Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.802
Filtrar
1.
Sci Adv ; 10(19): eadk1857, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38718110

RESUMO

Chimeric antigen receptor (CAR)-T cell therapy shows impressive efficacy treating hematologic malignancies but requires further optimization in solid tumors. Here, we developed a TMIGD2 optimized potent/persistent (TOP) CAR that incorporated the costimulatory domain of TMIGD2, a T and NK cell costimulator, and monoclonal antibodies targeting the IgV domain of B7-H3, an immune checkpoint expressed on solid tumors and tumor vasculature. Comparing second- and third-generation B7-H3 CARs containing TMIGD2, CD28, and/or 4-1BB costimulatory domains revealed superior antitumor responses in B7-H3.TMIGD2 and B7-H3.CD28.4-1BB CAR-T cells in vitro. Comparing these two constructs using in vivo orthotopic human cancer models demonstrated that B7-H3.TMIGD2 CAR-T cells had equivalent or superior antitumor activity, survival, expansion, and persistence. Mechanistically, B7-H3.TMIGD2 CAR-T cells maintained mitochondrial metabolism; produced less cytokines; and established fewer exhausted cells, more central memory cells, and a larger CD8/CD4 T cell ratio. These studies demonstrate that the TOP CAR with TMIGD2 costimulation offered distinct benefits from CD28.41BB costimulation and is effective against solid tumors.


Assuntos
Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/genética , Animais , Neoplasias/terapia , Neoplasias/imunologia , Imunoterapia Adotiva/métodos , Camundongos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Antígenos B7/metabolismo , Antígenos B7/imunologia , Antígenos CD28/metabolismo , Antígenos CD28/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
2.
Front Immunol ; 15: 1389018, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720898

RESUMO

Introduction: Multiple myeloma (MM) remains incurable, despite the advent of chimeric antigen receptor (CAR)-T cell therapy. This unfulfilled potential can be attributed to two untackled issues: the lack of suitable CAR targets and formats. In relation to the former, the target should be highly expressed and reluctant to shedding; two characteristics that are attributed to the CS1-antigen. Furthermore, conventional CARs rely on scFvs for antigen recognition, yet this withholds disadvantages, mainly caused by the intrinsic instability of this format. VHHs have been proposed as valid scFv alternatives. We therefore intended to develop VHH-based CAR-T cells, targeting CS1, and to identify VHHs that induce optimal CAR-T cell activation together with the VHH parameters required to achieve this. Methods: CS1-specific VHHs were generated, identified and fully characterized, in vitro and in vivo. Next, they were incorporated into second-generation CARs that only differ in their antigen-binding moiety. Reporter T-cell lines were lentivirally transduced with the different VHH-CARs and CAR-T cell activation kinetics were evaluated side-by-side. Affinity, cell-binding capacity, epitope location, in vivo behavior, binding distance, and orientation of the CAR-T:MM cell interaction pair were investigated as predictive parameters for CAR-T cell activation. Results: Our data show that the VHHs affinity for its target antigen is relatively predictive for its in vivo tumor-tracing capacity, as tumor uptake generally decreased with decreasing affinity in an in vivo model of MM. This does not hold true for their CAR-T cell activation potential, as some intermediate affinity-binding VHHs proved surprisingly potent, while some higher affinity VHHs failed to induce equal levels of T-cell activation. This could not be attributed to cell-binding capacity, in vivo VHH behavior, epitope location, cell-to-cell distance or binding orientation. Hence, none of the investigated parameters proved to have significant predictive value for the extent of CAR-T cell activation. Conclusions: We gained insight into the predictive parameters of VHHs in the CAR-context using a VHH library against CS1, a highly relevant MM antigen. As none of the studied VHH parameters had predictive value, defining VHHs for optimal CAR-T cell activation remains bound to serendipity. These findings highlight the importance of screening multiple candidates.


