Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.681
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(26): e2405905121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38889153

RESUMO

Aberrant regulation of chromatin modifiers is a common occurrence across many cancer types, and a key priority is to determine how specific alterations of these proteins, often enzymes, can be targeted therapeutically. MOZ, a histone acyltransferase, is recurrently fused to coactivators CBP, p300, and TIF2 in cases of acute myeloid leukemia (AML). Using either pharmacological inhibition or targeted protein degradation in a mouse model for MOZ-TIF2-driven leukemia, we show that KAT6 (MOZ/MORF) enzymatic activity and the MOZ-TIF2 protein are necessary for indefinite proliferation in cell culture. MOZ-TIF2 directly regulates a small subset of genes encoding developmental transcription factors, augmenting their high expression. Furthermore, transcription levels in MOZ-TIF2 cells positively correlate with enrichment of histone H3 propionylation at lysine 23 (H3K23pr), a recently appreciated histone acylation associated with gene activation. Unexpectedly, we also show that MOZ-TIF2 and MLL-AF9 regulate transcription of unique gene sets, and their cellular models exhibit distinct sensitivities to multiple small-molecule inhibitors directed against AML pathways. This is despite the shared genetic pathways of wild-type MOZ and MLL. Overall, our data provide insight into how aberrant regulation of MOZ contributes to leukemogenesis. We anticipate that these experiments will inform future work identifying targeted therapies in the treatment of AML and other diseases involving MOZ-induced transcriptional dysregulation.


Assuntos
Histona Acetiltransferases , Histonas , Animais , Camundongos , Histonas/metabolismo , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Humanos , Modelos Animais de Doenças , Coativador 2 de Receptor Nuclear/metabolismo , Coativador 2 de Receptor Nuclear/genética , Regulação Leucêmica da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fusão Oncogênica/metabolismo , Proteínas de Fusão Oncogênica/genética
2.
Nat Commun ; 15(1): 4962, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862536

RESUMO

In all eukaryotes, acetylation of histone lysine residues correlates with transcription activation. Whether histone acetylation is a cause or consequence of transcription is debated. One model suggests that transcription promotes the recruitment and/or activation of acetyltransferases, and histone acetylation occurs as a consequence of ongoing transcription. However, the extent to which transcription shapes the global protein acetylation landscapes is not known. Here, we show that global protein acetylation remains virtually unaltered after acute transcription inhibition. Transcription inhibition ablates the co-transcriptionally occurring ubiquitylation of H2BK120 but does not reduce histone acetylation. The combined inhibition of transcription and CBP/p300 further demonstrates that acetyltransferases remain active and continue to acetylate histones independently of transcription. Together, these results show that histone acetylation is not a mere consequence of transcription; acetyltransferase recruitment and activation are uncoupled from the act of transcription, and histone and non-histone protein acetylation are sustained in the absence of ongoing transcription.


Assuntos
Histonas , Transcrição Gênica , Ubiquitinação , Acetilação , Histonas/metabolismo , Humanos , Fatores de Transcrição de p300-CBP/metabolismo , Processamento de Proteína Pós-Traducional , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Lisina/metabolismo
3.
BMC Cancer ; 24(1): 682, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835015

RESUMO

BACKGROUND: Astragaloside IV (AS-IV) is one of the basic components of Astragali radix, that has been shown to have preventive effects against various diseases, including cancers. This study aimed to explore the role of AS-IV in hepatocellular carcinoma (HCC) and its underlying mechanism. METHODS: The cell viability, glucose consumption, lactate production, and extracellular acidification rate (ECAR) in SNU-182 and Huh7 cell lines were detected by specific commercial kits. Western blot was performed to analyze the succinylation level in SNU-182 and Huh7 cell lines. The interaction between lysine acetyltransferase (KAT) 2 A and phosphoglycerate mutase 1 (PGAM1) was evaluated by co-immunoprecipitation and immunofluorescence assays. The role of KAT2A in vivo was explored using a xenografted tumor model. RESULTS: The results indicated that AS-IV treatment downregulated the protein levels of succinylation and KAT2A in SNU-182 and Huh7 cell lines. The cell viability, glucose consumption, lactate production, ECAR, and succinylation levels were decreased in AS-IV-treated SNU-182 and Huh7 cell lines, and the results were reversed after KAT2A overexpression. KAT2A interacted with PGAM1 to promote the succinylation of PGAM1 at K161 site. KAT2A overexpression promoted the viability and glycolysis of SNU-182 and Huh7 cell lines, which were partly blocked following PGAM1 inhibition. In tumor-bearing mice, AS-IV suppressed tumor growth though inhibiting KAT2A-mediated succinylation of PGAM1. CONCLUSION: AS-IV inhibited cell viability and glycolysis in HCC by regulating KAT2A-mediated succinylation of PGAM1, suggesting that AS-IV might be a potential and suitable therapeutic agent for treating HCC.


