Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 996
Filtrar
1.
Immunity ; 57(6): 1187-1189, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38865963

RESUMO

A major barrier to antitumor immunity in solid tumors is T cell exclusion. In this issue of Immunity, De Sanctis et al.1 elucidate how CLDN18 on pancreatic and lung cancer cells enhances infiltration, immunological synapse formation, and activation of cytotoxic T lymphocytes.


Assuntos
Claudinas , Humanos , Claudinas/metabolismo , Claudinas/imunologia , Claudinas/genética , Neoplasias/imunologia , Animais , Linfócitos T Citotóxicos/imunologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pulmonares/imunologia , Ativação Linfocitária/imunologia , Sinapses Imunológicas/imunologia , Sinapses Imunológicas/metabolismo
2.
Nat Commun ; 15(1): 4988, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862534

RESUMO

Cancer-associated fibroblasts (CAFs) have emerged as a dominant non-hematopoietic cell population in the tumour microenvironment, serving diverse functions in tumour progression. However, the mechanisms via which CAFs influence the anti-tumour immunity remain poorly understood. Here, using multiple tumour models and biopsies from cancer patients, we report that α-SMA+ CAFs can form immunological synapses with Foxp3+ regulatory T cells (Tregs) in tumours. Notably, α-SMA+ CAFs can phagocytose and process tumour antigens and exhibit a tolerogenic phenotype which instructs movement arrest, activation and proliferation in Tregs in an antigen-specific manner. Moreover, α-SMA+ CAFs display double-membrane structures resembling autophagosomes in their cytoplasm. Single-cell transcriptomic data showed an enrichment in autophagy and antigen processing/presentation pathways in α-SMA-expressing CAF clusters. Conditional knockout of Atg5 in α-SMA+ CAFs promoted inflammatory re-programming in CAFs, reduced Treg cell infiltration and attenuated tumour development. Overall, our findings reveal an immunosuppressive mechanism entailing the formation of synapses between α-SMA+ CAFs and Tregs in an autophagy-dependent manner.


Assuntos
Autofagia , Fibroblastos Associados a Câncer , Sinapses Imunológicas , Linfócitos T Reguladores , Microambiente Tumoral , Linfócitos T Reguladores/imunologia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/imunologia , Fibroblastos Associados a Câncer/patologia , Humanos , Sinapses Imunológicas/metabolismo , Sinapses Imunológicas/imunologia , Animais , Microambiente Tumoral/imunologia , Camundongos , Autofagia/imunologia , Actinas/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Neoplasias/imunologia , Neoplasias/genética , Neoplasias/patologia , Camundongos Endogâmicos C57BL , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Feminino , Camundongos Knockout
3.
Cancer Cell ; 42(6): 985-1002.e18, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38821061

RESUMO

Tumors employ various strategies to evade immune surveillance. Central nervous system (CNS) has multiple features to restrain immune response. Whether tumors and CNS share similar programs of immunosuppression is elusive. Here, we analyze multi-omics data of tumors from HER2+ breast cancer patients receiving trastuzumab and anti-PD-L1 antibody and find that CNS-enriched N-acetyltransferase 8-like (NAT8L) and its metabolite N-acetylaspartate (NAA) are overexpressed in resistant tumors. In CNS, NAA is released during brain inflammation. NAT8L attenuates brain inflammation and impairs anti-tumor immunity by inhibiting cytotoxicity of natural killer (NK) cells and CD8+ T cells via NAA. NAA disrupts the formation of immunological synapse by promoting PCAF-induced acetylation of lamin A-K542, which inhibits the integration between lamin A and SUN2 and impairs polarization of lytic granules. We uncover that tumor cells mimic the anti-inflammatory mechanism of CNS to evade anti-tumor immunity and NAT8L is a potential target to enhance efficacy of anti-cancer agents.