Assuntos
Imunoterapia Adotiva , Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Anticorpos de Domínio Único , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/terapia , Humanos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Anticorpos de Domínio Único/imunologia , Imunoterapia Adotiva/métodos , Animais , Linhagem Celular Tumoral , Camundongos , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Família de Moléculas de Sinalização da Ativação Linfocitária/imunologia , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Anticorpos de Cadeia Única/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Front Immunol ; 15: 1380065, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726005

RESUMO

Introduction: Solid cancers Myeloid cells are prevalent in solid cancers, but they frequently exhibit an anti-inflammatory pro-tumor phenotype that contribute to the immunosuppressive tumor microenvironment (TME), which hinders the effectiveness of cancer immunotherapies. Myeloid cells' natural ability of tumor trafficking makes engineered myeloid cell therapy an intriguing approach to tackle the challenges posed by solid cancers, including tumor infiltration, tumor cell heterogenicity and the immunosuppressive TME. One such engineering approach is to target the checkpoint molecule PD-L1, which is often upregulated by solid cancers to evade immune responses. Method: Here we devised an adoptive cell therapy strategy based on myeloid cells expressing a Chimeric Antigen Receptor (CAR)-like immune receptor (CARIR). The extracellular domain of CARIR is derived from the natural inhibitory receptor PD-1, while the intracellular domain(s) are derived from CD40 and/or CD3ζ. To assess the efficacy of CARIR-engineered myeloid cells, we conducted proof-of-principle experiments using co-culture and flow cytometry-based phagocytosis assays in vitro. Additionally, we employed a fully immune-competent syngeneic tumor mouse model to evaluate the strategy's effectiveness in vivo. Result: Co-culturing CARIR-expressing human monocytic THP-1 cells with PD-L1 expressing target cells lead to upregulation of the costimulatory molecule CD86 along with expression of proinflammatory cytokines TNF-1α and IL-1ß. Moreover, CARIR expression significantly enhanced phagocytosis of multiple PD-L1 expressing cancer cell lines in vitro. Similar outcomes were observed with CARIR-expressing human primary macrophages. In experiments conducted in syngeneic BALB/c mice bearing 4T1 mammary tumors, infusing murine myeloid cells that express a murine version of CARIR significantly slowed tumor growth and prolonged survival. Conclusion: Taken together, these results demonstrate that adoptive transfer of PD-1 CARIR-engineered myeloid cells represents a promising strategy for treating PD-L1 positive solid cancers.


Assuntos
Antígeno B7-H1 , Imunoterapia Adotiva , Células Mieloides , Receptores de Antígenos Quiméricos , Microambiente Tumoral , Animais , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Camundongos , Humanos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva/métodos , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Feminino , Neoplasias/imunologia , Neoplasias/terapia
4.
Front Immunol ; 15: 1384039, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726000

RESUMO

Chimeric antigen receptor-natural killer (CAR-NK) cell therapy is a novel immunotherapy targeting cancer cells via the generation of chimeric antigen receptors on NK cells which recognize specific cancer antigens. CAR-NK cell therapy is gaining attention nowadays owing to the ability of CAR-NK cells to release potent cytotoxicity against cancer cells without side effects such as cytokine release syndrome (CRS), neurotoxicity and graft-versus-host disease (GvHD). CAR-NK cells do not require antigen priming, thus enabling them to be used as "off-the-shelf" therapy. Nonetheless, CAR-NK cell therapy still possesses several challenges in eliminating cancer cells which reside in hypoxic and immunosuppressive tumor microenvironment. Therefore, this review is envisioned to explore the current advancements and limitations of CAR-NK cell therapy as well as discuss strategies to overcome the challenges faced by CAR-NK cell therapy. This review also aims to dissect the current status of clinical trials on CAR-NK cells and future recommendations for improving the effectiveness and safety of CAR-NK cell therapy.


Assuntos
Imunoterapia Adotiva , Células Matadoras Naturais , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Células Matadoras Naturais/imunologia , Neoplasias/terapia , Neoplasias/imunologia , Animais , Microambiente Tumoral/imunologia , Ensaios Clínicos como Assunto , Antígenos de Neoplasias/imunologia
5.
Front Immunol ; 15: 1386993, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736877

RESUMO

Alternative splicing (AS) is an important molecular biological mechanism regulated by complex mechanisms involving a plethora of cis and trans-acting elements. Furthermore, AS is tissue specific and altered in various pathologies, including infectious, inflammatory, and neoplastic diseases. Recently developed immuno-oncological therapies include monoclonal antibodies (mAbs) and chimeric antigen receptor (CAR) T cells targeting, among others, immune checkpoint (ICP) molecules. Despite therapeutic successes have been demonstrated, only a limited number of patients showed long-term benefit from these therapies with tumor entity-related differential response rates were observed. Interestingly, splice variants of common immunotherapeutic targets generated by AS are able to completely escape and/or reduce the efficacy of mAb- and/or CAR-based tumor immunotherapies. Therefore, the analyses of splicing patterns of targeted molecules in tumor specimens prior to therapy might help correct stratification, thereby increasing therapy success by antibody panel selection and antibody dosages. In addition, the expression of certain splicing factors has been linked with the patients' outcome, thereby highlighting their putative prognostic potential. Outstanding questions are addressed to translate the findings into clinical application. This review article provides an overview of the role of AS in (tumor) diseases, its molecular mechanisms, clinical relevance, and therapy response.


