Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.684
Filtrar
1.
J Clin Immunol ; 44(8): 171, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39102004

RESUMO

PURPOSE: Chronic granulomatous disease (CGD) is an inherited immunodeficiency caused by pathogenic variants of genes encoding the enzyme complex NADPH oxidase. In countries where tuberculosis (TB) is endemic and the Bacillus Calmette-Guérin (BCG) vaccine is routinely administered, mycobacteria are major disease-causing pathogens in CGD. However, information on the clinical evolution and treatment of mycobacterial diseases in patients with CGD is limited. The present study describes the adverse reactions to BCG and TB in Mexican patients with CGD. METHODS: Patients with CGD who were evaluated at the Immunodeficiency Laboratory of the National Institute of Pediatrics between 2013 and 2024 were included. Medical records were reviewed to determine the clinical course and treatment of adverse reactions to BCG and TB disease. RESULTS: A total of 79 patients with CGD were included in this study. Adverse reactions to BCG were reported in 55 (72%) of 76 patients who received the vaccine. Tuberculosis was diagnosed in 19 (24%) patients. Relapse was documented in three (10%) of 31 patients with BGC-osis and six (32%) of 19 patients with TB, despite antituberculosis treatment. There was no difference in the frequency of BCG and TB disease between patients with pathogenic variants of the X-linked CYBB gene versus recessive variants. CONCLUSIONS: This report highlights the importance of considering TB in endemic areas and BCG complications in children with CGD to enable appropriate diagnostic and therapeutic approaches to improve prognosis and reduce the risk of relapse.


Assuntos
Vacina BCG , Doença Granulomatosa Crônica , NADPH Oxidase 2 , Tuberculose , Humanos , Doença Granulomatosa Crônica/diagnóstico , Doença Granulomatosa Crônica/epidemiologia , Doença Granulomatosa Crônica/complicações , Vacina BCG/efeitos adversos , Masculino , Feminino , Criança , Tuberculose/epidemiologia , Tuberculose/imunologia , Pré-Escolar , Lactente , Adolescente , NADPH Oxidase 2/genética , Estudos de Coortes , Mycobacterium bovis , México/epidemiologia , Antituberculosos/uso terapêutico , NADPH Oxidases/genética
3.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(7): 730-735, 2024 Jul 15.
Artigo em Chinês | MEDLINE | ID: mdl-39014950

RESUMO

OBJECTIVES: To study chest computed tomography (CT) manifestations in neonates with chronic granulomatous disease (CGD) to provide clues for early diagnosis of this disease. METHODS: A retrospective analysis was conducted on the clinical data and chest CT scan results of neonates diagnosed with CGD from January 2015 to December 2022 at Anhui Provincial Children's Hospital. RESULTS: Nine neonates with CGD were included, with eight presenting respiratory symptoms as the initial sign. Chest CT findings included: consolidation in all 9 cases; nodules in all 9 cases, characterized by multiple, variably sized scattered nodules in both lungs; masses in 4 cases; cavities in 3 cases; abscesses in 6 cases; bronchial stenosis in 2 cases; pleural effusion, interstitial changes, and mediastinal lymphadenopathy each in 1 case. CT enhancement scans showed nodules and masses with uneven or ring-shaped enhancement; no signs of pulmonary emphysema, lung calcification, halo signs, crescent signs, bronchiectasis, or scar lesions were observed. There was no evidence of rib or vertebral bone destruction. Fungal infections were present in 8 of the 9 cases, including 6 with Aspergillus infections; three of these involved mixed infections with Aspergillus, with masses most commonly associated with mixed Aspergillus infections (3/4). CONCLUSIONS: The primary manifestations of neonatal CGD on chest CT are consolidation, nodules, and/or masses, with Aspergillus as a common pathogen. These features can serve as early diagnostic clues for neonatal CGD.