Assuntos
Carcinoma Hepatocelular , Sobrevivência Celular , Glicólise , Neoplasias Hepáticas , Fosfoglicerato Mutase , Saponinas , Triterpenos , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Animais , Fosfoglicerato Mutase/metabolismo , Camundongos , Glicólise/efeitos dos fármacos , Triterpenos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Saponinas/farmacologia , Linhagem Celular Tumoral , Histona Acetiltransferases/metabolismo , Camundongos Nus , Proliferação de Células/efeitos dos fármacos
4.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(2): 207-214, 2024 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-38857968

RESUMO

Schistosomiasis is a neglected zoonotic parasitic disease. Currently, praziquantel is the drug of choice for the treatment of schistosomiasis, and is the only effective chemical for treatment of schistosomiasis japonica. Since its introduction in the 1970s, praziquantel has been used for large-scale chemotherapy of schistosomiasis for over 40 years. However, there have been reports pertaining to the resistance to praziquantel in schistosomes. Therefore, development of novel antischistosomal agents as alternatives of praziquantel, is of great need. Histone deacetylases and histone acetyltransferases have been recently reported to play critical roles in the growth, development and reproduction of schistosomes, and are considered as potential drug targets for the treatment of schistosomiasis. This review summarizes the latest advances of histone deacetylase and histone acetyltransferase inhibitors in the research on antischistosomal drugs, so as to provide insights into research and development of novelantischistosomal agents.


Assuntos
Histona Acetiltransferases , Inibidores de Histona Desacetilases , Histona Desacetilases , Animais , Inibidores de Histona Desacetilases/farmacologia , Histona Acetiltransferases/antagonistas & inibidores , Humanos , Histona Desacetilases/metabolismo , Schistosoma/efeitos dos fármacos , Schistosoma/enzimologia , Schistosoma/fisiologia , Esquistossomose/tratamento farmacológico , Esquistossomicidas/farmacologia , Esquistossomicidas/uso terapêutico
5.
Proc Natl Acad Sci U S A ; 121(24): e2320867121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38838015

RESUMO

O-GlcNAcase (OGA) is the only human enzyme that catalyzes the hydrolysis (deglycosylation) of O-linked beta-N-acetylglucosaminylation (O-GlcNAcylation) from numerous protein substrates. OGA has broad implications in many challenging diseases including cancer. However, its role in cell malignancy remains mostly unclear. Here, we report that a cancer-derived point mutation on the OGA's noncatalytic stalk domain aberrantly modulates OGA interactome and substrate deglycosylation toward a specific set of proteins. Interestingly, our quantitative proteomic studies uncovered that the OGA stalk domain mutant preferentially deglycosylated protein substrates with +2 proline in the sequence relative to the O-GlcNAcylation site. One of the most dysregulated substrates is PDZ and LIM domain protein 7 (PDLIM7), which is associated with the tumor suppressor p53. We found that the aberrantly deglycosylated PDLIM7 suppressed p53 gene expression and accelerated p53 protein degradation by promoting the complex formation with E3 ubiquitin ligase MDM2. Moreover, deglycosylated PDLIM7 significantly up-regulated the actin-rich membrane protrusions on the cell surface, augmenting the cancer cell motility and aggressiveness. These findings revealed an important but previously unappreciated role of OGA's stalk domain in protein substrate recognition and functional modulation during malignant cell progression.