Assuntos
Processamento Alternativo , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/genética , Animais , Imunoterapia/métodos , Imunoterapia Adotiva/métodos
6.
Front Immunol ; 15: 1366962, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736880

RESUMO

Hematopoietic stem cell transplantation and cell therapies like CAR-T are costly, complex therapeutic procedures. Outpatient models, including at-home transplantation, have been developed, resulting in similar survival results, reduced costs, and increased patient satisfaction. The complexity and safety of the process can be addressed with various emerging technologies (artificial intelligence, wearable sensors, point-of-care analytical devices, drones, virtual assistants) that allow continuous patient monitoring and improved decision-making processes. Patients, caregivers, and staff can also benefit from improved training with simulation or virtual reality. However, many technical, operational, and above all, ethical concerns need to be addressed. Finally, outpatient or at-home hematopoietic transplantation or CAR-T therapy creates a different, integrated operative system that must be planned, designed, and carefully adapted to the patient's characteristics and distance from the hospital. Patients, clinicians, and their clinical environments can benefit from technically improved at-home transplantation.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Serviços de Assistência Domiciliar , Humanos , Transplante de Células-Tronco Hematopoéticas/métodos , Imunoterapia Adotiva/métodos , Inteligência Artificial
7.
Front Immunol ; 15: 1390498, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694508

RESUMO

Recent advancements in genetic engineering have made it possible to modify Natural Killer (NK) cells to enhance their ability to fight against various cancers, including solid tumors. This comprehensive overview discusses the current status of genetically engineered chimeric antigen receptor NK-cell therapies and their potential for treating solid tumors. We explore the inherent characteristics of NK cells and their role in immune regulation and tumor surveillance. Moreover, we examine the strategies used to genetically engineer NK cells in terms of efficacy, safety profile, and potential clinical applications. Our investigation suggests CAR-NK cells can effectively target and regress non-hematological malignancies, demonstrating enhanced antitumor efficacy. This implies excellent promise for treating tumors using genetically modified NK cells. Notably, NK cells exhibit low graft versus host disease (GvHD) potential and rarely induce significant toxicities, making them an ideal platform for CAR engineering. The adoptive transfer of allogeneic NK cells into patients further emphasizes the versatility of NK cells for various applications. We also address challenges and limitations associated with the clinical translation of genetically engineered NK-cell therapies, such as off-target effects, immune escape mechanisms, and manufacturing scalability. We provide strategies to overcome these obstacles through combination therapies and delivery optimization. Overall, we believe this review contributes to advancing NK-cell-based immunotherapy as a promising approach for cancer treatment by elucidating the underlying mechanisms, evaluating preclinical and clinical evidence, and addressing remaining challenges.


Assuntos
Engenharia Genética , Imunoterapia Adotiva , Células Matadoras Naturais , Neoplasias , Receptores de Antígenos Quiméricos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/transplante , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Animais
8.
Front Immunol ; 15: 1358478, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698840

RESUMO

Introduction: Cancer combination treatments involving immunotherapies with targeted radiation therapy are at the forefront of treating cancers. However, dosing and scheduling of these therapies pose a challenge. Mathematical models provide a unique way of optimizing these therapies. Methods: Using a preclinical model of multiple myeloma as an example, we demonstrate the capability of a mathematical model to combine these therapies to achieve maximum response, defined as delay in tumor growth. Data from mice studies with targeted radionuclide therapy (TRT) and chimeric antigen receptor (CAR)-T cell monotherapies and combinations with different intervals between them was used to calibrate mathematical model parameters. The dependence of progression-free survival (PFS), overall survival (OS), and the time to minimum tumor burden on dosing and scheduling was evaluated. Different dosing and scheduling schemes were evaluated to maximize the PFS and optimize timings of TRT and CAR-T cell therapies. Results: Therapy intervals that were too close or too far apart are shown to be detrimental to the therapeutic efficacy, as TRT too close to CAR-T cell therapy results in radiation related CAR-T cell killing while the therapies being too far apart result in tumor regrowth, negatively impacting tumor control and survival. We show that splitting a dose of TRT or CAR-T cells when administered in combination is advantageous only if the first therapy delivered can produce a significant benefit as a monotherapy. Discussion: Mathematical models are crucial tools for optimizing the delivery of cancer combination therapy regimens with application along the lines of achieving cure, maximizing survival or minimizing toxicity.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Animais , Imunoterapia Adotiva/métodos , Camundongos , Terapia Combinada/métodos , Receptores de Antígenos Quiméricos/imunologia , Humanos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/radioterapia , Modelos Teóricos , Linhagem Celular Tumoral , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/radioterapia , Radioisótopos/uso terapêutico , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
BMC Bioinformatics ; 25(1): 197, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769505