Assuntos
Doença Granulomatosa Crônica , Tomografia Computadorizada por Raios X , Humanos , Doença Granulomatosa Crônica/diagnóstico por imagem , Recém-Nascido , Masculino , Feminino , Estudos Retrospectivos , Tórax/diagnóstico por imagem
6.
Genes (Basel) ; 15(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38927642

RESUMO

Chronic granulomatous disease (CGD) is an inherited immunodeficiency disease mainly caused by mutations in the X-linked CYBB gene that abrogate reactive oxygen species (ROS) production in phagocytes and microbial defense. Gene repair using the CRISPR/Cas9 system in hematopoietic stem and progenitor cells (HSPCs) is a promising technology for therapy for CGD. To support the establishment of efficient and safe gene therapies for CGD, we generated a mouse model harboring a patient-derived mutation in the CYBB gene. Our CybbC517del mouse line shows the hallmarks of CGD and provides a source for Cybb-deficient HSPCs that can be used to evaluate gene-therapy approaches in vitro and in vivo. In a setup using Cas9 RNPs and an AAV repair vector in HSPCs, we show that the mutation can be repaired in 19% of treated cells and that treatment restores ROS production by macrophages. In conclusion, our CybbC517del mouse line provides a new platform for refining and evaluating novel gene therapies and studying X-CGD pathophysiology.


Assuntos
Sistemas CRISPR-Cas , Modelos Animais de Doenças , Terapia Genética , Doença Granulomatosa Crônica , NADPH Oxidase 2 , Doença Granulomatosa Crônica/terapia , Doença Granulomatosa Crônica/genética , Animais , Terapia Genética/métodos , Camundongos , NADPH Oxidase 2/genética , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Macrófagos/metabolismo , Mutação
7.
J Clin Immunol ; 44(7): 149, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896305

RESUMO

Chronic granulomatous disease (CGD) primarily results from inherited defects in components of the nicotinamide adenine dinucleotide phosphate oxidase enzyme complex. These include gene defects in cytochrome B-245/558 subunit α/ß and neutrophil cytosolic factors 1, 2, and 4. Recently, homozygous loss-of-function variants in cytochrome B-245 chaperone 1 gene (CYBC1) have been discovered to cause CGD (CYBC1-CGD). Data on variant-proven CGD from low-income countries, the most underprivileged regions of the world, remain sparse due to numerous constraints. Herein, we report the first cohort of patients with CGD from Nepal, a low-income country in the Himalayas' challenging terrain. Our report includes a description of a new case of CYBC1 deficiency who was first diagnosed with CGD at our center. Only a dozen cases of CYBC1-CGD have been described in the literature thus far which have been reviewed comprehensively herein. Most of these patients have had significant infections and autoimmune/inflammatory manifestations. Pulmonary and invasive/disseminated bacterial/fungal infections were the most common followed by skin and soft-tissue infections. Inflammatory bowel disease (IBD) was the most common inflammatory manifestation (median age at diagnosis: 9 years) followed by episodes of recurrent/prolonged fever. Other autoimmune/inflammatory manifestations reported in CYBC1-CGD include acute pancreatitis, hemophagocytic lymphohistiocytosis, systemic granulomatosis, interstitial lung disease, arthritis, autoimmune hemolytic anemia, uveitis, nephritis, and eczema. Our analysis shows that patients with CYBC1-CGD are at a significantly higher risk of IBD-like illness as compared to other forms of CGD which merits further confirmatory studies in the future.


Assuntos
Doença Granulomatosa Crônica , Humanos , Doença Granulomatosa Crônica/genética , Doença Granulomatosa Crônica/diagnóstico , Nepal/epidemiologia , Masculino , Feminino , Criança , NADPH Oxidases/genética , NADPH Oxidases/deficiência , Pré-Escolar , Adolescente , Mutação/genética
8.
Microbiol Spectr ; 12(7): e0041024, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38809005