Assuntos
Citoesqueleto , Proteínas com Domínio LIM , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Citoesqueleto/metabolismo , Acetilglucosamina/metabolismo , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Linhagem Celular Tumoral , Glicosilação , Hidrólise , Mutação , Movimento Celular , Antígenos de Neoplasias , Hialuronoglucosaminidase , Histona Acetiltransferases
6.
Cell Death Dis ; 15(6): 406, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858351

RESUMO

Diabetic cardiomyopathy (DCM) is a prevalent myocardial microvascular complication of the myocardium with a complex pathogenesis. Investigating the pathogenesis of DCM can significantly contribute to enhancing its prevention and treatment strategies. Our study revealed an upregulation of lysine acetyltransferase 2 A (Kat2a) expression in DCM, accompanied by a decrease in N6-methyladenosine (m6A) modified Kat2a mRNA levels. Our study revealed an upregulation of lysine acetyltransferase 2 A (Kat2a) expression in DCM, accompanied by a decrease in N6-methyladenosine (m6A) modified Kat2a mRNA levels. Functionally, inhibition of Kat2a effectively ameliorated high glucose-induced cardiomyocyte injury both in vitro and in vivo by suppressing ferroptosis. Mechanistically, Demethylase alkB homolog 5 (Alkbh5) was found to reduce m6A methylation levels on Kat2a mRNA, leading to its upregulation. YTH domain family 2 (Ythdf2) played a crucial role as an m6A reader protein mediating the degradation of Kat2a mRNA. Furthermore, Kat2a promoted ferroptosis by increasing Tfrc and Hmox1 expression via enhancing the enrichment of H3K27ac and H3K9ac on their promoter regions. In conclusion, our findings unveil a novel role for the Kat2a-ferroptosis axis in DCM pathogenesis, providing valuable insights for potential clinical interventions.


Assuntos
Cardiomiopatias Diabéticas , Ferroptose , Heme Oxigenase-1 , Histona Acetiltransferases , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/genética , Animais , Ferroptose/genética , Humanos , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Camundongos , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Adenosina/análogos & derivados , Adenosina/metabolismo
7.
Nat Commun ; 15(1): 5335, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914563

RESUMO

The NuA3 complex is a major regulator of gene transcription and the cell cycle in yeast. Five core subunits are required for complex assembly and function, but it remains unclear how these subunits interact to form the complex. Here, we report that the Taf14 subunit of the NuA3 complex binds to two other subunits of the complex, Yng1 and Sas3, and describe the molecular mechanism by which the extra-terminal domain of Taf14 recognizes the conserved motif present in Yng1 and Sas3. Structural, biochemical, and mutational analyses show that two motifs are sandwiched between the two extra-terminal domains of Taf14. The head-to-toe dimeric complex enhances the DNA binding activity of Taf14, and the formation of the hetero-dimer involving the motifs of Yng1 and Sas3 is driven by sequence complementarity. In vivo assays in yeast demonstrate that the interactions of Taf14 with both Sas3 and Yng1 are required for proper function of the NuA3 complex in gene transcription and DNA repair. Our findings suggest a potential basis for the assembly of three core subunits of the NuA3 complex, Taf14, Yng1 and Sas3.


Assuntos
Ligação Proteica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIID/metabolismo , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/química , Subunidades Proteicas/metabolismo , Subunidades Proteicas/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/química , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Multimerização Proteica , Modelos Moleculares , Transcrição Gênica , Sequência de Aminoácidos
8.
Yi Chuan ; 46(6): 490-501, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38886152

RESUMO

The JNK signaling pathway plays crucial roles in various physiological processes, including cell proliferation, differentiation, migration, apoptosis, and stress response. Dysregulation of this pathway is closely linked to the onset and progression of numerous major diseases, such as developmental defects and tumors. Identifying and characterizing novel components of the JNK signaling pathway to enhance and refine its network hold significant scientific and clinical importance for the prevention and treatment of associated cancers. This study utilized the model organism Drosophila and employed multidisciplinary approaches encompassing genetics, developmental biology, biochemistry, and molecular biology to investigate the interplay between Tip60 and the JNK signaling pathway, and elucidated its regulatory mechanisms. Our findings suggest that loss of Tip60 acetyltransferase activity results in JNK signaling pathway activation and subsequent induction of JNK-dependent apoptosis. Genetic epistasis analysis reveals that Tip60 acts downstream of JNK, paralleling with the transcription factor FOXO. The biochemical results confirm that Tip60 can bind to FOXO and acetylate it. Introduction of human Tip60 into Drosophila effectively mitigates apoptosis induced by JNK signaling activation, underscoring conserved regulatory role of Tip60 in the JNK signaling pathway from Drosophila to humans. This study further enhances our understanding of the regulatory network of the JNK signaling pathway. By revealing the role and mechanism of Tip60 in JNK-dependent apoptosis, it unveils new insights and potential therapeutic avenues for preventing and treating associated cancers.