RESUMO

BACKGROUND: CAR-T cell therapy represents a novel approach for the treatment of hematologic malignancies and solid tumors. However, its implementation is accompanied by the emergence of potentially life-threatening adverse events known as cytokine release syndrome (CRS). Given the escalating number of patients undergoing CAR-T therapy, there is an urgent need to develop predictive models for severe CRS occurrence to prevent it in advance. Currently, all existing models are based on decision trees whose accuracy is far from meeting our expectations, and there is a lack of deep learning models to predict the occurrence of severe CRS more accurately. RESULTS: We propose PrCRS, a deep learning prediction model based on U-net and Transformer. Given the limited data available for CAR-T patients, we employ transfer learning using data from COVID-19 patients. The comprehensive evaluation demonstrates the superiority of the PrCRS model over other state-of-the-art methods for predicting CRS occurrence. We propose six models to forecast the probability of severe CRS for patients with one, two, and three days in advance. Additionally, we present a strategy to convert the model's output into actual probabilities of severe CRS and provide corresponding predictions. CONCLUSIONS: Based on our findings, PrCRS effectively predicts both the likelihood and timing of severe CRS in patients, thereby facilitating expedited and precise patient assessment, thus making a significant contribution to medical research. There is little research on applying deep learning algorithms to predict CRS, and our study fills this gap. This makes our research more novel and significant. Our code is publicly available at https://github.com/wzy38828201/PrCRS . The website of our prediction platform is: http://prediction.unicar-therapy.com/index-en.html .


Assuntos
COVID-19 , Síndrome da Liberação de Citocina , Aprendizado Profundo , Imunoterapia Adotiva , Humanos , COVID-19/terapia , Síndrome da Liberação de Citocina/terapia , Síndrome da Liberação de Citocina/etiologia , Imunoterapia Adotiva/métodos , SARS-CoV-2 , Neoplasias/terapia
12.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732213

RESUMO

Multiple myeloma (MM), the second most common hematologic malignancy, remains incurable, and its incidence is rising. Chimeric Antigen Receptor T-cell (CAR-T cell) therapy has emerged as a novel treatment, with the potential to improve the survival and quality of life of patients with relapsed/refractory multiple myeloma (rrMM). In this systematic review and meta-analysis, conducted in accordance with PRISMA guidelines, we aim to provide a concise overview of the latest developments in CAR-T therapy, assess their potential implications for clinical practice, and evaluate their efficacy and safety outcomes based on the most up-to-date evidence. A literature search conducted from 1 January 2019 to 12 July 2023 on Medline/PubMed, Scopus, and Web of Science identified 2273 articles, of which 29 fulfilled the specified criteria for inclusion. Our results offer robust evidence supporting CAR-T cell therapy's efficacy in rrMM patients, with an encouraging 83.21% overall response rate (ORR). A generally safe profile was observed, with grade ≥ 3 cytokine release syndrome (CRS) at 7.12% and grade ≥ 3 neurotoxicity at 1.37%. A subgroup analysis revealed a significantly increased ORR in patients with fewer antimyeloma regimens, while grade ≥ 3 CRS was more common in those with a higher proportion of high-risk cytogenetics and prior exposure to BCMA therapy.