Assuntos
Sinapses Imunológicas , Humanos , Sinapses Imunológicas/metabolismo , Animais , Camundongos , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/imunologia , Feminino , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linhagem Celular Tumoral , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico
4.
Immunity ; 57(6): 1378-1393.e14, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38749447

RESUMO

Tumors weakly infiltrated by T lymphocytes poorly respond to immunotherapy. We aimed to unveil malignancy-associated programs regulating T cell entrance, arrest, and activation in the tumor environment. Differential expression of cell adhesion and tissue architecture programs, particularly the presence of the membrane tetraspanin claudin (CLDN)18 as a signature gene, demarcated immune-infiltrated from immune-depleted mouse pancreatic tumors. In human pancreatic ductal adenocarcinoma (PDAC) and non-small cell lung cancer, CLDN18 expression positively correlated with more differentiated histology and favorable prognosis. CLDN18 on the cell surface promoted accrual of cytotoxic T lymphocytes (CTLs), facilitating direct CTL contacts with tumor cells by driving the mobilization of the adhesion protein ALCAM to the lipid rafts of the tumor cell membrane through actin. This process favored the formation of robust immunological synapses (ISs) between CTLs and CLDN18-positive cancer cells, resulting in increased T cell activation. Our data reveal an immune role for CLDN18 in orchestrating T cell infiltration and shaping the tumor immune contexture.


Assuntos
Carcinoma Ductal Pancreático , Claudinas , Ativação Linfocitária , Neoplasias Pancreáticas , Linfócitos T Citotóxicos , Humanos , Claudinas/metabolismo , Claudinas/genética , Animais , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Camundongos , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Linfócitos T Citotóxicos/imunologia , Ativação Linfocitária/imunologia , Linhagem Celular Tumoral , Sinapses Imunológicas/metabolismo , Sinapses Imunológicas/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos C57BL , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/imunologia , Microambiente Tumoral/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia
5.
Cancer Immunol Res ; 12(5): 515, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38557780

RESUMO

The pivotal role of T cell responses has been well studied in both protective and destructive scenarios. T cells recognize peptide epitopes presented on Human Leukocyte Antigens (HLA) through their surface T cell receptors (TCR). Advances in single-cell RNA sequencing have identified millions of TCRs, but only a minuscule fraction of them have known epitopes. Recently, cell-based T cell antigen discovery platforms have emerged onto the landscape. Here, Jin and colleagues, report a novel antigen discovery platform called Tsyn-seq that relies on sequencing TCR-peptide-HLA-induced synapses for genome-wide epitope screening. See related article by Jin et al., p. 530 (3).


Assuntos
Receptores de Antígenos de Linfócitos T , Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Epitopos de Linfócito T/imunologia , Sinapses Imunológicas/imunologia , Antígenos HLA/genética , Antígenos HLA/imunologia , Sequenciamento de Nucleotídeos em Larga Escala
6.
Int Immunopharmacol ; 133: 112087, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38669951

RESUMO

EFHD2 (EF-hand domain family, member D2) has been identified as a calcium-binding protein with immunomodulatory effects. In this study, we characterized the phenotype of Efhd2-deficient mice in sepsis and examined the biological functions of EFHD2 in peripheral T cell activation and T helper (Th) cell differentiation. Increased levels of EFHD2 expression accompanied peripheral CD4+ T cell activation in the early stages of sepsis. Transcriptomic analysis indicated that immune response activation was impaired in Efhd2-deficient CD4+ T cells. Further, Efhd2-deficient CD4+ T cells isolated from the spleen of septic mice showed impaired T cell receptor (TCR)-induced Th differentiation, especially Th1 and Th17 differentiation. In vitro data also showed that Efhd2-deficient CD4+ T cells exhibit impaired Th1 and Th17 differentiation. In the CD4+ T cells and macrophages co-culture model for antigen presentation, the deficiency of Efhd2 in CD4+ T cells resulted in impaired formation of immunological synapses. In addition, Efhd2-deficient CD4+ T cells exhibited reduced levels of phospho-LCK and phospho-ZAP70, and downstream transcription factors including Nfat, Nfκb and Nur77 following TCR engagement. In summary, EFHD2 may promote TCR-mediated T cell activation subsequent Th1 and Th17 differentiation in the early stages of sepsis by regulating the intensity of TCR complex formation.