Assuntos
Apoptose , Proteínas de Drosophila , Fatores de Transcrição Forkhead , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Drosophila/genética , Drosophila/metabolismo , Sistema de Sinalização das MAP Quinases , Humanos , Transdução de Sinais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética
9.
J Transl Med ; 22(1): 561, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867256

RESUMO

BACKGROUND: Fibrogenesis within ovarian endometrioma (endometrioma), mainly induced by transforming growth factor-ß (TGF-ß), is characterized by myofibroblast over-activation and excessive extracellular matrix (ECM) deposition, contributing to endometrioma-associated symptoms such as infertility by impairing ovarian reserve and oocyte quality. However, the precise molecular mechanisms that underpin the endometrioma- associated fibrosis progression induced by TGF-ß remain poorly understood. METHODS: The expression level of lysine acetyltransferase 14 (KAT14) was validated in endometrium biopsies from patients with endometrioma and healthy controls, and the transcription level of KAT14 was further confirmed by analyzing a published single-cell transcriptome (scRNA-seq) dataset of endometriosis. We used overexpression, knockout, and knockdown approaches in immortalized human endometrial stromal cells (HESCs) or human primary ectopic endometrial stromal cells (EcESCs) to determine the role of KAT14 in TGF-ß-induced fibrosis. Furthermore, an adeno-associated virus (AAV) carrying KAT14-shRNA was used in an endometriosis mice model to assess the role of KAT14 in vivo. RESULTS: KAT14 was upregulated in ectopic lesions from endometrioma patients and predominantly expressed in activated fibroblasts. In vitro studies showed that KAT14 overexpression significantly promoted a TGF-ß-induced profibrotic response in endometrial stromal cells, while KAT14 silencing showed adverse effects that could be rescued by KAT14 re-enhancement. In vivo, Kat14 knockdown ameliorated fibrosis in the ectopic lesions of the endometriosis mouse model. Mechanistically, we showed that KAT14 directly interacted with serum response factor (SRF) to promote the expression of α-smooth muscle actin (α-SMA) by increasing histone H4 acetylation at promoter regions; this is necessary for TGF-ß-induced ECM production and myofibroblast differentiation. In addition, the knockdown or pharmacological inhibition of SRF significantly attenuated KAT14-mediating profibrotic effects under TGF-ß treatment. Notably, the KAT14/SRF complex was abundant in endometrioma samples and positively correlated with α-SMA expression, further supporting the key role of KAT14/SRF complex in the progression of endometrioma-associated fibrogenesis. CONCLUSION: Our results shed light on KAT14 as a key effector of TGF-ß-induced ECM production and myofibroblast differentiation in EcESCs by promoting histone H4 acetylation via co-operating with SRF, representing a potential therapeutic target for endometrioma-associated fibrosis.


Assuntos
Endometriose , Fibrose , Fator de Resposta Sérica , Fator de Crescimento Transformador beta , Adulto , Animais , Feminino , Humanos , Camundongos , Endometriose/patologia , Endometriose/metabolismo , Endométrio/metabolismo , Endométrio/patologia , Histona Acetiltransferases/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Fator de Resposta Sérica/metabolismo , Células Estromais/metabolismo , Células Estromais/patologia , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
10.
Mol Reprod Dev ; 91(5): e23760, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38769918

RESUMO

e-Lysine acetylation is a prominent histone mark found at transcriptionally active loci. Among many lysine acetyl transferases, nonspecific lethal complex (NSL) members are known to mediate the modification of histone H4. In addition to histone modifications, the KAT8 regulatory complex subunit 3 gene (Kansl3), a core member of NSL complex, has been shown to be involved in several other cellular processes such as mitosis and mitochondrial activity. Although functional studies have been performed on NSL complex members, none of the four core proteins, including Kansl3, have been studied during early mouse development. Here we show that homozygous knockout Kansl3 embryos are lethal at peri-implantation stages, failing to hatch out of the zona pellucida. When the zona pellucida is removed in vitro, Kansl3 null embryos form an abnormal outgrowth with significantly disrupted inner cell mass (ICM) morphology. We document lineage-specific defects at the blastocyst stage with significantly reduced ICM cell number but no difference in trophectoderm cell numbers. Both epiblast and primitive endoderm lineages are altered with reduced cell numbers in null mutants. These results show that Kansl3 is indispensable during early mouse embryonic development and with defects in both ICM and trophectoderm lineages.