Assuntos
Imunoterapia Adotiva , Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/imunologia , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Resultado do Tratamento , Qualidade de Vida , Recidiva Local de Neoplasia/terapia , Síndrome da Liberação de Citocina/etiologia
13.
Nat Commun ; 15(1): 3732, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702309

RESUMO

Immunotherapy with chimeric antigen receptor T cells for pediatric solid and brain tumors is constrained by available targetable antigens. Cancer-specific exons present a promising reservoir of targets; however, these have not been explored and validated systematically in a pan-cancer fashion. To identify cancer specific exon targets, here we analyze 1532 RNA-seq datasets from 16 types of pediatric solid and brain tumors for comparison with normal tissues using a newly developed workflow. We find 2933 exons in 157 genes encoding proteins of the surfaceome or matrisome with high cancer specificity either at the gene (n = 148) or the alternatively spliced isoform (n = 9) level. Expression of selected alternatively spliced targets, including the EDB domain of fibronectin 1, and gene targets, such as COL11A1, are validated in pediatric patient derived xenograft tumors. We generate T cells expressing chimeric antigen receptors specific for the EDB domain or COL11A1 and demonstrate that these have antitumor activity. The full target list, explorable via an interactive web portal ( https://cseminer.stjude.org/ ), provides a rich resource for developing immunotherapy of pediatric solid and brain tumors using gene or AS targets with high expression specificity in cancer.


Assuntos
Neoplasias Encefálicas , Éxons , Receptores de Antígenos Quiméricos , Humanos , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/genética , Animais , Éxons/genética , Criança , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Camundongos , Imunoterapia/métodos , Processamento Alternativo , Fibronectinas/genética , Fibronectinas/metabolismo , Fibronectinas/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica , RNA-Seq , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Imunoterapia Adotiva/métodos
14.
Nat Commun ; 15(1): 3933, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730243

RESUMO

As a strategy to improve the therapeutic success of chimeric antigen receptor T cells (CART) directed against solid tumors, we here test the combinatorial use of CART and IMSA101, a newly developed stimulator of interferon genes (STING) agonist. In two syngeneic tumor models, improved overall survival is observed when mice are treated with intratumorally administered IMSA101 in addition to intravenous CART infusion. Transcriptomic analyses of CART isolated from tumors show elevated T cell activation, as well as upregulated cytokine pathway signatures, in particular IL-18, in the combination treatment group. Also, higher levels of IL-18 in serum and tumor are detected with IMSA101 treatment. Consistent with this, the use of IL-18 receptor negative CART impair anti-tumor responses in mice receiving combination treatment. In summary, we find that IMSA101 enhances CART function which is facilitated through STING agonist-induced IL-18 secretion.


Assuntos
Interleucina-18 , Proteínas de Membrana , Receptores de Antígenos Quiméricos , Animais , Interleucina-18/metabolismo , Proteínas de Membrana/agonistas , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Humanos , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Imunoterapia Adotiva/métodos , Feminino , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico
15.
Mol Cancer ; 23(1): 98, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730483

RESUMO

The efficacy of Adoptive Cell Transfer Therapy (ACT) in combating hematological tumors has been well-documented, yet its application to solid tumors faces formidable hurdles, chief among them being the suboptimal therapeutic response and the immunosuppressive milieu within the tumor microenvironment (TME). Recently, Garcia, J. et al. present compelling findings shedding light on potential breakthroughs in this domain. Their investigation reveals the pronounced augmentation of anti-tumor activity in CAR T cells through the introduction of a T cell neoplasm fusion gene, CARD11-PIK3R3. The incorporation of this gene into engineered T cell therapy holds promise as a formidable tool in the arsenal of cancer immunotherapy. The innovative strategy outlined not only mitigates the requirement for high doses of CAR T cells but also enhances tumor control while exhibiting encouraging safety profiles. The exploration of the CARD11-PIK3R3 fusion gene represents an advancement in our approach to bolstering the anti-tumor efficacy of immunotherapeutic interventions. Nonetheless, the imperative for further inquiry to ascertain its transfection efficiency and long-term safety cannot be overstated. Nevertheless, this seminal investigation offers a beacon of hope in surmounting the formidable treatment impediments posed by solid tumors, paving the way for a transformative era in cancer therapeutics.