Assuntos
Proteínas de Ligação ao Cálcio , Diferenciação Celular , Ativação Linfocitária , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos T , Sepse , Transdução de Sinais , Animais , Sepse/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Ativação Linfocitária/imunologia , Camundongos , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Células Th17/imunologia , Células Cultivadas , Linfócitos T Auxiliares-Indutores/imunologia , Macrófagos/imunologia , Células Th1/imunologia , Masculino , Sinapses Imunológicas/metabolismo , Sinapses Imunológicas/imunologia
8.
Blood Adv ; 8(11): 2908-2923, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38513140

RESUMO

ABSTRACT: The inhibitory surface receptor programmed cell death protein 1 (PD1) is a major target for antibody-based cancer immunotherapies. Nevertheless, a substantial number of patients fail to respond to the treatment or experience adverse effects. An improved understanding of intracellular pathways targeted by PD1 is thus needed to develop better predictive and prognostic biomarkers. Here, via unbiased phosphoproteome analysis of primary human T cells, we demonstrate that PD1 triggering inhibited the phosphorylation and physical association with protein kinase Cθ (PKCθ) of a variety of cytoskeleton-related proteins. PD1 blocked activation and recruitment of PKCθ to the forming immune synapse (IS) in a Src homology-2 domain-containing phosphatase-1/2 (SHP1/SHP2)-dependent manner. Consequently, PD1 engagement led to impaired synaptic phosphorylation of cytoskeleton-related proteins and formation of smaller IS. T-cell receptor induced phosphorylation of the PKCθ substrate and binding partner vimentin was long-lasting and it could be durably inhibited by PD1 triggering. Vimentin phosphorylation in intratumoral T cells also inversely correlated with the levels of the PD1 ligand, PDL1, in human lung carcinoma. Thus, PKCθ and its substrate vimentin represent important targets of PD1-mediated T-cell inhibition, and low levels of vimentin phosphorylation may serve as a biomarker for the activation of the PD1 pathway.


Assuntos
Sinapses Imunológicas , Receptor de Morte Celular Programada 1 , Proteína Quinase C-theta , Humanos , Fosforilação , Receptor de Morte Celular Programada 1/metabolismo , Proteína Quinase C-theta/metabolismo , Sinapses Imunológicas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Linfócitos T/metabolismo , Linfócitos T/imunologia , Proteína Quinase C/metabolismo , Vimentina/metabolismo , Antígeno B7-H1/metabolismo
9.
Cancer Immunol Res ; 12(5): 530-543, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38363296

RESUMO

Tools for genome-wide rapid identification of peptide-major histocompatibility complex targets of T-cell receptors (TCR) are not yet universally available. We present a new antigen screening method, the T-synapse (Tsyn) reporter system, which includes antigen-presenting cells (APC) with a Fas-inducible NF-κB reporter and T cells with a nuclear factor of activated T cells (NFAT) reporter. To functionally screen for target antigens from a cDNA library, productively interacting T cell-APC aggregates were detected by dual-reporter activity and enriched by flow sorting followed by antigen identification quantified by deep sequencing (Tsyn-seq). When applied to a previously characterized TCR specific for the E7 antigen derived from human papillomavirus type 16 (HPV16), Tsyn-seq successfully enriched the correct cognate antigen from a cDNA library derived from an HPV16-positive cervical cancer cell line. Tsyn-seq provides a method for rapidly identifying antigens recognized by TCRs of interest from a tumor cDNA library. See related Spotlight by Makani and Joglekar, p. 515.


Assuntos
Sinapses Imunológicas , Receptores de Antígenos de Linfócitos T , Linfócitos T , Humanos , Células Apresentadoras de Antígenos/imunologia , Linhagem Celular Tumoral , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Papillomavirus Humano 16/imunologia , Papillomavirus Humano 16/genética , Sinapses Imunológicas/imunologia , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/imunologia , Proteínas E7 de Papillomavirus/imunologia , Proteínas E7 de Papillomavirus/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologia
10.
Curr Pharm Des ; 30(7): 536-551, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343058