Assuntos
Camundongos Knockout , Animais , Camundongos , Massa Celular Interna do Blastocisto/metabolismo , Massa Celular Interna do Blastocisto/citologia , Feminino , Desenvolvimento Embrionário , Perda do Embrião/patologia , Perda do Embrião/genética , Perda do Embrião/metabolismo , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/deficiência , Blastocisto/metabolismo , Blastocisto/citologia
11.
Sci Rep ; 14(1): 11721, 2024 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777823

RESUMO

It has recently been shown that KAT8, a genome-wide association study candidate risk gene for Parkinson's Disease, is involved in PINK1/Parkin-dependant mitophagy. The KAT8 gene encodes a lysine acetyltransferase and represents the catalytically active subunit of the non-specific lethal epigenetic remodelling complex. In the current study, we show that contrary to KAT5 inhibition, dual inhibition of KAT5 and KAT8 via the MG149 compound inhibits the initial steps of the PINK1-dependant mitophagy process. More specifically, our study shows that following mitochondrial depolarisation induced by mitochondrial toxins, MG149 treatment inhibits PINK1-dependant mitophagy initiation by impairing PINK1 activation, and subsequent phosphorylation of Parkin and ubiquitin. While this inhibitory effect of MG149 on PINK1-activation is potent, MG149 treatment in the absence of mitochondrial toxins is sufficient to depolarise the mitochondrial membrane, recruit PINK1 and promote partial downstream recruitment of the autophagy receptor p62, leading to an increase in mitochondrial delivery to the lysosomes. Altogether, our study provides additional support for KAT8 as a regulator of mitophagy and autophagy processes.


Assuntos
Mitocôndrias , Mitofagia , Proteínas Quinases , Ubiquitina-Proteína Ligases , Mitofagia/efeitos dos fármacos , Humanos , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/antagonistas & inibidores , Fosforilação/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Células HeLa
12.
Mol Genet Genomic Med ; 12(5): e2420, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38773911

RESUMO

OBJECTIVE: This study aims to report a severe phenotype of Arboleda-Tham syndrome in a 20-month-old girl, characterized by global developmental delay, distinct facial features, intellectual disability. Arboleda-Tham syndrome is known for its wide phenotypic spectrum and is associated with truncating variants in the KAT6A gene. METHODS: To diagnose this case, a combination of clinical phenotype assessment and whole-exome sequencing technology was employed. The genetic analysis involved whole-exome sequencing, followed by confirmation of the identified variant through Sanger sequencing. RESULTS: The whole-exome sequencing revealed a novel de novo frameshift mutation c.3048del (p.Leu1017Serfs*17) in the KAT6A gene, which is classified as likely pathogenic. This mutation was not found in the ClinVar and HGMD databases and was not present in her parents. The mutation leads to protein truncation or activation of nonsense-mediated mRNA degradation. The mutation is located within exon 16, potentially leading to protein truncation or activation of nonsense-mediated mRNA degradation. Protein modeling suggested that the de novo KAT6A mutation might alter hydrogen bonding and reduce protein stability, potentially damaging the protein structure and function. CONCLUSION: This study expands the understanding of the genetic basis of Arboleda-Tham syndrome, highlighting the importance of whole-exome sequencing in diagnosing cases with varied clinical presentations. The discovery of the novel KAT6A mutation adds to the spectrum of known pathogenic variants and underscores the significance of this gene in the syndrome's pathology.