Assuntos
Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Neoplasias/terapia , Neoplasias/genética , Neoplasias/imunologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Microambiente Tumoral/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais
16.
J Immunother Cancer ; 12(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724463

RESUMO

BACKGROUND: Adoptive cell therapy, such as chimeric antigen receptor (CAR)-T cell therapy, has improved patient outcomes for hematological malignancies. Currently, four of the six FDA-approved CAR-T cell products use the FMC63-based αCD19 single-chain variable fragment, derived from a murine monoclonal antibody, as the extracellular binding domain. Clinical studies demonstrate that patients develop humoral and cellular immune responses to the non-self CAR components of autologous CAR-T cells or donor-specific antigens of allogeneic CAR-T cells, which is thought to potentially limit CAR-T cell persistence and the success of repeated dosing. METHODS: In this study, we implemented a one-shot approach to prevent rejection of engineered T cells by simultaneously reducing antigen presentation and the surface expression of both Classes of the major histocompatibility complex (MHC) via expression of the viral inhibitors of transporter associated with antigen processing (TAPi) in combination with a transgene coding for shRNA targeting class II MHC transactivator (CIITA). The optimal combination was screened in vitro by flow cytometric analysis and mixed lymphocyte reaction assays and was validated in vivo in mouse models of leukemia and lymphoma. Functionality was assessed in an autologous setting using patient samples and in an allogeneic setting using an allogeneic mouse model. RESULTS: The combination of the Epstein-Barr virus TAPi and an shRNA targeting CIITA was efficient and effective at reducing cell surface MHC classes I and II in αCD19 'stealth' CAR-T cells while retaining in vitro and in vivo antitumor functionality. Mixed lymphocyte reaction assays and IFNγ ELISpot assays performed with T cells from patients previously treated with autologous αCD19 CAR-T cells confirm that CAR T cells expressing the stealth transgenes evade allogeneic and autologous anti-CAR responses, which was further validated in vivo. Importantly, we noted anti-CAR-T cell responses in patients who had received multiple CAR-T cell infusions, and this response was reduced on in vitro restimulation with autologous CARs containing the stealth transgenes. CONCLUSIONS: Together, these data suggest that the proposed stealth transgenes may reduce the immunogenicity of autologous and allogeneic cellular therapeutics. Moreover, patient data indicate that repeated doses of autologous FMC63-based αCD19 CAR-T cells significantly increased the anti-CAR T cell responses in these patients.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Animais , Humanos , Camundongos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Imunoterapia Adotiva/métodos , Transgenes , Linfócitos T/imunologia
17.
Front Immunol ; 15: 1380451, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765003

RESUMO

Corticosteroid therapy is the mainstay of immune effector cell-associated neurotoxicity syndrome (ICANS) management, although its use has been associated with worse overall survival (OS) and progression-free survival (PFS) after chimeric antigen receptor T-cell (CAR-T cell) therapy. Many options are being investigated for prophylaxis and management. Accumulating evidence supports the use of intrathecal (IT) chemotherapy for the management of high-grade ICANS. Here, we describe a case of a patient with stage IV Primary mediastinal B-cell lymphoma (PMBCL) successfully treated with IT methotrexate, cytarabine, and dexamethasone as first-line therapy for CD19 CAR-T cell-associated grade IV ICANS. The stable and rapid resolution of ICANS to grade 0 allowed us to discontinue systemic corticosteroid use, avoiding CAR-T cells ablation and ensuring preservation of CAR-T cell function. The described patient achieved a complete radiologic and clinical response to CD19 CAR-T cell therapy and remains disease-free after 9 months. This case demonstrates a promising example of how IT chemotherapy could be used as first-line treatment for the management of high-grade ICANS.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Citarabina , Dexametasona , Injeções Espinhais , Metotrexato , Humanos , Dexametasona/administração & dosagem , Dexametasona/uso terapêutico , Metotrexato/administração & dosagem , Metotrexato/uso terapêutico , Citarabina/administração & dosagem , Citarabina/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Masculino , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/diagnóstico , Pessoa de Meia-Idade , Resultado do Tratamento , Imunoterapia Adotiva/efeitos adversos , Linfoma de Células B/tratamento farmacológico , Feminino
18.
J Transl Med ; 22(1): 482, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773607