RESUMO

The Burkholderia cepacia complex (Bcc) is a group of Gram-negative opportunistic bacteria often associated with fatal pulmonary infections in patients with impaired immunity, particularly those with cystic fibrosis (CF) and chronic granulomatous disease (CGD). Some Bcc strains are known to naturally produce pyomelanin, a brown melanin-like pigment known for scavenging free radicals; pigment production has been reported to enable Bcc strains to overcome the host cell oxidative burst. In this work, we investigated the role of pyomelanin in resistance to oxidative stress and virulence in strains J2315 and K56-2, two epidemic CF isolates belonging to the Burkholderia cenocepacia ET-12 lineage. We previously reported that a single amino acid change from glycine to arginine at residue 378 in homogentisate 1,2-dioxygenase (HmgA) affects the pigment production phenotype: pigmented J2315 has an arginine at position 378, while non-pigmented K56-2 has a glycine at this position. Herein, we performed allelic exchange to generate isogenic non-pigmented and pigmented strains of J2315 and K56-2, respectively, and tested these to determine whether pyomelanin contributes to the protection against oxidative stress in vitro as well as in a respiratory infection in CGD mice in vivo. Our results indicate that the altered pigment phenotype does not significantly impact these strains' ability to resist oxidative stress with H2O2 and NO in vitro and did not change the virulence and infection outcome in CGD mice in vivo suggesting that other factors besides pyomelanin are contributing to the pathophysiology of these strains.IMPORTANCEThe Burkholderia cepacia complex (Bcc) is a group of Gram-negative opportunistic bacteria that are often associated with fatal pulmonary infections in patients with impaired immunity, particularly those with cystic fibrosis and chronic granulomatous disease (CGD). Some Bcc strains are known to naturally produce pyomelanin, a brown melanin-like pigment known for scavenging free radicals and overcoming the host cell oxidative burst. We investigated the role of pyomelanin in Burkholderia cenocepacia strains J2315 (pigmented) and K56-2 (non-pigmented) and performed allelic exchange to generate isogenic non-pigmented and pigmented strains, respectively. Our results indicate that the altered pigment phenotype does not significantly impact these strains' ability to resist H2O2 or NO in vitro and did not alter the outcome of a respiratory infection in CGD mice in vivo. These results suggest that pyomelanin may not always constitute a virulence factor and suggest that other features are contributing to the pathophysiology of these strains.


Assuntos
Infecções por Burkholderia , Burkholderia cenocepacia , Doença Granulomatosa Crônica , Homogentisato 1,2-Dioxigenase , Melaninas , Animais , Feminino , Humanos , Camundongos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/patogenicidade , Burkholderia cenocepacia/metabolismo , Infecções por Burkholderia/microbiologia , Fibrose Cística/microbiologia , Modelos Animais de Doenças , Doença Granulomatosa Crônica/microbiologia , Doença Granulomatosa Crônica/genética , Homogentisato 1,2-Dioxigenase/genética , Homogentisato 1,2-Dioxigenase/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Melaninas/metabolismo , Mutação , Estresse Oxidativo , Virulência/genética
9.
Proc Natl Acad Sci U S A ; 121(23): e2320388121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805284

RESUMO

Essential for reactive oxygen species (EROS) protein is a recently identified molecular chaperone of NOX2 (gp91phox), the catalytic subunit of phagocyte NADPH oxidase. Deficiency in EROS is a recently identified cause for chronic granulomatous disease, a genetic disorder with recurrent bacterial and fungal infections. Here, we report a cryo-EM structure of the EROS-NOX2-p22phox heterotrimeric complex at an overall resolution of 3.56Å. EROS and p22phox are situated on the opposite sides of NOX2, and there is no direct contact between them. EROS associates with NOX2 through two antiparallel transmembrane (TM) α-helices and multiple ß-strands that form hydrogen bonds with the cytoplasmic domain of NOX2. EROS binding induces a 79° upward bend of TM2 and a 48° backward rotation of the lower part of TM6 in NOX2, resulting in an increase in the distance between the two hemes and a shift of the binding site for flavin adenine dinucleotide (FAD). These conformational changes are expected to compromise superoxide production by NOX2, suggesting that the EROS-bound NOX2 is in a protected state against activation. Phorbol myristate acetate, an activator of NOX2 in vitro, is able to induce dissociation of NOX2 from EROS with concurrent increase in FAD binding and superoxide production in a transfected COS-7 model. In differentiated neutrophil-like HL-60, the majority of NOX2 on the cell surface is dissociated with EROS. Further studies are required to delineate how EROS dissociates from NOX2 during its transport to cell surface, which may be a potential mechanism for regulation of NOX2 activation.


Assuntos
Microscopia Crioeletrônica , NADPH Oxidase 2 , NADPH Oxidases , Fagócitos , Humanos , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , NADPH Oxidase 2/química , Fagócitos/metabolismo , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/química , Ligação Proteica , Sítios de Ligação , Doença Granulomatosa Crônica/metabolismo , Doença Granulomatosa Crônica/genética , Modelos Moleculares , Espécies Reativas de Oxigênio/metabolismo
10.
J Clin Immunol ; 44(5): 125, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760640

