglicanos , Anticoagulantes , Coagulação Sanguínea , Sulfatos
12.
Nat Commun ; 15(1): 2723, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548715

RESUMO

Integration of extracellular signals by neurons is pivotal for brain development, plasticity, and repair. Axon guidance relies on receptor-ligand interactions crosstalking with extracellular matrix components. Semaphorin-5A (Sema5A) is a bifunctional guidance cue exerting attractive and inhibitory effects on neuronal growth through the interaction with heparan sulfate (HS) and chondroitin sulfate (CS) glycosaminoglycans (GAGs), respectively. Sema5A harbors seven thrombospondin type-1 repeats (TSR1-7) important for GAG binding, however the underlying molecular basis and functions in vivo remain enigmatic. Here we dissect the structural basis for Sema5A:GAG specificity and demonstrate the functional significance of this interaction in vivo. Using x-ray crystallography, we reveal a dimeric fold variation for TSR4 that accommodates GAG interactions. TSR4 co-crystal structures identify binding residues validated by site-directed mutagenesis. In vitro and cell-based assays uncover specific GAG epitopes necessary for TSR association. We demonstrate that HS-GAG binding is preferred over CS-GAG and mediates Sema5A oligomerization. In vivo, Sema5A:GAG interactions are necessary for Sema5A function and regulate Plexin-A2 dependent dentate progenitor cell migration. Our study rationalizes Sema5A associated developmental and neurological disorders and provides mechanistic insights into how multifaceted guidance functions of a single transmembrane cue are regulated by proteoglycans.


Assuntos
Glicosaminoglicanos , Semaforinas , Glicosaminoglicanos/metabolismo , Proteoglicanas/metabolismo , Heparitina Sulfato/metabolismo , Movimento Celular , Semaforinas/genética , Semaforinas/metabolismo
13.
Clin Transl Sci ; 17(4): e13776, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38545863

RESUMO

A quantitatively-driven evaluation of existing clinical data and associated knowledge to accelerate drug discovery and development is a highly valuable approach across therapeutic areas, but remains underutilized. This is especially the case for rare diseases for which development is particularly challenging. The current work outlines an organizational framework to support a quantitatively-based reverse translation approach to clinical development. This approach was applied to characterize predictors of the trajectory of cognition in Hunter syndrome (Mucopolysaccharidosis Type II; MPS-II), a rare X-linked lysosomal storage disorder, highly heterogeneous in its course. Specifically, we considered ways to refine target populations based on age, cognitive status, and biomarkers, that is, cerebrospinal fluid glycosaminoglycans (GAG), at trial entry. Data from a total of 138 subjects (age range 2.5 to 10.1 years) from Takeda-sponsored internal studies and external natural history studies in MPS-II were included. Quantitative analyses using mixed-effects models were performed to characterize the relationships between neurocognitive outcomes and potential indicators of disease progression. Results revealed a specific trajectory in cognitive development across age with an initial progressive phase, followed by a plateau between 4 and 8 years and then a variable declining phase. Additionally, results suggest a faster decline in cognition among subjects with lower cognitive scores or with higher cerebrospinal fluid GAG at enrollment. These results support differences in the neurocognitive course of MPS-II between distinct groups of patients based on age, cognitive function, and biomarker status at enrollment. These differences should be considered when designing future clinical trials.


Assuntos
Mucopolissacaridose II , Humanos , Pré-Escolar , Criança , Mucopolissacaridose II/diagnóstico , Mucopolissacaridose II/tratamento farmacológico , Glicosaminoglicanos/uso terapêutico , Biomarcadores , Progressão da Doença
14.
Int J Biol Macromol ; 264(Pt 2): 130743, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462098

RESUMO

Heparin, a member of the glycosaminoglycan family, is renowned as the most negatively charged biomolecule discovered within the realm of human biology. This polysaccharide serves a vital role as a regulator for various proteins, cells, and tissues within the human body, positioning itself as a pivotal macromolecule of significance. The domain of biology has witnessed substantial interest in the intricate design of heparin and its derivatives, particularly focusing on heparin-based polymers and hydrogels. This intrigue spans a wide spectrum of applications, encompassing diverse areas such as protein adsorption, anticoagulant properties, controlled drug release, development of implants, stent innovation, enhancement of blood compatibility, acceleration of wound healing, and pioneering strides in tissue engineering. This comprehensive overview delves into a multitude of developed heparin conjugates, employing various methods, and explores their functions in both the biomedicine and electronics fields. The efficacy of materials derived from heparin is also thoroughly investigated, encompassing considerations such as thrombogenicity, drug release kinetics, affinity for growth factors (GFs), biocompatibility, and electrochemical analyses. We firmly believe that by redirecting focus towards research and advancements in heparin-related polymers/hydrogels, this study will ignite further research and accelerate potential breakthroughs in this promising and evolving field of discovery.