Assuntos
Deficiências do Desenvolvimento , Sequenciamento do Exoma , Humanos , Feminino , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Deficiências do Desenvolvimento/diagnóstico , Lactente , Mutação da Fase de Leitura , Histona Acetiltransferases/genética , Fenótipo , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Deficiência Intelectual/diagnóstico
13.
Parasit Vectors ; 17(1): 218, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735919

RESUMO

BACKGROUND: Epigenetic modifications of histones play important roles in the response of eukaryotic organisms to environmental stress. However, many histone acetyltransferases (HATs), which are responsible for histone acetylation, and their roles in mediating the tick response to cold stress have yet to be identified. In the present study, HATs were molecularly characterized and their associations with the cold response of the tick Haemaphysalis longicornis explored. METHODS: HATs were characterized by using polymerase chain reaction (PCR) based on published genome sequences, followed by multiple bioinformatic analyses. The differential expression of genes in H. longicornis under different cold treatment conditions was evaluated using reverse transcription quantitative PCR (RT-qPCR). RNA interference was used to explore the association of HATs with the cold response of H. longicornis. RESULTS: Two HAT genes were identified in H. longicornis (Hl), a GCN5-related N-acetyltransferase (henceforth HlGNAT) and a type B histone acetyltransferase (henceforth HlHAT-B), which are respectively 960 base pairs (bp) and 1239 bp in length. Bioinformatics analysis revealed that HlGNAT and HlHAT-B are unstable hydrophilic proteins characterized by the presence of the acetyltransferase 16 domain and Hat1_N domain, respectively. RT-qPCR revealed that the expression of HlGNAT and HlHAT-B decreased after 3 days of cold treatment, but gradually increased with a longer period of cold treatment. The mortality rate following knockdown of HlGNAT or HlHAT-B by RNA interference, which was confirmed by RT-qPCR, significantly increased (P < 0.05) when H. longicornis was treated at the lowest lethal temperature (- 14 °C) for 2 h. CONCLUSIONS: The findings demonstrate that HATs may play a crucial role in the cold response of H. longicornis. Thus further research is warranted to explore the mechanisms underlying the epigenetic regulation of the cold response in ticks.


Assuntos
Temperatura Baixa , Histona Acetiltransferases , Ixodidae , Animais , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Ixodidae/genética , Ixodidae/enzimologia , Ixodidae/fisiologia , Resposta ao Choque Frio/genética , Interferência de RNA , Epigênese Genética , Biologia Computacional , Filogenia , Haemaphysalis longicornis
14.
Sci Adv ; 10(20): eadm9326, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758792

RESUMO

Intellectual disability (ID) affects ~2% of the population and ID-associated genes are enriched for epigenetic factors, including those encoding the largest family of histone lysine acetyltransferases (KAT5-KAT8). Among them is KAT6A, whose mutations cause KAT6A syndrome, with ID as a common clinical feature. However, the underlying molecular mechanism remains unknown. Here, we find that KAT6A deficiency impairs synaptic structure and plasticity in hippocampal CA3, but not in CA1 region, resulting in memory deficits in mice. We further identify a CA3-enriched gene Rspo2, encoding Wnt activator R-spondin 2, as a key transcriptional target of KAT6A. Deletion of Rspo2 in excitatory neurons impairs memory formation, and restoring RSPO2 expression in CA3 neurons rescues the deficits in Wnt signaling and learning-associated behaviors in Kat6a mutant mice. Collectively, our results demonstrate that KAT6A-RSPO2-Wnt signaling plays a critical role in regulating hippocampal CA3 synaptic plasticity and cognitive function, providing potential therapeutic targets for KAT6A syndrome and related neurodevelopmental diseases.


Assuntos
Cognição , Histona Acetiltransferases , Via de Sinalização Wnt , Animais , Camundongos , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Região CA3 Hipocampal/metabolismo , Região CA3 Hipocampal/patologia , Trombospondinas/metabolismo , Trombospondinas/genética , Trombospondinas/deficiência , Plasticidade Neuronal , Camundongos Knockout
15.
Nat Commun ; 15(1): 4094, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750017

RESUMO

tRNA modifications affect ribosomal elongation speed and co-translational folding dynamics. The Elongator complex is responsible for introducing 5-carboxymethyl at wobble uridine bases (cm5U34) in eukaryotic tRNAs. However, the structure and function of human Elongator remain poorly understood. In this study, we present a series of cryo-EM structures of human ELP123 in complex with tRNA and cofactors at four different stages of the reaction. The structures at resolutions of up to 2.9 Å together with complementary functional analyses reveal the molecular mechanism of the modification reaction. Our results show that tRNA binding exposes a universally conserved uridine at position 33 (U33), which triggers acetyl-CoA hydrolysis. We identify a series of conserved residues that are crucial for the radical-based acetylation of U34 and profile the molecular effects of patient-derived mutations. Together, we provide the high-resolution view of human Elongator and reveal its detailed mechanism of action.