RESUMO

BACKGROUND: Chronic Granulomatous Disease (CGD) is a rare immunodeficiency disorder characterized by impaired phagocytic function, leading to recurrent infections and granuloma formation. Genetic mutations in NADPH oxidase complex components, such as CYBB, NCF1, NCF2, and CYBA genes, contribute to the pathogenesis. This case report explores the possible ocular and hematologic complications associated with CGD. CASE PRESENTATION: A 6-year-old girl with a history of vitrectomy, membranotomy, and laser therapy due to congenital blindness (diagnosed with chorioretinopathy) was referred to the hospital with generalized ecchymosis and thrombocytopenia. Diagnostic workup initially suggested chronic immune thrombocytopenic purpura (ITP). Subsequent admissions revealed necrotic wounds, urinary tract infections, and recurrent thrombocytopenia. Suspecting immunodeficiency, tests for CGD, Nitroblue tetrazolium (NBT) and dihydrorhodamine (DHR) were performed. She had a low DHR (6.7), and her NBT test was negative (0.0%). Her whole exome sequencing results confirmed autosomal recessive CGD with a homozygous NCF1 mutation. CONCLUSION: This case underscores the diverse clinical manifestations of CGD, including recurrent thrombocytopenia and possible early-onset ocular involvement. The diagnostic challenges highlight the importance of a multidisciplinary approach involving hematologists, immunologists, and ophthalmologists for accurate diagnosis and management. The rare coexistence of ITP in CGD emphasizes the intricate link between immunodeficiency and autoimmunity, requiring tailored therapeutic strategies.


Assuntos
Doença Granulomatosa Crônica , Púrpura Trombocitopênica Idiopática , Humanos , Feminino , Doença Granulomatosa Crônica/diagnóstico , Doença Granulomatosa Crônica/genética , Doença Granulomatosa Crônica/complicações , Criança , Púrpura Trombocitopênica Idiopática/diagnóstico , Púrpura Trombocitopênica Idiopática/genética , Púrpura Trombocitopênica Idiopática/complicações , NADPH Oxidases/genética , Mutação , Sequenciamento do Exoma
11.
G3 (Bethesda) ; 14(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38696730

RESUMO

Reactive oxygen species are important effectors and modifiers of the acute inflammatory response, recruiting phagocytes including neutrophils to sites of tissue injury. In turn, phagocytes such as neutrophils are both consumers and producers of reactive oxygen species. Phagocytes including neutrophils generate reactive oxygen species in an oxidative burst through the activity of a multimeric phagocytic nicotinamide adenine dinucleotide phosphate oxidase complex. Mutations in the NOX2/CYBB (previously gp91phox) nicotinamide adenine dinucleotide phosphate oxidase subunit are the commonest cause of chronic granulomatous disease, a disease characterized by infection susceptibility and an inflammatory phenotype. To model chronic granulomatous disease, we made a nox2/cybb zebrafish (Danio rerio) mutant and demonstrated it to have severely impaired myeloid cell reactive oxygen species production. Reduced early survival of nox2 mutant embryos indicated an essential requirement for nox2 during early development. In nox2/cybb zebrafish mutants, the dynamics of initial neutrophil recruitment to both mild and severe surgical tailfin wounds was normal, suggesting that excessive neutrophil recruitment at the initiation of inflammation is not the primary cause of the "sterile" inflammatory phenotype of chronic granulomatous disease patients. This nox2 zebrafish mutant adds to existing in vivo models for studying reactive oxygen species function in myeloid cells including neutrophils in development and disease.


Assuntos
Mutação , Células Mieloides , NADPH Oxidase 2 , Espécies Reativas de Oxigênio , Peixe-Zebra , Animais , Espécies Reativas de Oxigênio/metabolismo , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo , Células Mieloides/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Neutrófilos/metabolismo , Infiltração de Neutrófilos , Cauda , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Doença Granulomatosa Crônica/genética , Modelos Animais de Doenças
12.
Mikrochim Acta ; 191(5): 295, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700804

RESUMO

White blood cells (WBCs) are robust defenders during antigenic challenges and prime immune cell functioning indicators. High-purity WBC separation is vital for various clinical assays and disease diagnosis. Red blood cells (RBCs) are a major hindrance in WBC separation, constituting 1000 times the WBC population. The study showcases a low-cost micropump integrated microfluidic platform to provide highly purified WBCs for point-of-care testing. An integrated user-friendly microfluidic platform was designed to separate WBCs from finger-prick blood (⁓5 µL), employing an inertial focusing technique. We achieved an efficient WBC separation with 86% WBC purity and 99.99% RBC removal rate in less than 1 min. In addition, the microdevice allows lab-on-chip colorimetric evaluation of chronic granulomatous disease (CGD), a rare genetic disorder affecting globally. The assay duration, straight from separation to disease detection, requires only 20 min. Hence, the proposed microfluidic platform can further be implemented to streamline various clinical procedures involving WBCs in healthcare industries.