Assuntos
Anticoagulantes , Heparina , Humanos , Heparina/química , Anticoagulantes/química , Glicosaminoglicanos , Hidrogéis/química , Polímeros/química , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química
15.
Sci Signal ; 17(828): eabl3758, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502733

RESUMO

CXCL17 is a chemokine principally expressed by mucosal tissues, where it facilitates chemotaxis of monocytes, dendritic cells, and macrophages and has antimicrobial properties. CXCL17 is also implicated in the pathology of inflammatory disorders and progression of several cancers, and its expression is increased during viral infections of the lung. However, the exact role of CXCL17 in health and disease requires further investigation, and there is a need for confirmed molecular targets mediating CXCL17 functional responses. Using a range of bioluminescence resonance energy transfer (BRET)-based assays, here we demonstrated that CXCL17 inhibited CXCR4-mediated signaling and ligand binding. Moreover, CXCL17 interacted with neuropillin-1, a VEGFR2 coreceptor. In addition, we found that CXCL17 only inhibited CXCR4 ligand binding in intact cells and demonstrated that this effect was mimicked by known glycosaminoglycan binders, surfen and protamine sulfate. Disruption of putative GAG binding domains in CXCL17 prevented CXCR4 binding. This indicated that CXCL17 inhibited CXCR4 by a mechanism of action that potentially required the presence of a glycosaminoglycan-containing accessory protein. Together, our results revealed that CXCL17 is an endogenous inhibitor of CXCR4 and represents the next step in our understanding of the function of CXCL17 and regulation of CXCR4 signaling.


Assuntos
Quimiocinas CXC , Glicosaminoglicanos , Quimiocinas CXC/metabolismo , Glicosaminoglicanos/farmacologia , Ligantes , Quimiocinas/metabolismo , Transdução de Sinais , Receptores CXCR4/genética , Quimiocina CXCL12
16.
Int J Biol Macromol ; 265(Pt 1): 130696, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458288

RESUMO

There has been significant progress in the field of three-dimensional (3D) bioprinting technology, leading to active research on creating bioinks capable of producing structurally and functionally tissue-mimetic constructs. Ti3C2Tx MXene nanoparticles (NPs), promising two-dimensional nanomaterials, are being investigated for their potential in muscle regeneration due to their unique physicochemical properties. In this study, we integrated MXene NPs into composite hydrogels made of gelatin methacryloyl (GelMA) and hyaluronic acid methacryloyl (HAMA) to develop bioinks (namely, GHM bioink) that promote myogenesis. The prepared GHM bioinks were found to offer excellent printability with structural integrity, cytocompatibility, and microporosity. Additionally, MXene NPs within the 3D bioprinted constructs encouraged the differentiation of C2C12 cells into skeletal muscle cells without additional support of myogenic agents. Genetic analysis indicated that representative myogenic markers both for early and late myogenesis were significantly up-regulated. Moreover, animal studies demonstrated that GHM bioinks contributed to enhanced regeneration of skeletal muscle while reducing immune responses in mice models with volumetric muscle loss (VML). Our results suggest that the GHM hydrogel can be exploited to craft a range of strategies for the development of a novel bioink to facilitate skeletal muscle regeneration because these MXene-incorporated composite materials have the potential to promote myogenesis.


Assuntos
Hidrogéis , Nanopartículas , Nitritos , Elementos de Transição , Camundongos , Animais , Hidrogéis/farmacologia , Hidrogéis/química , Gelatina/química , Impressão Tridimensional , Glicosaminoglicanos , Músculo Esquelético , Alicerces Teciduais/química , Engenharia Tecidual/métodos
17.
Glycobiology ; 34(5)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38438145

RESUMO

This review delves into the roles of glycosaminoglycans (GAGs), integral components of proteoglycans, in tooth development. Proteoglycans consist of a core protein linked to GAG chains, comprised of repeating disaccharide units. GAGs are classified into several types, such as hyaluronic acid, heparan sulfate, chondroitin sulfate, dermatan sulfate, and keratan sulfate. Functioning as critical macromolecular components within the dental basement membrane, these GAGs facilitate cell adhesion and aggregation, and play key roles in regulating cell proliferation and differentiation, thereby significantly influencing tooth morphogenesis. Notably, our recent research has identified the hyaluronan-degrading enzyme Transmembrane protein 2 (Tmem2) and we have conducted functional analyses using mouse models. These studies have unveiled the essential role of Tmem2-mediated hyaluronan degradation and its involvement in hyaluronan-mediated cell adhesion during tooth formation. This review provides a comprehensive summary of the current understanding of GAG functions in tooth development, integrating insights from recent research, and discusses future directions in this field.