RESUMO

BACKGROUND: Co-signaling and adhesion molecules are important elements for creating immune synapses between T lymphocytes and antigen-presenting cells; they positively or negatively regulate the interaction between a T cell receptor with its cognate antigen, presented by the major histocompatibility complex. OBJECTIVES: We conducted a systematic review on the effects of High Efficacy Disease Modifying Drugs (HEDMDs) for Multiple Sclerosis (MS) on the co-signaling and adhesion molecules that form the immune synapse. METHODS: We searched EMBASE, MEDLINE, and other sources to identify clinical or preclinical reports on the effects of HEDMDs on co-signaling and adhesion molecules that participate in the formation of immune synapses in patients with MS or other autoimmune disorders. We included reports on cladribine tablets, anti- CD20 monoclonal antibodies, S1P modulators, inhibitors of Bruton's Tyrosine Kinase, and natalizumab. RESULTS: In 56 eligible reports among 7340 total publications, limited relevant evidence was uncovered. Not all co-signaling and adhesion molecules have been studied in relation to every HEDMD, with more data being available on the anti-CD20 monoclonal antibodies (that affect CD80, CD86, GITR and TIGIT), cladribine tablets (affecting CD28, CD40, ICAM-1, LFA-1) and the S1P modulators (affecting CD86, ICAM-1 and LFA-1) and less on Natalizumab (affecting CD80, CD86, CD40, LFA-1, VLA-4) and Alemtuzumab (affecting GITR and CTLA-4). CONCLUSION: The puzzle of HEDMD effects on the immune synapse is far from complete. The available evidence suggests that distinguishing differences exist between drugs and are worth pursuing further.


Assuntos
Esclerose Múltipla , Animais , Humanos , Moléculas de Adesão Celular/imunologia , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/metabolismo , Sinapses Imunológicas/efeitos dos fármacos , Sinapses Imunológicas/imunologia , Sinapses Imunológicas/metabolismo , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia
11.
Nat Commun ; 14(1): 7888, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036503

RESUMO

Therapeutic antibodies are widely used to treat severe diseases. Most of them alter immune cells and act within the immunological synapse; an essential cell-to-cell interaction to direct the humoral immune response. Although many antibody designs are generated and evaluated, a high-throughput tool for systematic antibody characterization and prediction of function is lacking. Here, we introduce the first comprehensive open-source framework, scifAI (single-cell imaging flow cytometry AI), for preprocessing, feature engineering, and explainable, predictive machine learning on imaging flow cytometry (IFC) data. Additionally, we generate the largest publicly available IFC dataset of the human immunological synapse containing over 2.8 million images. Using scifAI, we analyze class frequency and morphological changes under different immune stimulation. T cell cytokine production across multiple donors and therapeutic antibodies is quantitatively predicted in vitro, linking morphological features with function and demonstrating the potential to significantly impact antibody design. scifAI is universally applicable to IFC data. Given its modular architecture, it is straightforward to incorporate into existing workflows and analysis pipelines, e.g., for rapid antibody screening and functional characterization.


Assuntos
Comunicação Celular , Sinapses Imunológicas , Humanos , Fluxo de Trabalho , Aprendizado de Máquina
12.
Sci Signal ; 16(813): eadl3956, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38015912

RESUMO

Programmed cell death molecule 1 (PD-1) is a negative regulator of T cell activation; however, the mechanisms by which it acts are unclear. In this issue of Science Signaling, Paillon et al. show that PD-1 inhibits actin cytoskeletal rearrangements and associated effector responses in cytotoxic T cells.


Assuntos
Actinas , Receptor de Morte Celular Programada 1 , Actinas/metabolismo , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Sinapses Imunológicas , Citoesqueleto de Actina/metabolismo , Citoesqueleto , Ativação Linfocitária
13.
Sci Signal ; 16(813): eadh2456, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38015913

RESUMO

Engagement of the receptor programmed cell death molecule 1 (PD-1) by its ligands PD-L1 and PD-L2 inhibits T cell-mediated immune responses. Blocking such signaling provides the clinical effects of PD-1-targeted immunotherapy. Here, we investigated the mechanisms underlying PD-1-mediated inhibition. Because dynamic actin remodeling is crucial for T cell functions, we characterized the effects of PD-1 engagement on actin remodeling at the immunological synapse, the interface between a T cell and an antigen-presenting cell (APC) or target cell. We used microscopy to analyze the formation of immunological synapses between PD-1+ Jurkat cells or primary human CD8+ cytotoxic T cells and APCs that presented T cell-activating antibodies and were either positive or negative for PD-L1. PD-1 binding to PD-L1 inhibited T cell spreading induced by antibody-mediated activation, which was characterized by the absence of the F-actin-dense distal lamellipodial network at the immunological synapse and the Arp2/3 complex, which mediates branched actin formation. PD-1-induced inhibition of actin remodeling also prevented the characteristic deformation of T cells that contact APCs and the release of cytotoxic granules. We showed that the effects of PD-1 on actin remodeling did not require its tyrosine-based signaling motifs, which are thought to mediate the co-inhibitory effects of PD-1. Our study highlights a previously unappreciated mechanism of PD-1-mediated suppression of T cell activity, which depends on the regulation of actin cytoskeleton dynamics in a signaling motif-independent manner.