RESUMO

BACKGROUND: Cellular immunotherapy, represented by the chimeric antigen receptor T cell (CAR-T), has exhibited high response rates, durable remission, and safety in vitro and in clinical trials. Unfortunately, anti-CD19 CAR-T (CART-19) treatment alone is prone to relapse and has a particularly poor prognosis in relapsed/refractory (r/r) B-ALL patients. To date, addressing or reducing relapse remains one of the research priorities to achieve broad clinical application. METHODS: We manufactured second generation CART-19 cells and validated their efficacy and safety in vitro and in vivo. Through co-culture of Nalm-6 cells with short-term cultured CART-19 cells, CD19-negative Nalm-6 cells were detected by flow cytometry, and further investigation of the relapsed cells and their resistance mechanisms was evaluated in vitro. RESULTS: In this study, we demonstrated that CART-19 cells had enhanced and specific antileukemic activities, and the survival of B-ALL mouse models after CART-19 treatment was significantly prolonged. We then shortened the culture time and applied the serum-free culture to expand CAR-T cells, followed by co-culturing CART-19 cells with Nalm-6 cells. Surprisingly, we observed the proliferation of CD19-negative Nalm-6 cells around 28 days. Identification of potential resistance mechanisms showed that the relapsed cells express truncated CD19 proteins with decreased levels and, more importantly, CAR expression was detected on the relapsed cell surface, which may ultimately keep them antigen-negative. Furthermore, it was validated that CART-22 and tandem CART-22/19 cells could effectively kill the relapsed cells, but neither could completely eradicate them. CONCLUSIONS: We successfully generated CART-19 cells and obtained a CD19-negative refractory relapsed B-ALL cell line, providing new insights into the underlying mechanisms of resistance and a new in vitro model for the treatment of r/r B-ALL patients with low antigen density.


Assuntos
Antígenos CD19 , Receptores de Antígenos Quiméricos , Antígenos CD19/metabolismo , Antígenos CD19/imunologia , Animais , Humanos , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Linhagem Celular Tumoral , Imunoterapia Adotiva/métodos , Resistencia a Medicamentos Antineoplásicos , Camundongos , Técnicas de Cocultura , Ensaios Antitumorais Modelo de Xenoenxerto , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia
19.
Life Sci ; 348: 122683, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38702027

RESUMO

Although CAR-T cell therapy has emerged as a game-changer in cancer immunotherapy several bottlenecks limit its widespread use as a front-line therapy. Current protocols for the production of CAR-T cells rely mainly on the use of lentiviral/retroviral vectors. Nevertheless, according to the safety concerns around the use of viral vectors, there are several regulatory hurdles to their clinical use. Large-scale production of viral vectors under "Current Good Manufacturing Practice" (cGMP) involves rigorous quality control assessments and regulatory requirements that impose exorbitant costs on suppliers and as a result, lead to a significant increase in the cost of treatment. Pursuing an efficient non-viral method for genetic modification of immune cells is a hot topic in cell-based gene therapy. This study aims to investigate the current state-of-the-art in non-viral methods of CAR-T cell manufacturing. In the first part of this study, after reviewing the advantages and disadvantages of the clinical use of viral vectors, different non-viral vectors and the path of their clinical translation are discussed. These vectors include transposons (sleeping beauty, piggyBac, Tol2, and Tc Buster), programmable nucleases (ZFNs, TALENs, and CRISPR/Cas9), mRNA, plasmids, minicircles, and nanoplasmids. Afterward, various methods for efficient delivery of non-viral vectors into the cells are reviewed.


Assuntos
Vetores Genéticos , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Animais , Linfócitos T/imunologia , Terapia Genética/métodos , Neoplasias/terapia
20.
J Cell Mol Med ; 28(9): e18369, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38712978

RESUMO

Acute myeloid leukaemia (AML) is a fatal and refractory haematologic cancer that primarily affects adults. It interferes with bone marrow cell proliferation. Patients have a 5 years survival rate of less than 30% despite the availability of several treatments, including chemotherapy, allogeneic haematopoietic stem cell transplantation (Allo-HSCT), and receptor antagonist drugs. Allo-HSCT is the mainstay of acute myeloid leukaemia treatment. Although it does work, there are severe side effects, such as graft-versus-host disease (GVHD). In recent years, chimeric antigen receptor (CAR)-T cell therapies have made significant progress in the treatment of cancer. These engineered T cells can locate and recognize tumour cells in vivo and release a large number of effectors through immune action to effectively kill tumour cells. CAR-T cells are among the most effective cancer treatments because of this property. CAR-T cells have demonstrated positive therapeutic results in the treatment of acute myeloid leukaemia, according to numerous clinical investigations. This review highlights recent progress in new targets for AML immunotherapy, and the limitations, and difficulties of CAR-T therapy for AML.


Assuntos
Imunoterapia Adotiva , Leucemia Mieloide Aguda , Receptores de Antígenos Quiméricos , Humanos , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/imunologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...