Assuntos
Microscopia Crioeletrônica , RNA de Transferência , Humanos , RNA de Transferência/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , Uridina/química , Uridina/metabolismo , Mutação , Acetilcoenzima A/metabolismo , Acetilcoenzima A/química , Modelos Moleculares , Acetilação , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Ligação Proteica
16.
Sci Adv ; 10(22): eadm9449, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820154

RESUMO

Pediatric cancers are frequently driven by genomic alterations that result in aberrant transcription factor activity. Here, we used functional genomic screens to identify multiple genes within the transcriptional coactivator Spt-Ada-Gcn5-acetyltransferase (SAGA) complex as selective dependencies for MYCN-amplified neuroblastoma, a disease of dysregulated development driven by an aberrant oncogenic transcriptional program. We characterized the DNA recruitment sites of the SAGA complex in neuroblastoma and the consequences of loss of SAGA complex lysine acetyltransferase (KAT) activity on histone acetylation and gene expression. We demonstrate that loss of SAGA complex KAT activity is associated with reduced MYCN binding on chromatin, suppression of MYC/MYCN gene expression programs, and impaired cell cycle progression. Further, we showed that the SAGA complex is pharmacologically targetable in vitro and in vivo with a KAT2A/KAT2B proteolysis targeting chimeric. Our findings expand our understanding of the histone-modifying complexes that maintain the oncogenic transcriptional state in this disease and suggest therapeutic potential for inhibitors of SAGA KAT activity in MYCN-amplified neuroblastoma.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteína Proto-Oncogênica N-Myc , Neuroblastoma , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Linhagem Celular Tumoral , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Acetilação , Histonas/metabolismo , Animais , Amplificação de Genes , Cromatina/metabolismo , Cromatina/genética , Camundongos
17.
J Therm Biol ; 122: 103865, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38761482

RESUMO

For the breadth of the winter, Dryophytes versicolor can survive full body freezing utilizing a phenomenon known as metabolic rate depression (MRD). Epigenetic transcriptional control on gene expression, such as histone methylation and acetylation, can aid in implementing a balance between permissive and restricted chromatin required to endure this stress. As such, this study explores the interplay between histone lysine methyl and acetyl transferases (HKMTs, HATs), as well as the abundance of various acetyl-lysine and methyl-lysine moieties on histone H3 and H4. Results showing that overexpression of transcriptionally repressive marks, and under expression of active ones, suggest a negative effect on overall gene transcription in skeletal muscle tissue.


Assuntos
Epigênese Genética , Histonas , Lisina , Músculo Esquelético , Histonas/metabolismo , Músculo Esquelético/metabolismo , Lisina/metabolismo , Acetilação , Metilação , Animais , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Congelamento
18.
Commun Biol ; 7(1): 521, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702540

RESUMO

Histone acetylation, a crucial epigenetic modification, is governed by histone acetyltransferases (HATs), that regulate many biological processes. Functions of HATs in insects are not well understood. We identified 27 HATs and determined their functions using RNA interference (RNAi) in the model insect, Tribolium castaneum. Among HATs studied, N-alpha-acetyltransferase 40 (NAA40) knockdown caused a severe phenotype of arrested larval development. The steroid hormone, ecdysone induced NAA40 expression through its receptor, EcR (ecdysone receptor). Interestingly, ecdysone-induced NAA40 regulates EcR expression. NAA40 acetylates histone H4 protein, associated with the promoters of ecdysone response genes: EcR, E74, E75, and HR3, and causes an increase in their expression. In the absence of ecdysone and NAA40, histone H4 methylation by arginine methyltransferase 1 (ART1) suppressed the above genes. However, elevated ecdysone levels at the end of the larval period induced NAA40, promoting histone H4 acetylation and increasing the expression of ecdysone response genes. NAA40 is also required for EcR, and steroid-receptor co-activator (SRC) mediated induction of E74, E75, and HR3. These findings highlight the key role of ecdysone-induced NAA40-mediated histone acetylation in the regulation of metamorphosis.