Assuntos
Separação Celular , Doença Granulomatosa Crônica , Dispositivos Lab-On-A-Chip , Leucócitos , Técnicas Analíticas Microfluídicas , Humanos , Doença Granulomatosa Crônica/diagnóstico , Doença Granulomatosa Crônica/sangue , Leucócitos/citologia , Separação Celular/instrumentação , Separação Celular/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos
13.
Scand J Immunol ; 100(1): e13372, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38654426

RESUMO

Chronic granulomatous disease (CGD) is a primary immunodeficiency disease caused by molecular defects in nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. p67phox-CGD is an autosomal recessive CGD, which is caused by a defect in the cytosolic components of NADPH oxidase, p67phox, encoded by NCF2. We previously established a flow cytometric analysis for p67phox expression, which allows accurate assessment of residual protein expression in p67phox-CGD. We evaluated the correlation between oxidase function and p67phox expression, and assessed the relevancy to genotypes and clinical phenotypes in 11 patients with p67phox-CGD. Reactive oxygen species (ROS) production by granulocytes was evaluated using dihydrorhodamine-1,2,3 (DHR) assays. p67phox expression was evaluated in the monocyte population. DHR activity and p67phox expression were significantly correlated (r = 0.718, p < 0.0162). Additionally, DHR activity and p67phox expression were significantly higher in patients carrying one missense variant in combination with one nonsense or frameshift variant in the NCF2 gene than in patients with only null variants. The available clinical parameters of our patients (i.e., age at disease onset, number of infectious episodes, and each infection complication) were not linked with DHR activity or p67phox expression levels. In summary, our flow cytometric analysis revealed a significant correlation between residual ROS production and p67phox expression. More deleterious NCF2 genotypes were associated with lower levels of DHR activity and p67phox expression. DHR assays and protein expression analysis by using flow cytometry may be relevant strategies for predicting the genotypes of p67phox-CGD.


Assuntos
Citometria de Fluxo , Doença Granulomatosa Crônica , NADPH Oxidases , Fosfoproteínas , Espécies Reativas de Oxigênio , Humanos , Doença Granulomatosa Crônica/genética , Doença Granulomatosa Crônica/metabolismo , Espécies Reativas de Oxigênio/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Citometria de Fluxo/métodos , Masculino , Feminino , Criança , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Pré-Escolar , Lactente , Adolescente , Genótipo , Granulócitos/metabolismo , Adulto , Monócitos/metabolismo
15.
Immunol Rev ; 322(1): 71-80, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429865

RESUMO

Since their description by Metchnikoff in 1905, phagocytes have been increasingly recognized to be the entities that traffic to sites of infection and inflammation, engulf and kill infecting organisms, and clear out apoptotic debris all the while making antigens available and accessible to the lymphoid organs for future use. Therefore, phagocytes provide the gateway and the first check in host protection and immune response. Disorders in killing and chemotaxis lead not only to infection susceptibility, but also to autoimmunity. We aim to describe chronic granulomatous disease and the leukocyte adhesion deficiencies as well as myeloperoxidase deficiency and G6PD deficiency as paradigms of critical pathways.


Assuntos
Doença Granulomatosa Crônica , Neutrófilos , Humanos , Doença Granulomatosa Crônica/metabolismo , Fagocitose , Fagócitos/fisiologia , Inflamação/metabolismo
16.
Front Immunol ; 15: 1354836, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404573