Assuntos
Actinas , Sinapses Imunológicas , Humanos , Actinas/metabolismo , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais , Ativação Linfocitária
14.
Front Immunol ; 14: 1276602, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869010

RESUMO

Cytotoxic lymphocytes (CLs), specifically cytotoxic T lymphocytes and natural killer cells, are indispensable guardians of the immune system and orchestrate the recognition and elimination of cancer cells. Upon encountering a cancer cell, CLs establish a specialized cellular junction, known as the immunological synapse that stands as a pivotal determinant for effective cell killing. Extensive research has focused on the presynaptic side of the immunological synapse and elucidated the multiple functions of the CL actin cytoskeleton in synapse formation, organization, regulatory signaling, and lytic activity. In contrast, the postsynaptic (cancer cell) counterpart has remained relatively unexplored. Nevertheless, both indirect and direct evidence has begun to illuminate the significant and profound consequences of cytoskeletal changes within cancer cells on the outcome of the lytic immunological synapse. Here, we explore the understudied role of the cancer cell actin cytoskeleton in modulating the immune response within the immunological synapse. We shed light on the intricate interplay between actin dynamics and the evasion mechanisms employed by cancer cells, thus providing potential routes for future research and envisioning therapeutic interventions targeting the postsynaptic side of the immunological synapse in the realm of cancer immunotherapy. This review article highlights the importance of actin dynamics within the immunological synapse between cytotoxic lymphocytes and cancer cells focusing on the less-explored postsynaptic side of the synapse. It presents emerging evidence that actin dynamics in cancer cells can critically influence the outcome of cytotoxic lymphocyte interactions with cancer cells.


Assuntos
Actinas , Neoplasias , Sinapses Imunológicas , Citoesqueleto de Actina , Citoesqueleto , Células Matadoras Naturais , Neoplasias/terapia
15.
J Immunol ; 211(9): 1385-1396, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37695687

RESUMO

Mycobacterium tuberculosis cell-wall glycolipids such as mannosylated lipoarabinomannan (ManLAM) can inhibit murine CD4+ T cells by blocking TCR signaling. This results in suppression of IL-2 production, reduced T cell proliferation, and induction of CD4+ T cell anergy. This study extended these findings to the interaction between primary human CD4+ T cells and macrophages infected by mycobacteria. Exposure of human CD4+ T cells to ManLAM before activation resulted in loss of polyfunctionality, as measured by IL-2, IFN-γ, and TNF-α expression, and reduced CD25 expression. This was not associated with upregulation of inhibitory receptors CTLA-4, PD-1, TIM-3, and Lag-3. By confocal microscopy and imaging flow cytometry, ManLAM exposure reduced conjugate formation between macrophages and CD4+ T cells. ManLAM colocalized to the immunological synapse (IS) and reduced translocation of lymphocyte-specific protein tyrosine kinase (LCK) to the IS. When CD4+ T cells and Mycobacterium bovis BCG-infected monocytes were cocultured, ManLAM colocalized to CD4+ T cells, which formed fewer conjugates with infected monocytes. These results demonstrate that mycobacterial cell-wall glycolipids such as ManLAM can traffic from infected macrophages to disrupt productive IS formation and inhibit CD4+ T cell activation, contributing to immune evasion by M. tuberculosis.