Assuntos
Ecdisona , Histona Acetiltransferases , Histonas , Metamorfose Biológica , Receptores de Esteroides , Tribolium , Animais , Tribolium/genética , Tribolium/crescimento & desenvolvimento , Tribolium/metabolismo , Tribolium/enzimologia , Histonas/metabolismo , Ecdisona/metabolismo , Acetilação , Metamorfose Biológica/genética , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Larva/crescimento & desenvolvimento , Larva/genética , Larva/metabolismo , Interferência de RNA
19.
Chem Biol Interact ; 396: 111035, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38703807

RESUMO

Early life stress (ELS) can cause long-term changes by epigenetic factors, especially histone acetylation modification, playing a crucial role, affect normal cognition, mood, and behavior, and increase susceptibility to post-traumatic stress disorder (PTSD) in adulthood. It has been found that paeoniflorin (PF) can cross the blood-brain barrier to exert anti-PTSD effects on adult PTSD rats. However, whether PF can alleviate the harmful effects caused by ELS in adulthood has not yet been reported. Therefore, to explore the relationship between ELS and PTSD susceptibility in adulthood and its mechanism, in this study, SPS was used as a stressor of ELS, and the mathematical tool Z-normalization was employed as an evaluation criterion of behavioral resilience susceptibility. To investigate the regulatory mechanism of PF on histone acetylation in the hippocampus and amygdala of ELS rats in adulthood, using changes in HATs/HDACs as the entry point, meanwhile, the epigenetic marks (H3K9 and H4K12) in the key brain regions of ELS (hippocampus and amygdala) were evaluated, and the effects of PF on behavioral representation and PTSD susceptibility were observed. This study found that ELS lead to a series of PTSD-like behaviors in adulthood and caused imbalance of HATs/HDACs ratio in the hippocampus and amygdala, which confirms that ELS is an important risk factor for the development of PTSD in adulthood. In addition, paeoniflorin may improve ELS-induced PTSD-like behaviors and reduce the susceptibility of ELS rats to develop PTSD in adulthood by modulating the HATs/HDACs ratio in the hippocampus and amygdala.


Assuntos
Tonsila do Cerebelo , Glucosídeos , Hipocampo , Histonas , Monoterpenos , Transtornos de Estresse Pós-Traumáticos , Estresse Psicológico , Animais , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Monoterpenos/farmacologia , Monoterpenos/uso terapêutico , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , Histonas/metabolismo , Ratos , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/metabolismo , Masculino , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Ratos Sprague-Dawley , Histona Acetiltransferases/metabolismo , Histona Desacetilases/metabolismo
20.
Genes (Basel) ; 15(5)2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38790268

RESUMO

Lysine acetyltransferase 8, also known as KAT8, is an enzyme involved in epigenetic regulation, primarily recognized for its ability to modulate histone acetylation. This review presents an overview of KAT8, emphasizing its biological functions, which impact many cellular processes and range from chromatin remodeling to genetic and epigenetic regulation. In many model systems, KAT8's acetylation of histone H4 lysine 16 (H4K16) is critical for chromatin structure modification, which influences gene expression, cell proliferation, differentiation, and apoptosis. Furthermore, this review summarizes the observed genetic variability within the KAT8 gene, underscoring the implications of various single nucleotide polymorphisms (SNPs) that affect its functional efficacy and are linked to diverse phenotypic outcomes, ranging from metabolic traits to neurological disorders. Advanced insights into the structural biology of KAT8 reveal its interaction with multiprotein assemblies, such as the male-specific lethal (MSL) and non-specific lethal (NSL) complexes, which regulate a wide range of transcriptional activities and developmental functions. Additionally, this review focuses on KAT8's roles in cellular homeostasis, stem cell identity, DNA damage repair, and immune response, highlighting its potential as a therapeutic target. The implications of KAT8 in health and disease, as evidenced by recent studies, affirm its importance in cellular physiology and human pathology.


Assuntos
Epigênese Genética , Histona Acetiltransferases , Humanos , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Acetilação , Histonas/metabolismo , Histonas/genética , Polimorfismo de Nucleotídeo Único , Animais , Montagem e Desmontagem da Cromatina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...