RESUMO

Introduction: Loss of NADPH oxidase activity results in proinflammatory macrophages that contribute to hyperinflammation in Chronic Granulomatous Disease (CGD). Previously, it was shown in a zymosan-induced peritonitis model that gp91phox-/- (CGD) monocyte-derived macrophages (MoMacs) fail to phenotypically mature into pro-resolving MoMacs characteristic of wild type (WT) but retain the ability to do so when placed in the WT milieu. Accordingly, it was hypothesized that soluble factor(s) in the CGD milieu thwart appropriate programming. Methods: We sought to identify key constituents using ex vivo culture of peritoneal inflammatory leukocytes and their conditioned media. MoMac phenotyping was performed via flow cytometry, measurement of efferocytic capacity and multiplex analysis of secreted cytokines. Addition of exogenous TNFα, TNFα neutralizing antibody and TNFR1-/- MoMacs were used to study the role of TNFα: TNFR1 signaling in MoMac maturation. Results: More extensive phenotyping defined normal MoMac maturation and demonstrated failure of maturation of CGD MoMacs both ex vivo and in vivo. Protein components, and specifically TNFα, produced and released by CGD neutrophils and MoMacs into conditioned media was identified as critical to preventing maturation. Exogenous addition of TNFα inhibited WT MoMac maturation, and its neutralization allowed maturation of cultured CGD MoMacs. TNFα neutralization also reduced production of IL-1ß, IL-6 and CXCL1 by CGD cells though these cytokines played no role in MoMac programming. MoMacs lacking TNFR1 matured more normally in the CGD milieu both ex vivo and following adoptive transfer in vivo. Discussion: These data lend mechanistic insights into the utility of TNFα blockade in CGD and to other diseases where such therapy has been shown to be beneficial.


Assuntos
Doença Granulomatosa Crônica , Receptores Tipo I de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa , Animais , Camundongos , Meios de Cultivo Condicionados/metabolismo , Citocinas/metabolismo , Doença Granulomatosa Crônica/terapia , Macrófagos/metabolismo , NADPH Oxidases/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
Front Immunol ; 15: 1307932, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370416

RESUMO

Introduction: Hematopoietic stem cell transplantation (HCT) can cure chronic granulomatous disease (CGD). However, transplant-associated morbidity or mortality may occur, and it is still controversial which patients benefit from this procedure. The aim of this retrospective study was to evaluate the outcome of pediatric patients who received HCT in one of the Spanish pediatric transplant units. Results: Thirty children with a median age of 6.9 years (range 0.6-12.7) were evaluated: 8 patients received a transplant from a sibling donor (MSD), 21 received a transplant from an unrelated donor (UD), and 1 received a haploidentical transplant. The majority of the patients received reduced-intensity conditioning regimens based on either busulfan plus fludarabine or treosulfan. Relevant post-HCT complications were as follows: i) graft failure (GF), with a global incidence of 28.26% (CI: 15.15-48.88), 11.1% in patients with MSD (1.64-56.70) and 37.08% in unrelated donors (19.33-63.17); and ii) chronic graft-versus-host disease (GVHD), with an incidence of 20.5% (8.9-43.2), 11.1% in patients with MSD (1.64-56.70) and 26.7% in unrelated donors (10.42-58.44). Post-HCT infections were usually manageable, but two episodes of pulmonary aspergillosis were diagnosed in the context of graft rejection. The 2-year OS was 77.3% (55.92-89.23). There were no statistically significant differences among donor types. Discussion: HCT in patients with CGD is a complex procedure with significant morbidity and mortality, especially in patients who receive grafts from unrelated donors. These factors need to be considered in the decision-making process and when discussing conditioning and GVHD prophylaxis.


Assuntos
Doença Enxerto-Hospedeiro , Doença Granulomatosa Crônica , Transplante de Células-Tronco Hematopoéticas , Humanos , Criança , Lactente , Pré-Escolar , Doença Granulomatosa Crônica/complicações , Estudos Retrospectivos , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Doadores não Relacionados
18.
Clin Immunol ; 260: 109919, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38309448

RESUMO

Chronic granulomatous disease (CGD) in children is a rare primary immunodeficiency disorder that can lead to life-threatening infections and inflammatory complications. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is increasingly being used to treat severe CGD in children. We conducted a multicenter retrospective analysis of children with CGD who were treated with allo-HSCT at four pediatric hematopoietic stem cell transplant centers in China from September 2005 to December 2019. The study included a total of 171 patients (169 males and 2 females). The median age at the time of transplantation was 6.1 (0-16.4) years. Among them, 154 patients had X-linked recessive inheritance caused by CYBB gene mutations, 12 patients were autosomal recessive, 1 patient had DNAH11 and HYDIN gene mutations, and 4 patients had no gene mutations. The median follow-up period was 36.3 (1.9-79) months. All participating patients were applied to myeloablative conditioning (MAC) regimens. The rates of OS, EFS, and GEFS within three years were 87.5%, 85.3%, and 75.2%, respectively. The total graft failure and the total mortality rate were 5.3% and 11.1%. The cumulative incidence of acute GVHD was 53.8% and the incidence of chronic GVHD was 12.9%, The incidence of chronic GVHD was higher for patients who received unrelated donor cord blood stem cell transplantation (UD-CB) (P = 0.001). Chronic GVHD and coinfections are the risk factors for OS and EFS in patients with CGD after receiving allo-HSCT. UD-CB is a risk factor for EFS and the presence of pneumonia before transplantation is a risk factor for OS. In conclusion, through this study, we have demonstrated that allo-HSCT has excellent efficacy in the treatment of CGD in children, especially, RD-haplo is associated with a lower rate of graft failure incidence and mortality than the treatment modalities of other donor type. Therefore, allo-HSCT is strongly recommended when a well-matched donor is available. If a well-matched donor is not available, the HLA-mismatched donor should be carefully evaluated, and the conditioning regimen modified accordingly.