Assuntos
Glicosaminoglicanos , Ácido Hialurônico , Camundongos , Animais , Glicosaminoglicanos/metabolismo , Proteoglicanas/metabolismo , Sulfato de Queratano/metabolismo , Sulfatos de Condroitina/metabolismo , Heparitina Sulfato/metabolismo , Odontogênese , Dermatan Sulfato
18.
Carbohydr Polym ; 332: 121905, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431412

RESUMO

Glycosaminoglycans (GAGs), as a class of biopolymers, play pivotal roles in various biological metabolisms such as cell signaling, tissue development, cell apoptosis, immune modulation, and growth factor activity. They are mainly present in the colon in free forms, which are essential for maintaining the host's health by regulating the colonization and proliferation of gut microbiota. Therefore, it is important to explain the specific members of the gut microbiota for GAGs' degradation and their enzymatic machinery in vivo. This review provides an outline of GAGs-utilizing entities in the Bacteroides, highlighting their polysaccharide utilization loci (PULs) and the enzymatic machinery involved in chondroitin sulfate (CS) and heparin (Hep)/heparan sulfate (HS). While there are some variations in GAGs' degradation among different genera, we analyze the reputed GAGs' utilization clusters in lactic acid bacteria (LAB), based on recent studies on GAGs' degradation. The enzymatic machinery involved in Hep/HS and CS metabolism within LAB is also discussed. Thus, to elucidate the precise mechanisms utilizing GAGs by diverse gut microbiota will augment our understanding of their effects on human health and contribute to potential therapeutic strategies for diseases.


Assuntos
Microbioma Gastrointestinal , Lactobacillales , Humanos , Glicosaminoglicanos/metabolismo , Bacteroides/metabolismo , Lactobacillales/metabolismo , Heparina , Heparitina Sulfato
19.
Artigo em Chinês | MEDLINE | ID: mdl-38433691

RESUMO

Objective:To analyze the characteristics of otorhinolaryngological clinical manifestations in children with Mucopolysaccharide(MPS) type Ⅰ and type II in order to improve the knowledge of otorhinolaryngologists about this disease. Methods:Clinical data related to 55 children with MPS type Ⅰ and type II were retrospectively analyzed to investigate the clinical manifestations of MPS in ENT. Results:All 40 patients(72.72%) with MPS had at least one ENT symptom during the course of the disease, with 95% of them having an ENT symptom prior to the diagnosis of MPS; upper airway obstruction was the most common ENT symptom(34, 85.00%), followed by recurrent upper respiratory tract infections(23, 57.50%), and lastly, hearing loss(11, 27.50%); all 26 patients had undergone at least one surgical procedure, of which 15(57.69%) had undergone ENT surgery, and all of these patients underwent ENT surgery before diagnosis. The most common ENT surgery was adenoidectomy. Conclusion:Early clinical manifestations of MPS patients are atypical, but the early and prevalent appearance of otolaryngologic symptoms and increased awareness of the disease among otolaryngologists has a positive impact on the prognosis of MPS.


Assuntos
Surdez , Doenças Nasais , Criança , Humanos , Estudos Retrospectivos , Adenoidectomia , Glicosaminoglicanos
20.
Methods Mol Biol ; 2783: 167-176, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478232

RESUMO

Decellularized human-adipose tissue (hDAT) can serve as an alternative to two-dimensional monolayer culture and current ECM hydrogels due to its unlimited availability and cytocompatibility. A major hurdle in the clinical translation and integration of hDAT and other hydrogels into current in vitro culture processes is adherence to current good manufacturing practices (cGMP). Transferring of innovative technologies, including hydrogels, requires the establishing standardized protocols for quality assurance and quality control (QA/QC) of the material.Integration of basic characterization techniques, including physiochemical characterization, structural/morphological characterization, thermal and mechanical characterization, and biological characterization, in addition to the reduction of batch-to-batch variability and establishment of proper sterilization, storage, and fabrication processes verifies the integrity of the hydrogel. Obatala Sciences has established a characterization protocol that involves a series of assays including the evaluation of gelation properties, protein content, glycosaminoglycan content, soluble collagen content, and DNA content of hDAT.


Assuntos
Matriz Extracelular , Hidrogéis , Humanos , Hidrogéis/química , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Glicosaminoglicanos/metabolismo , Controle de Qualidade , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...