Assuntos
Mycobacterium tuberculosis , Humanos , Linfócitos T CD4-Positivos , Glicolipídeos/metabolismo , Sinapses Imunológicas , Interleucina-2/metabolismo , Macrófagos/microbiologia
17.
Eur J Immunol ; 53(11): e2350393, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37598303

RESUMO

Dendritic cells (DCs) bridge innate and adaptive immunity. Their main function is to present antigens to prime T cells and initiate and shape adaptive responses. Antigen presentation takes place through intimate contacts between the two cells, termed immune synapses (IS). During the formation of IS, information travels towards the T-cell side to induce and tune its activation; but it also travels in reverse via engagement of membrane receptors and within extracellular vesicles transferred to the DC. Such reverse information transfer and its consequences on DC fate have been largely neglected. Here, we review the events and effects of IS-mediated antigen presentation on DCs. In addition, we discuss novel technological advancements that enable monitoring DCs interactions with T lymphocytes, the main effects of DCs undergoing productive IS (postsynaptic DCs, or psDCs), and how reverse information transfer could be harnessed to modulate immune responses for therapeutic intervention.


Assuntos
Células Dendríticas , Sinapses Imunológicas , Linfócitos T , Apresentação de Antígeno , Antígenos
18.
Front Immunol ; 14: 1197289, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520527

RESUMO

The organization of the mitochondrial network is relevant for the metabolic fate of T cells and their ability to respond to TCR stimulation. This arrangement depends on cytoskeleton dynamics in response to TCR and CD28 activation, which allows the polarization of the mitochondria through their change in shape, and their movement along the microtubules towards the immune synapse. This work focus on the role of End-binding protein 1 (EB1), a protein that regulates tubulin polymerization and has been previously identified as a regulator of intracellular transport of CD3-enriched vesicles. EB1-interferred cells showed defective intracellular organization and metabolic strength in activated T cells, pointing to a relevant connection of the cytoskeleton and metabolism in response to TCR stimulation, which leads to increased AICD. By unifying the organization of the tubulin cytoskeleton and mitochondria during CD4+ T cell activation, this work highlights the importance of this connection for critical cell asymmetry together with metabolic functions such as glycolysis, mitochondria respiration, and cell viability.


Assuntos
Linfócitos T CD4-Positivos , Proteínas Associadas aos Microtúbulos , Mitocôndrias , Células Jurkat , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Mitocôndrias/metabolismo , Tubulina (Proteína)/metabolismo , Citoesqueleto/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Antígenos CD28/metabolismo , Potencial da Membrana Mitocondrial , Sinapses Imunológicas
19.
Elife ; 122023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37490053

RESUMO

Effector T cells need to form immunological synapses (IS) with recognized target cells to elicit cytolytic effects. Facilitating IS formation is the principal pharmacological action of most T cell-based cancer immunotherapies. However, the dynamics of IS formation at the cell population level, the primary driver of the pharmacodynamics of many cancer immunotherapies, remains poorly defined. Using classic immunotherapy CD3/CD19 bispecific T cell engager (BiTE) as our model system, we integrate experimental and theoretical approaches to investigate the population dynamics of IS formation and their relevance to clinical pharmacodynamics and treatment resistance. Our models produce experimentally consistent predictions when defining IS formation as a series of spatiotemporally coordinated events driven by molecular and cellular interactions. The models predict tumor-killing pharmacodynamics in patients and reveal trajectories of tumor evolution across anatomical sites under BiTE immunotherapy. Our models highlight the bone marrow as a potential sanctuary site permitting tumor evolution and antigen escape. The models also suggest that optimal dosing regimens are a function of tumor growth, CD19 expression, and patient T cell abundance, which confer adequate tumor control with reduced disease evolution. This work has implications for developing more effective T cell-based cancer immunotherapies.


Assuntos
Sinapses Imunológicas , Linfócitos T , Humanos , Imunoterapia , Dinâmica Populacional , Proteínas Adaptadoras de Transdução de Sinal
20.
Methods Cell Biol ; 178: 1-12, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37516519

RESUMO

The immunological synapse (IS) between NK cells and cancer cells is instrumental for the initiation of tumor-specific cytotoxicity. Improper function of processes at the IS can lead to NK cell unresponsiveness, contributing to tumor immune escape. Critical steps at the IS include target cell recognition, conjugation of NK cell and cancer cell, cytotoxic granule convergence to the microtubule-organizing center (MTOC), granule polarization to the IS, and degranulation. Here, we describe confocal live-cell imaging methods for the analysis of these processes at the immunological synapse, with a focus on mechanisms of cancer cell resistance facilitating escape from NK cell cytotoxicity.


Assuntos
Sinapses Imunológicas , Células Matadoras Naturais , Grânulos Citoplasmáticos , Centro Organizador dos Microtúbulos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...