Assuntos
Doença Enxerto-Hospedeiro , Doença Granulomatosa Crônica , Transplante de Células-Tronco Hematopoéticas , Masculino , Criança , Feminino , Humanos , Adolescente , Estudos Retrospectivos , Doença Granulomatosa Crônica/genética , Doença Granulomatosa Crônica/terapia , Doença Granulomatosa Crônica/complicações , Doença Enxerto-Hospedeiro/etiologia , Doadores não Relacionados , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , China , Condicionamento Pré-Transplante
19.
Medicine (Baltimore) ; 103(5): e37198, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306523

RESUMO

INTRODUCTION: X-linked recessive chronic granulomatous disease (XR-CGD) is a severe primary immunodeficiency principally caused by a CYBB (OMIM: 300481) gene variant. Recurrent fatal bacterial or fungal infections are the main clinical manifestations of XR-CGD. PATIENT CONCERNS: In the current case, in vitro fertilization (IVF) associated with preimplantation genetic testing for monogenic disorder (PGT-M) was applied for a Chinese couple who had given birth to a boy with XR-CGD. DIAGNOSIS: Next-generation sequencing-based SNP haplotyping and Sanger-sequencing were used to detect the CYBB gene variant (c.804 + 2T>C, splicing) in this family. INTERVENTIONS: The patient was treated with IVF and PGT-M successively. OUTCOMES: In this IVF cycle, 7 embryos were obtained, and 2 of them were euploid and lacked the CYBB gene variant (c.804 + 2T>C). The PGT results were verified by prenatal diagnosis after successful pregnancy, and a healthy girl was eventually born. CONCLUSION: PGT-M is an effective method for helping families with these fatal and rare inherited diseases to have healthy offspring. It can availably block the transmission of disease-causing loci to descendant.


Assuntos
Doença Granulomatosa Crônica , Diagnóstico Pré-Implantação , Masculino , Gravidez , Feminino , Humanos , Doença Granulomatosa Crônica/diagnóstico , Doença Granulomatosa Crônica/genética , Diagnóstico Pré-Implantação/métodos , Testes Genéticos/métodos , Diagnóstico Pré-Natal , Fertilização in vitro , Aneuploidia , NADPH Oxidase 2/genética
20.
Immunol Lett ; 266: 106839, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309375

RESUMO

The X-linked chronic granulomatous disease (X-CGD), a rare genetic disease characterised by recurrent infections, is caused by mutations of NOX2. Significant proportions of X-CGD patients display signs of immune dysregulation. Regulatory T cells (Tregs) are CD4+T lymphocytes that expand in active inflammation and prevent autoimmune disorders. Here we asked whether X-CGD is associated to Treg dysfunctions in adult patients. To this aim, the frequency of Tregs was analysed through intracellular flow cytometry in a cohort of adult X-CGD patients, carriers and controls. We found that Tregs were significantly expanded and activated in blood of adult X-CGD patients, and this was associated with activation of conventional CD4+T cells (Tconvs). T cell activation was characterised by accumulation of intracellular ROS, not derived from NOX2 but likely produced by cellular metabolism. The higher TNF production by Tconvs in X-CGD patients might contribute to the expansion of Tregs through the TNFR2 receptor. In summary, our data indicate that Tregs expand in adult X-CGD in response to immune activation, and that the increase of NOX2-independent ROS content is a feature of activated T cells.


Assuntos
Doença Granulomatosa Crônica , Adulto , Humanos , Doença Granulomatosa Crônica/genética , Doença Granulomatosa Crônica/metabolismo , Linfócitos T Reguladores , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA