Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.854
Filtrar
1.
Planta ; 260(5): 112, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39361039

RESUMO

MAIN CONCLUSION: Unlike Arabidopsis thaliana, defenses of Arabidopsis lyrata against Pieris brassicae larval feeding are not primable by P. brassicae eggs. Thus, egg primability of plant anti-herbivore defenses is not phylogenetically conserved in the genus Arabidopsis. While plant anti-herbivore defenses of the annual species Arabidopsis thaliana were shown to be primable by Pieris brassicae eggs, the primability of the phylogenetically closely related perennial Arabidopsis lyrata has not yet been investigated. Previous studies revealed that closely related wild Brassicaceae plant species, the annual Brassica nigra and the perennial B. oleracea, exhibit an egg-primable defense trait, even though they have different life spans. Here, we tested whether P. brassicae eggs prime anti-herbivore defenses of the perennial A. lyrata. We exposed A. lyrata to P. brassicae eggs and larval feeding and assessed their primability by (i) determining the biomass of P. brassicae larvae after feeding on plants with and without prior P. brassicae egg deposition and (ii) investigating the plant transcriptomic response after egg deposition and/or larval feeding. For comparison, these studies were also conducted with A. thaliana. Consistent with previous findings, A. thaliana's response to prior P. brassicae egg deposition negatively affected conspecific larvae feeding upon A. thaliana. However, this was not observed in A. lyrata. Arabidopsis thaliana responded to P. brassicae eggs with strong transcriptional reprogramming, whereas A. lyrata responses to eggs were negligible. In response to larval feeding, A. lyrata exhibited a greater transcriptome change compared to A. thaliana. Among the strongly feeding-induced A. lyrata genes were those that are egg-primed in feeding-induced A. thaliana, i.e., CAX3, PR1, PR5, and PDF1.4. These results suggest that A. lyrata has evolved a robust feeding response that is independent from prior egg exposure.


Assuntos
Arabidopsis , Borboletas , Herbivoria , Larva , Arabidopsis/genética , Arabidopsis/fisiologia , Borboletas/fisiologia , Animais , Larva/fisiologia , Óvulo/fisiologia , Regulação da Expressão Gênica de Plantas , Defesa das Plantas contra Herbivoria , Transcriptoma
2.
Plant Mol Biol ; 114(5): 110, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39361185

RESUMO

Jasmonic acid (JA), an important plant hormone, plays a crucial role in defending against herbivorous insects. In this study, we have identified a new Bowman-Birk type protease inhibitor (BBTI) protein in maize that is regulated by the JA pathway and exhibits significant antifeedant activity, which is notably induced by exogenous Methyl Jasmonate and Ostrinia furnacalis feeding treatments. Bioinformatics analysis revealed significant differences in the BBTI protein among different maize inbred lines, except for the conserved domain. Prokaryotic and eukaryotic expression systems were constructed and expressed, and combined with bioassays, it was demonstrated that the antifeedant activity of BBTI is determined by protein modifications and conserved domains. Through RT-qPCR detection of BBTI and JA regulatory pathway-related genes' temporal expression in different maize inbred lines, we identified the regulatory mechanism of BBTI synthesis under the JA pathway. This study successfully cloned and identified the MeJA-induced anti-feedant activity gene BBTI and conducted functional validation in different maize inbred lines, providing valuable insights into the response mechanism of insect resistance induced by the plant JA pathway. The increased expression of the anti-feedant activity gene BBTI through exogenous MeJA induction may offer a potential new strategy for mediating plant defense against Lepidoptan insects.


Assuntos
Acetatos , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Mariposas , Oxilipinas , Proteínas de Plantas , Zea mays , Zea mays/genética , Zea mays/efeitos dos fármacos , Zea mays/metabolismo , Zea mays/parasitologia , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Animais , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Acetatos/farmacologia , Mariposas/efeitos dos fármacos , Mariposas/fisiologia , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Inibidores de Proteases/farmacologia , Inibidores de Proteases/metabolismo , Herbivoria , Sequência de Aminoácidos , Filogenia
3.
Biol Lett ; 20(10): 20240384, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39353566

RESUMO

One assumed function of herbivore-induced plant volatiles (HIPVs) is to attract natural enemies of the inducing herbivores. Field evidence for this is scarce. In addition, the assumption that elicitors in oral secretions that trigger the volatile emissions are essential for the attraction of natural enemies has not yet been demonstrated under field conditions. After observing predatory social wasps removing caterpillars from maize plants, we hypothesized that these wasps use HIPVs to locate their prey. To test this, we conducted an experiment that simultaneously explored the importance of caterpillar oral secretions in the interaction. Spodoptera caterpillars pinned onto mechanically damaged plants treated with oral secretion were more likely to be attacked by wasps compared with caterpillars on plants that were only mechanically wounded. Both of the latter treatments were considerably more attractive than plants only treated with oral secretion or left untreated. Subsequent analyses of headspace volatiles confirmed differences in emitted volatiles that likely account for the differential predation across treatments. These findings highlight the importance of HIPVs in prey localization by social wasps, hitherto underappreciated potential biocontrol agents and provide evidence for the role that elicitors play in inducing attractive odour blends.


Assuntos
Larva , Comportamento Predatório , Spodoptera , Compostos Orgânicos Voláteis , Vespas , Animais , Vespas/fisiologia , Compostos Orgânicos Voláteis/metabolismo , Spodoptera/fisiologia , Larva/fisiologia , Zea mays , Herbivoria
4.
Ecol Lett ; 27(9): e14499, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39354894

RESUMO

Shelter-building insects are important ecosystem engineers, playing critical roles in structuring arthropod communities. Nonetheless, the influence of leaf shelters and arthropods on plant-associated microbiota remains largely unexplored. Arthropods that visit or inhabit plants can contribute to the leaf microbial community, resulting in significant changes in plant-microbe interactions. By artificially constructing leaf shelters, we provide evidence that shelter-building insects influence not only the arthropod community structure but also impact the phyllosphere microbiota. Leaf shelters exhibited higher abundance and richness of arthropods, changing the associated arthropod community composition. These shelters also altered the composition and community structure of phyllosphere microbiota, promoting greater richness and diversity of bacteria at the phyllosphere. In leaf shelters, microbial diversity positively correlated with the richness and diversity of herbivores. These findings demonstrate the critical role of leaf shelters in structuring both arthropod and microbial communities through altered microhabitats and species interactions.


Assuntos
Artrópodes , Biodiversidade , Microbiota , Folhas de Planta , Animais , Folhas de Planta/microbiologia , Artrópodes/microbiologia , Bactérias/classificação , Bactérias/genética , Ecossistema , Herbivoria
5.
BMC Plant Biol ; 24(1): 920, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39354343

RESUMO

Populus cathayana × canadansis 'Xinlin 1' ('P.'xin lin 1') with the characteristics of rapid growth and high yield, is frequently attacked by herbivorous insects. However, little is known about how it defenses against Hyphantria cunea (H. cunea) at molecular and biochemical levels. Differences in the transcriptome and metabolome were analyzed after 'P. 'xin lin 1' leaves were fed to H. cunea for 0h, 2h, 4h, 8h, 16h and 24h. In the five comparison groups including 2h vs. CK, 4h vs. CK, 8h vs. CK, 16h vs. CK, and 24h vs. CK, a total of 8925 genes and 842 metabolites were differentially expressed. A total of 825 transcription factors (TFs) were identified, which encoded 56 TF families. The results showed that the top four families with the highest number of TFs were AP2/ERF, MYB, C2C2, bHLH. Analyses of leaves which were fed to H. cunea showed that the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were significantly enriched in plant hormone signal transduction pathway, MAPK signaling pathway, flavonoid, flavone and flavonol and anthocyanin biosynthesis pathway. Additionally, there were a number of genes significantly up-regulated in MAPK signaling pathway. Some compounds involved in plant hormone signal transduction and flavonoid/flavone and flavonol/ anthocyanin pathways such as jasmonic acid (JA), jasmonoyl-L-Isoleucine (JA-Ile), kaempferol and cyanidin-3-O-glucoside were induced in infested 'P.'xin lin 1'. This study provides a new understanding for exploring the dynamic response mechanism of poplar to the infestation of H. cunea.


Assuntos
Populus , Transcriptoma , Populus/genética , Populus/metabolismo , Herbivoria , Animais , Metaboloma , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Folhas de Planta/genética , Perfilação da Expressão Gênica , Metabolômica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
6.
Science ; 385(6714): 1225-1230, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39265014

RESUMO

Biogenic secondary organic aerosols (SOAs) can be formed from the oxidation of plant volatiles in the atmosphere. Herbivore-induced plant volatiles (HIPVs) can elicit plant defenses, but whether such ecological functions persist after they form SOAs was previously unknown. Here we show that Scots pine seedlings damaged by large pine weevils feeding on their roots release HIPVs that trigger defenses in neighboring conspecific plants. The biological activity persisted after HIPVs had been oxidized to form SOAs, which was indicated by receivers displaying enhanced photosynthesis, primed volatile defenses, and reduced weevil damage. The elemental composition and quantity of SOAs likely determines their biological functions. This work demonstrates that plant-derived SOAs can mediate interactions between plants, highlighting their ecological significance in ecosystems.


Assuntos
Aerossóis , Herbivoria , Raízes de Plantas , Compostos Orgânicos Voláteis , Gorgulhos , Animais , Compostos Orgânicos Voláteis/metabolismo , Gorgulhos/fisiologia , Raízes de Plantas/metabolismo , Pinus sylvestris/metabolismo , Plântula/metabolismo , Oxirredução , Fotossíntese , Defesa das Plantas contra Herbivoria
7.
Proc Biol Sci ; 291(2030): 20241448, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39257318

RESUMO

East Asian herbivorous waterfowl intensively use farmland in spring, next to their natural habitat. Accordingly, they might have expanded their migration strategy from merely tracking the green wave of newly emerging vegetation to also incorporating the availability of post-harvest agricultural seeds (here dubbed the seed wave). However, if and how waterfowl use multiple food resources to time their seasonal migration is still unknown. We test this migration strategy using 167 spring migration tracks of five East Asian herbivorous waterfowl species and mixed-effect resource selection function models. We found that all study species arrived at their core stopover sites in the Northeast China Plain after agricultural seeds became available, extended their stay after spring vegetation emerged and arrived at their breeding sites around the emergence of vegetation. At the core stopover sites, all study species used snowmelt as a cue to track seed availability, although smaller-bodied species tended to arrive later. At the breeding sites, swans tracked the onset of vegetation emergence and geese tracked the mid- or end phases of snowmelt. Our findings suggest that waterfowl track multiple resource waves to fine-tune their migration, highlighting new opportunities for conservation.


Assuntos
Migração Animal , Anseriformes , Herbivoria , Estações do Ano , Animais , Anseriformes/fisiologia , China , Gansos/fisiologia , Ecossistema
8.
PLoS One ; 19(9): e0308472, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39240942

RESUMO

Increasing densities of woody plants, known as woody plant encroachment, is a phenomenon affecting savannas and grasslands in many parts of the world. Yet, these ecosystems sustain a significant proportion of the human population through the provision of ecosystem services, such as forage for livestock and wildlife production. While low to medium altitude rangelands are encroached by many species of woody plants, high altitude rangelands in southern Africa show increasing densities of Leucosidea sericea, a woody shrub or small to medium-sized tree. Influences of this species on rangeland dynamics are unknown. This study aimed to determine the influence of L. sericea on rangeland functioning in the Vuvu communal area in the Eastern Cape, South Africa. Effects of L. sericea on plant species diversity and composition, rangeland condition and grazing capacity were measured in sites of variable densities of the species in topographical locations designated as plains, upland and stream sites, using a point-to-tuft method along 50-m long transects. Soil samples were collected to a depth of 5 cm from plains, streams, and upland sites, and analysed for organic carbon, nitrogen, phosphorus, magnesium, calcium, and pH. Plant species richness and abundance were similar among topographical locations, which was reflected by the similar Shannon-Weiner (H') diversity indices among sites. Topographical locations differed significantly in species composition. The plains sites had a higher grazing capacity than stream sites, which had a grazing capacity similar to that of upland sites. Values of soil physicochemical properties were similar among the sites. Overall, soils were acidic (range in pH: 4.4-4.6) and had low amounts of organic carbon and total nitrogen. These findings suggest that L. sericea is not the primary cause of rangeland degradation as all sites were in poor condition as shown by the low grazing capacity, poor rangeland condition and depauperate species richness and diversity. Therefore, rangeland management should shift towards restoration strategies aimed to revitalise the rangeland.


Assuntos
Altitude , Ecossistema , Solo , África do Sul , Solo/química , Fabaceae , Herbivoria , Animais , Pradaria , Biodiversidade , Nitrogênio/análise
9.
BMC Plant Biol ; 24(1): 839, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242992

RESUMO

Dominant species occupy a pivotal role in plant community, influencing the structure and function of the ecosystem. The spatial distributions of dominant species can react to the effect of different grazing intensities, thereby reflecting their tolerance and adaptive strategies toward grazing. In this study, geostatistical methods were mainly used to study the spatial distribution characteristics of Stipa krylovii Roshev. and Leymus chinensis (Trin.) Tzvel. species at two interval scales (quadrat size 5 m × 5 m, 10 m × 10 m) and two treatments (free grazing, FG, 1.66 sheep·ha- 1·a- 1; control, CK, 0 sheep·ha- 1·a- 1) in typical steppe of Inner Mongolia. A systematic sampling method was used in each 100 m × 100 m representative sample plots to obtain the height, coverage, and density of all species in the community. The results showed that grazing altered the concentrated distribution of S. krylovii and the spatial mosaic distribution pattern of S. krylovii and L. chinensis while having no effect on the spatial clumped distribution of L. chinensis. It also found that the spatial distributions of dominant species are primarily affected by structural factors, and random factors such as long-term grazing led to a transition of S. krylovii from a concentrated distribution to a small patchy random pattern should not be overlooked. Our findings suggest that long-term grazing alters the spatial distribution pattern of dominant species and that adaptive strategies may be the key for maintaining the dominant role of structural factors.


Assuntos
Herbivoria , Herbivoria/fisiologia , Animais , China , Poaceae/fisiologia , Ovinos/fisiologia , Ecossistema , Pradaria
10.
Proc Biol Sci ; 291(2031): 20241513, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39288807

RESUMO

Herbivory is a major threat to virtually all plants, so adaptations to avoid herbivory will generally be selected. One potential adaptation is the ability to 'listen in' on the volatile cues emitted by plants that are experiencing herbivory and to then respond by ramping up defences. The nature of these volatile cues is poorly understood. Sagebrush (Artemisia tridentata) plants that were exposed to cues of experimentally damaged neighbours experienced less herbivory; this induction was most effective if emitter and receiver plants had similar volatile emission profiles, termed chemotypes. Previously, we observed that sagebrush populations that were in locations with high herbivory exhibited little diversity of volatiles compared to populations with low herbivory. Several hypotheses could produce this correlation. High risk of herbivory could have selected for individuals that converged on a common 'alarm cue' that all individuals would respond to. In this case, individuals of locally rare chemotypes that were less able to eavesdrop would experience more damage than common chemotypes when herbivores were abundant. Alternatively, low chemotypic diversity could allow higher levels of damage to plants. In this case, rare chemotypes would experience less damage than common chemotypes. We examined the chemotypes of sagebrush individuals from multiple sites and found that rare chemotypes experienced more damage than common chemotypes when herbivores were abundant. This pattern was seen among sites and among years with different densities of herbivores. This result is consistent with the hypothesis that herbivory selects for individuals that are effective communicators and shapes the communication system.


Assuntos
Artemisia , Sinais (Psicologia) , Herbivoria , Artemisia/fisiologia , Compostos Orgânicos Voláteis/análise , Animais
11.
Sci Rep ; 14(1): 21317, 2024 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266640

RESUMO

Palm swamp forests are wetland ecosystems typical of the Brazilian Cerrado, which in recent decades have undergone intense changes due to land use alterations and climate change. As a result of these disturbances, many palm swamps have been experiencing significant drying, which can also affect adjacent vegetation. In the present study, we evaluated whether the drying of palm swamps affects the structure of plant-herbivore networks located in adjacent savanna areas in Brazil. Our results show that savanna areas adjacent to dry zones of palm swamps have fewer interactions, fewer interacting species, and a less specialized topology, which corroborates our expectations. Our findings indicate that the drying of palm swamps also has propagated impacts on adjacent savanna vegetation, impairing more specialized interactions in these environments. On the other hand, contrary to expectations, plant-herbivore networks in dry zones displayed higher modularity, lower nestedness and lower robustness than those in wet zones, suggesting that in dry environments, species tend to compartmentalize their interactions, even with lower interaction specialization. This is the first study to investigate the impacts of environmental drying on the structure of plant-herbivore networks in tropical ecosystems, highlighting the complexity of these effects and their differential impact on specialized and generalized interactions. Understanding these dynamics is crucial for developing effective conservation and management strategies in the face of ongoing environmental changes.


Assuntos
Florestas , Pradaria , Áreas Alagadas , Brasil , Mudança Climática , Ecossistema , Arecaceae/fisiologia , Herbivoria/fisiologia , Estresse Fisiológico
12.
Am Nat ; 204(4): 400-415, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39326059

RESUMO

AbstractHow communities assemble and restructure is of critical importance to ecological theory, evolutionary theory, and conservation, but long-term perspectives on the patterns and processes of community assembly are rarely integrated into traditional community ecology, and the utility of communities as an ecological concept has been repeatedly questioned in part because of a lack of temporal perspective. Through a synthesis of paleontological and neontological data, I reconstruct Caribbean frugivore communities over the Quaternary (2.58 million years ago to present). Numerous Caribbean frugivore lineages arise during periods coincident with the global origins of plant-frugivore mutualisms. The persistence of many of these lineages into the Quaternary is indicative of long-term community stability, but an analysis of Quaternary extinctions reveals a nonrandom loss of large-bodied mammalian and reptilian frugivores. Anthropogenic impacts, including human niche construction, underlie the recent reorganization of frugivore communities, setting the stage for continued declines and evolutionary responses in plants that have lost mutualistic partners. These impacts also support ongoing and future introductions of invader complexes: introduced plants and frugivores that further exacerbate native biodiversity loss by interacting more strongly with one another than with native plants or frugivores. This work illustrates the importance of paleontological data and perspectives in conceptualizing ecological communities, which are dynamic and important entities.


Assuntos
Herbivoria , Região do Caribe , Animais , Fósseis , Biodiversidade , Evolução Biológica , Simbiose , Ecossistema
13.
Am Nat ; 204(4): 416-431, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39326060

RESUMO

AbstractThe influence of climate on deep-time plant-insect interactions is becoming increasingly well known, with temperature, CO2 increases (and associated stoichiometric changes in plants), and aridity likely playing a critical role. In our modern climate, all three factors are shifting at an unprecedented rate, with uncertain consequences for biodiversity. To investigate effects of temperature, stoichiometry (specifically that of nitrogen), and aridity on insect herbivory, we explored insect herbivory in three modern floral assemblages and in 39 fossil floras, especially focusing on eight floras around a past hyperthermal event (the Paleocene-Eocene Thermal Maximum) from Bighorn Basin (BB). We find that higher temperatures were associated with increased herbivory in the past, especially among BB sites. In these BB sites, non-N2-fixing plants experienced a lower richness but higher frequency of herbivory damage than N2-fixing plants. Herbivory frequency but not richness was greater in BB sites compared with contemporaneous, nearby, but less arid sites from Hanna Basin. Compared with deep-time environments, herbivory frequency and richness are higher in modern sites, suggesting that current accelerated warming uniquely impacts plant-insect interactions. Overall, our work addresses multiple aspects of climate change using fossil data while also contextualizing the impact of modern anthropogenic change on Earth's most diverse interactions.


Assuntos
Mudança Climática , Fósseis , Herbivoria , Insetos , Temperatura , Animais , Insetos/fisiologia , Nitrogênio/metabolismo , Plantas , Biodiversidade
14.
New Phytol ; 244(3): 914-933, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39223898

RESUMO

Trichomes are specialized epidermal outgrowths covering the aerial parts of most terrestrial plants. There is a large species variability in occurrence of different types of trichomes such that the molecular regulatory mechanism underlying the formation and the biological function of trichomes in most plant species remain unexplored. Here, we used Chrysanthemum morifolium as a model plant to explore the regulatory network in trichome formation and terpenoid synthesis and unravel the physical and chemical roles of trichomes in constitutive defense against herbivore feeding. By analyzing the trichome-related genes from transcriptome database of the trichomes-removed leaves and intact leaves, we identified CmMYC2 to positively regulate both development of T-shaped and glandular trichomes as well as the content of terpenoids stored in glandular trichomes. Furthermore, we found that the role of CmMYC2 in trichome formation and terpene synthesis was mediated by interaction with CmMYBML1. Our results reveal a sophisticated molecular mechanism wherein the CmMYC2-CmMYBML1 feedback inhibition loop regulates the formation of trichomes (non-glandular and glandular) and terpene biosynthesis, collectively contributing to the enhanced resistance to Spodoptera litura larvae feeding. Our findings provide new insights into the novel regulatory network by which the plant synchronously regulates trichome density for the physical and chemical defense against herbivory.


Assuntos
Chrysanthemum , Regulação da Expressão Gênica de Plantas , Herbivoria , Proteínas de Plantas , Terpenos , Tricomas , Tricomas/metabolismo , Terpenos/metabolismo , Chrysanthemum/genética , Chrysanthemum/metabolismo , Chrysanthemum/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Animais , Defesa das Plantas contra Herbivoria , Folhas de Planta/metabolismo , Genes de Plantas , Spodoptera/fisiologia
15.
Mol Biol Evol ; 41(9)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39238368

RESUMO

Insect herbivores frequently cospeciate with symbionts that enable them to survive on nutritionally unbalanced diets. While ancient symbiont gain and loss events have been pivotal for insect diversification and feeding niche specialization, evidence of recent events is scarce. We examine the recent loss of nutritional symbionts (in as little as 1 MY) in sap-feeding Pariaconus, an endemic Hawaiian insect genus that has undergone adaptive radiation, evolving various galling and free-living ecologies on a single host-plant species, Metrosideros polymorpha within the last ∼5 MY. Using 16S rRNA sequencing, we investigated the bacterial microbiomes of 19 Pariaconus species and identified distinct symbiont profiles associated with specific host-plant ecologies. Phylogenetic analyses and metagenomic reconstructions revealed significant differences in microbial diversity and functions among psyllids with different host-plant ecologies. Within a few millions of years, Pariaconus species convergently evolved the closed-gall habit twice. This shift to enclosed galls coincided with the loss of the Morganella-like symbiont that provides the essential amino acid arginine to free-living and open-gall sister species. After the Pariaconus lineage left Kauai and colonized younger islands, both open- and closed-gall species lost the Dickeya-like symbiont. This symbiont is crucial for synthesizing essential amino acids (phenylalanine, tyrosine, and lysine) as well as B vitamins in free-living species. The recurrent loss of these symbionts in galling species reinforces evidence that galls are nutrient sinks and, combined with the rapidity of the evolutionary timeline, highlights the dynamic role of insect-symbiont relationships during the diversification of feeding ecologies. We propose new Candidatus names for the novel Morganella-like and Dickeya-like symbionts.


Assuntos
Hemípteros , Herbivoria , Simbiose , Animais , Hemípteros/microbiologia , RNA Ribossômico 16S/genética , Havaí , Filogenia , Evolução Biológica , Microbiota
16.
Bull Entomol Res ; 114(4): 473-481, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39295446

RESUMO

Plant-soil interactions have bottom-up and top-down effects within a plant community. Heavy metal pollution can change plant-soil interactions, directly influence bottom-up effects and indirectly affect herbivores within the community. In turn, herbivores can affect plant-soil interactions through top-down effects. However, the combined effects of heavy metals and herbivores on soil enzymes, plants and herbivores have rarely been reported. Therefore, the effects of lead (Pb), Spodoptera litura and their combined effects on soil enzyme activities, pakchoi nutrition, defence compounds and S. litura fitness were examined here. Results showed that Pb, S. litura and their combined effects significantly affected soil enzymes, pakchoi and S. litura. Specifically, exposure to double stress (Pb and S. litura) decreased soil urease, phosphatase and sucrase activities compared with controls. Furthermore, the soluble protein and sugar contents of pakchoi decreased, and the trypsin inhibitor content and antioxidant enzyme activity increased. Finally, the S. litura development period was extended, and survival, emergence rates and body weight decreased after exposure to double stress. The combined stress of Pb and S. litura significantly decreased soil enzyme activities. Heavy metal accumulation in plants may create a superposition or synergistic effect with heavy metal-mediated plant chemical defence, further suppressing herbivore development. Pb, S. litura and their combined effects inhibited soil enzyme activities, improved pakchoi resistance and reduced S. litura development. The results reveal details of soil-plant-herbivore interactions and provide a reference for crop pest control management in the presence of heavy metal pollution.


Assuntos
Chumbo , Solo , Spodoptera , Animais , Spodoptera/efeitos dos fármacos , Spodoptera/crescimento & desenvolvimento , Spodoptera/enzimologia , Chumbo/toxicidade , Solo/química , Herbivoria , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/enzimologia
17.
Proc Natl Acad Sci U S A ; 121(38): e2403655121, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39250671

RESUMO

The presence of livestock inside protected areas, or "livestock encroachment," is a global conservation concern because livestock is broadly thought to negatively affect wildlife. The Maasai Mara National Reserve (MMNR), Kenya, exemplifies this tension as livestock is believed to have resulted in the declining wildlife populations, contributing to the strict and sometimes violent exclusion measures targeting Maasai pastoralists. However, research embedded in the real-world setting that draws insights from the social-ecological contexts is lacking. In this study, we conducted 19 mo of ecological monitoring covering 60 sites in MMNR and found that cattle presence inside the reserve did not significantly impact most co-occurring wild herbivores at the current intensity. Using the Hierarchical Modeling of Species Communities and Gaussian copula graphic models, we showed that cattle had no direct associations-neither negative nor positive-with nearly all wild herbivores despite frequently sharing the same space. Moreover, we did not detect resource degradation correlated with cattle presence near the MMNR boundary. Given the colonial legacy and land use history of Mara, entering MMNR becomes the only viable option for many herders. These results corroborate the emerging perspective that the ecological impacts of extensively herded livestock on wildlife might be more nuanced than previously thought. To effectively balance the needs of people, livestock, and wildlife, the current rigid livestock exclusion measures need to be reassessed to holistically consider herbivore ecology, local land use history, and modern politics of protected area management.


Assuntos
Conservação dos Recursos Naturais , Gado , Animais , Quênia , Bovinos , Herbivoria , Ecossistema , Animais Selvagens
18.
Huan Jing Ke Xue ; 45(9): 5395-5405, 2024 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-39323157

RESUMO

With the drying and warming of the climate and irrational grazing, various types of grasslands in Inner Mongolia have been degraded to different degrees, and different management modes will inevitably affect the plant diversity and vegetation carbon stock of soil grasslands. To clarify the changes and influencing factors of plant diversity and carbon stock in different types of grasslands under different management modes, plant species composition, aboveground biomass, and vegetation carbon were analyzed based on 18 sentinel monitoring stations across three different types of grasslands in Inner Mongolia. The results showed that grazing increased the dominance of typical grassland and desert grassland, whereas meadow grassland decreased, and the evenness index and Shannon Wiener diversity index increased less in meadow grassland and desert grassland. Grazing decreased graminaceous biomass in meadow grassland and typical grassland, whereas it increased in desert grassland. Above-ground vegetation and below-ground root carbon stocks were much higher than those in grazing areas, 1.5 and 1.2 higher, respectively, but vegetation carbon stocks in long-term grazing sites were significantly lower than those in short-term grazing. Further, the structural equations showed that the effects of geographic location, climatic factors, and soil factors on the biomass and vegetation carbon stocks of the three grassland types differed significantly. The results can provide a reference for the ecologically sustainable development of grassland and the optimization of management mode.


Assuntos
Biodiversidade , Carbono , Pradaria , Poaceae , Carbono/análise , China , Poaceae/crescimento & desenvolvimento , Herbivoria , Animais , Biomassa , Conservação dos Recursos Naturais , Solo/química
19.
Glob Chang Biol ; 30(9): e17504, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39279652

RESUMO

Ecosystem responses to disturbance depend on the nature of the perturbation and the ecological legacies left behind, making it critical to understand how climate-driven changes in disturbance regimes modify resilience properties of ecosystems. For coral reefs, recent increases in severe marine heat waves now co-occur with powerful storms, the historic agent of disturbance. While storms kill coral and remove their skeletons, heat waves bleach and kill corals but leave their skeletons intact. Here, we explored how the material legacy of dead coral skeletons modifies two key ecological processes that underpin coral reef resilience: the ability of herbivores to control macroalgae (spatial competitors of corals), and the replenishment of new coral colonies. Our findings, grounded by a major bleaching event at our long-term study locale, revealed that the presence of structurally complex dead skeletons reduced grazing on turf algae by ~80%. For macroalgae, browsing was reduced by >40% on less preferred (unpalatable) taxa, but only by ~10% on more preferred taxa. This enabled unpalatable macroalgae to reach ~45% cover in 2 years. By contrast, herbivores prevented macroalgae from becoming established on adjacent reefs that lacked skeletons. Manipulation of unpalatable macroalgae revealed that the cover reached after 1 year (~20%) reduced recruitment of corals by 50%. The effect of skeletons on juvenile coral growth was contingent on the timing of settlement relative to the disturbance. If corals settled directly after bleaching (before macroalgae colonized), dead skeletons enhanced colony growth by 34%, but this benefit was lost if corals colonized dead skeletons a year after the disturbance once macroalgae had proliferated. These findings underscore how a material legacy from a changing disturbance regime can alter ecosystem resilience properties by disrupting key trophic and competitive interactions that shape post-disturbance community dynamics.


Assuntos
Antozoários , Mudança Climática , Recifes de Corais , Herbivoria , Alga Marinha , Animais , Antozoários/fisiologia , Antozoários/crescimento & desenvolvimento , Alga Marinha/fisiologia , Alga Marinha/crescimento & desenvolvimento
20.
J Agric Food Chem ; 72(37): 20483-20495, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39248366

RESUMO

Mechanical stimuli can affect plant growth, development, and defenses. The role of water spray stimulation, as a prevalent mechanical stimulus in the environment, in crop growth and defense cannot be overlooked. In this study, the effects of water spray on tomato plant growth and defense against the chewing herbivore Helicoverpa armigera and necrotrophic fungus Botrytis cinerea were investigated. Suprathreshold water spray stimulus (LS) was found to enhance tomato plant defenses against pests and pathogens while concurrently modifying plant architecture. The results of the phytohormone and chemical metabolite analysis revealed that LS improved the plant defense response via jasmonic acid (JA) signaling. LS significantly elevated the level of a pivotal defensive metabolite, chlorogenic acid, and reduced the emissions of volatile organic compounds (VOCs) from tomato plants, thereby defending against pest and pathogen attacks. The most obvious finding to emerge from this study is that LS enhances tomato plant defenses against biotic stresses, which will pave the way for further work on the application of mechanical stimuli for pest management.


Assuntos
Botrytis , Ciclopentanos , Oxilipinas , Doenças das Plantas , Solanum lycopersicum , Compostos Orgânicos Voláteis , Água , Solanum lycopersicum/microbiologia , Solanum lycopersicum/parasitologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Água/metabolismo , Animais , Botrytis/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo , Mariposas/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Estresse Fisiológico , Herbivoria , Defesa das Plantas contra Herbivoria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA