Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.908
Filtrar
1.
World J Microbiol Biotechnol ; 40(7): 230, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829459

RESUMO

ß-Carotene is an attractive compound and that its biotechnological production can be achieved by using engineered Saccharomyces cerevisiae. In a previous study, we developed a technique for the efficient establishment of diverse mutants through the introduction of point and structural mutations into the yeast genome. In this study, we aimed to improve ß-carotene production by applying this mutagenesis technique to S. cerevisiae strain that had been genetically engineered for ß-carotene production. Point and structural mutations were introduced into ß-carotene-producing engineered yeast. The resulting mutants showed higher ß-carotene production capacity than the parental strain. The top-performing mutant, HP100_74, produced 37.6 mg/L of ß-carotene, a value 1.9 times higher than that of the parental strain (20.1 mg/L). Gene expression analysis confirmed an increased expression of multiple genes in the glycolysis, mevalonate, and ß-carotene synthesis pathways. In contrast, expression of ERG9, which functions in the ergosterol pathway competing with ß-carotene production, was decreased in the mutant strain. The introduction of point and structural mutations represents a simple yet effective method for achieving mutagenesis in yeasts. This technique is expected to be widely applied in the future to produce chemicals via metabolic engineering of S. cerevisiae.


Assuntos
Engenharia Metabólica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , beta Caroteno , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , beta Caroteno/biossíntese , beta Caroteno/metabolismo , Engenharia Metabólica/métodos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Mutação , Regulação Fúngica da Expressão Gênica , Carotenoides/metabolismo , Mutagênese , Mutação Puntual , Ácido Mevalônico/metabolismo , Vias Biossintéticas/genética , Farnesil-Difosfato Farnesiltransferase
2.
World J Microbiol Biotechnol ; 40(7): 227, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822932

RESUMO

In yeast metabolic engineering, there is a need for technologies that simultaneously suppress and regulate the expression of multiple genes and improve the production of target chemicals. In this study, we aimed to develop a novel technology that simultaneously suppresses the expression of multiple genes by combining RNA interference with global metabolic engineering strategy. Furthermore, using ß-carotene as the target chemical, we attempted to improve its production by using the technology. First, we developed a technology to suppress the expression of the target genes with various strengths using RNA interference. Using this technology, total carotenoid production was successfully improved by suppressing the expression of a single gene out of 10 candidate genes. Then, using this technology, RNA interference strain targeting 10 candidate genes for simultaneous suppression was constructed. The total carotenoid production of the constructed RNA interference strain was 1.7 times compared with the parental strain. In the constructed strain, the expression of eight out of the 10 candidate genes was suppressed. We developed a novel technology that can simultaneously suppress the expression of multiple genes at various intensities and succeeded in improving carotenoid production in yeast. Because this technology can suppress the expression of any gene, even essential genes, using only gene sequence information, it is considered a useful technology that can suppress the formation of by-products during the production of various target chemicals by yeast.


Assuntos
Carotenoides , Regulação Fúngica da Expressão Gênica , Engenharia Metabólica , Saccharomyces cerevisiae , beta Caroteno , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Carotenoides/metabolismo , beta Caroteno/metabolismo , beta Caroteno/biossíntese , Interferência de RNA
3.
Microb Cell Fact ; 23(1): 159, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822377

RESUMO

BACKGROUND: Bacillus subtilis is widely used in industrial-scale riboflavin production. Previous studies have shown that targeted mutagenesis of the ribulose 5-phosphate 3-epimerase in B. subtilis can significantly enhance riboflavin production. This modification also leads to an increase in purine intermediate concentrations in the medium. Interestingly, B. subtilis exhibits remarkable efficiency in purine nucleoside synthesis, often exceeding riboflavin yields. These observations highlight the importance of the conversion steps from inosine-5'-monophosphate (IMP) to 2,5-diamino-6-ribosylamino-4(3 H)-pyrimidinone-5'-phosphate (DARPP) in riboflavin production by B. subtilis. However, research elucidating the specific impact of these reactions on riboflavin production remains limited. RESULT: We expressed the genes encoding enzymes involved in these reactions (guaB, guaA, gmk, ndk, ribA) using a synthetic operon. Introduction of the plasmid carrying this synthetic operon led to a 3.09-fold increase in riboflavin production compared to the control strain. Exclusion of gmk from the synthetic operon resulted in a 36% decrease in riboflavin production, which was further reduced when guaB and guaA were not co-expressed. By integrating the synthetic operon into the genome and employing additional engineering strategies, we achieved riboflavin production levels of 2702 mg/L. Medium optimization further increased production to 3477 mg/L, with a yield of 0.0869 g riboflavin per g of sucrose. CONCLUSION: The conversion steps from IMP to DARPP play a critical role in riboflavin production by B. subtilis. Our overexpression strategies have demonstrated their effectiveness in overcoming these limiting factors and enhancing riboflavin production.


Assuntos
Bacillus subtilis , Vias Biossintéticas , Engenharia Metabólica , Purinas , Riboflavina , Riboflavina/biossíntese , Riboflavina/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Purinas/biossíntese , Purinas/metabolismo , Engenharia Metabólica/métodos , Óperon , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
4.
Microb Cell Fact ; 23(1): 162, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824548

RESUMO

BACKGROUND: Syringic acid (SA) is a high-value natural compound with diverse biological activities and wide applications, commonly found in fruits, vegetables, and herbs. SA is primarily produced through chemical synthesis, nonetheless, these chemical methods have many drawbacks, such as considerable equipment requirements, harsh reaction conditions, expensive catalysts, and numerous by-products. Therefore, in this study, a novel biotransformation route for SA production was designed and developed by using engineered whole cells. RESULTS: An O-methyltransferase from Desulfuromonas acetoxidans (DesAOMT), which preferentially catalyzes a methyl transfer reaction on the meta-hydroxyl group of catechol analogues, was identified. The whole cells expressing DesAOMT can transform gallic acid (GA) into SA when S-adenosyl methionine (SAM) is used as a methyl donor. We constructed a multi-enzyme cascade reaction in Escherichia coli, containing an endogenous shikimate kinase (AroL) and a chorismate lyase (UbiC), along with a p-hydroxybenzoate hydroxylase mutant (PobA**) from Pseudomonas fluorescens, and DesAOMT; SA was biosynthesized from shikimic acid (SHA) by using whole cells catalysis. The metabolic system of chassis cells also affected the efficiency of SA biosynthesis, blocking the chorismate metabolism pathway improved SA production. When the supply of the cofactor NADPH was optimized, the titer of SA reached 133 µM (26.2 mg/L). CONCLUSION: Overall, we designed a multi-enzyme cascade in E. coli for SA biosynthesis by using resting or growing whole cells. This work identified an O-methyltransferase (DesAOMT), which can catalyze the methylation of GA to produce SA. The multi-enzyme cascade containing four enzymes expressed in an engineered E. coli for synthesizing of SA from SHA. The metabolic system of the strain and biotransformation conditions influenced catalytic efficiency. This study provides a new green route for SA biosynthesis.


Assuntos
Biocatálise , Escherichia coli , Ácido Gálico , Engenharia Metabólica , Ácido Gálico/metabolismo , Ácido Gálico/análogos & derivados , Escherichia coli/metabolismo , Escherichia coli/genética , Engenharia Metabólica/métodos , Metiltransferases/metabolismo , Metiltransferases/genética , Ácido Chiquímico/metabolismo , Pseudomonas fluorescens/metabolismo , Pseudomonas fluorescens/enzimologia , Pseudomonas fluorescens/genética , Biotransformação
5.
Microb Cell Fact ; 23(1): 121, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725068

RESUMO

BACKGROUND: Mycosporine-like amino acids (MAAs) are a class of strongly UV-absorbing compounds produced by cyanobacteria, algae and corals and are promising candidates for natural sunscreen components. Low MAA yields from natural sources, coupled with difficulties in culturing its native producers, have catalyzed synthetic biology-guided approaches to produce MAAs in tractable microbial hosts like Escherichia coli, Saccharomyces cerevisiae and Corynebacterium glutamicum. However, the MAA titres obtained in these hosts are still low, necessitating a thorough understanding of cellular factors regulating MAA production. RESULTS: To delineate factors that regulate MAA production, we constructed a shinorine (mycosporine-glycine-serine) producing yeast strain by expressing the four MAA biosynthetic enzymes from Nostoc punctiforme in Saccharomyces cerevisiae. We show that shinorine is produced from the pentose phosphate pathway intermediate sedoheptulose 7-phosphate (S7P), and not from the shikimate pathway intermediate 3-dehydroquinate (3DHQ) as previously suggested. Deletions of transaldolase (TAL1) and phosphofructokinase (PFK1/PFK2) genes boosted S7P/shinorine production via independent mechanisms. Unexpectedly, the enhanced S7P/shinorine production in the PFK mutants was not entirely due to increased flux towards the pentose phosphate pathway. We provide multiple lines of evidence in support of a reversed pathway between glycolysis and the non-oxidative pentose phosphate pathway (NOPPP) that boosts S7P/shinorine production in the phosphofructokinase mutant cells. CONCLUSION: Reversing the direction of flux between glycolysis and the NOPPP offers a novel metabolic engineering strategy in Saccharomyces cerevisiae.


Assuntos
Aminoácidos , Glicólise , Via de Pentose Fosfato , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Aminoácidos/metabolismo , Engenharia Metabólica/métodos , Nostoc/metabolismo , Nostoc/genética , Fosfatos Açúcares/metabolismo , Glicina/metabolismo , Glicina/análogos & derivados , Cicloexilaminas
6.
Microb Cell Fact ; 23(1): 127, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698430

RESUMO

BACKGROUND: Methane is a greenhouse gas with a significant potential to contribute to global warming. The biological conversion of methane to ectoine using methanotrophs represents an environmentally and economically beneficial technology, combining the reduction of methane that would otherwise be combusted and released into the atmosphere with the production of value-added products. RESULTS: In this study, high ectoine production was achieved using genetically engineered Methylomicrobium alcaliphilum 20Z, a methanotrophic ectoine-producing bacterium, by knocking out doeA, which encodes a putative ectoine hydrolase, resulting in complete inhibition of ectoine degradation. Ectoine was confirmed to be degraded by doeA to N-α-acetyl-L-2,4-diaminobutyrate under nitrogen depletion conditions. Optimal copper and nitrogen concentrations enhanced biomass and ectoine production, respectively. Under optimal fed-batch fermentation conditions, ectoine production proportionate with biomass production was achieved, resulting in 1.0 g/L of ectoine with 16 g/L of biomass. Upon applying a hyperosmotic shock after high-cell-density culture, 1.5 g/L of ectoine was obtained without further cell growth from methane. CONCLUSIONS: This study suggests the optimization of a method for the high production of ectoine from methane by preventing ectoine degradation. To our knowledge, the final titer of ectoine obtained by M. alcaliphilum 20ZDP3 was the highest in the ectoine production from methane to date. This is the first study to propose ectoine production from methane applying high cell density culture by preventing ectoine degradation.


Assuntos
Diamino Aminoácidos , Metano , Methylococcaceae , Diamino Aminoácidos/metabolismo , Diamino Aminoácidos/biossíntese , Metano/metabolismo , Methylococcaceae/metabolismo , Methylococcaceae/genética , Fermentação , Biomassa , Engenharia Genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Engenharia Metabólica/métodos , Técnicas de Cultura Celular por Lotes
7.
Nat Commun ; 15(1): 3755, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704385

RESUMO

Heparin is an important anticoagulant drug, and microbial heparin biosynthesis is a potential alternative to animal-derived heparin production. However, effectively using heparin synthesis enzymes faces challenges, especially with microbial recombinant expression of active heparan sulfate N-deacetylase/N-sulfotransferase. Here, we introduce the monosaccharide N-trifluoroacetylglucosamine into Escherichia coli K5 to facilitate sulfation modification. The Protein Repair One-Stop Service-Focused Rational Iterative Site-specific Mutagenesis (PROSS-FRISM) platform is used to enhance sulfotransferase efficiency, resulting in the engineered NST-M8 enzyme with significantly improved stability (11.32-fold) and activity (2.53-fold) compared to the wild-type N-sulfotransferase. This approach can be applied to engineering various sulfotransferases. The multienzyme cascade reaction enables the production of active heparin from bioengineered heparosan, demonstrating anti-FXa (246.09 IU/mg) and anti-FIIa (48.62 IU/mg) activities. This study offers insights into overcoming challenges in heparin synthesis and modification, paving the way for the future development of animal-free heparins using a cellular system-based semisynthetic strategy.


Assuntos
Anticoagulantes , Escherichia coli , Heparina , Sulfotransferases , Sulfotransferases/metabolismo , Sulfotransferases/genética , Heparina/metabolismo , Heparina/biossíntese , Anticoagulantes/metabolismo , Anticoagulantes/química , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Humanos , Polissacarídeos/metabolismo , Polissacarídeos/biossíntese , Polissacarídeos/química , Mutagênese Sítio-Dirigida , Engenharia de Proteínas/métodos , Dissacarídeos/metabolismo , Dissacarídeos/biossíntese , Dissacarídeos/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética
8.
Microb Cell Fact ; 23(1): 128, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704580

RESUMO

BACKGROUND: Anthraquinone-fused enediynes (AFEs) are excellent payloads for antibody-drug conjugates (ADCs). The yields of AFEs in the original bacterial hosts are extremely low. Multiple traditional methods had been adopted to enhance the production of the AFEs. Despite these efforts, the production titers of these compounds are still low, presenting a practical challenge for their development. Tiancimycins (TNMs) are a class of AFEs produced by Streptomyces sp. CB03234. One of their salient features is that they exhibit rapid and complete cell killing ability against various cancer cell lines. RESULTS: In this study, a combinatorial metabolic engineering strategy guided by the CB03234-S genome and transcriptome was employed to improve the titers of TNMs. First, re-sequencing of CB03234-S (Ribosome engineered mutant strains) genome revealed the deletion of a 583-kb DNA fragment, accounting for about 7.5% of its genome. Second, by individual or combined inactivation of seven potential precursor competitive biosynthetic gene clusters (BGCs) in CB03234-S, a double-BGC inactivation mutant, S1009, was identified with an improved TNMs titer of 28.2 ± 0.8 mg/L. Third, overexpression of five essential biosynthetic genes, including two post-modification genes, and three self-resistance auxiliary genes, was also conducted, through which we discovered that mutants carrying the core genes, tnmE or tnmE10, exhibited enhanced TNMs production. The average TNMs yield reached 43.5 ± 2.4 mg/L in a 30-L fermenter, representing an approximately 360% increase over CB03234-S and the highest titer among all AFEs to date. Moreover, the resulting mutant produced TNM-W, a unique TNM derivative with a double bond instead of a common ethylene oxide moiety. Preliminary studies suggested that TNM-W was probably converted from TNM-A by both TnmE and TnmE10. CONCLUSIONS: Based on the genome and transcriptome analyses, we adopted a combined metabolic engineering strategy for precursor enrichment and biosynthetic pathway reorganization to construct a high-yield strain of TNMs based on CB03234-S. Our study establishes a solid basis for the clinical development of AFE-based ADCs.


Assuntos
Antraquinonas , Enedi-Inos , Engenharia Metabólica , Streptomyces , Streptomyces/metabolismo , Streptomyces/genética , Engenharia Metabólica/métodos , Antraquinonas/metabolismo , Enedi-Inos/metabolismo , Família Multigênica , Vias Biossintéticas
9.
Microb Cell Fact ; 23(1): 129, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711040

RESUMO

BACKGROUND: Sesterterpenoids are rare species among the terpenoids family. Ophiobolins are sesterterpenes with a 5-8-5 tricyclic skeleton. The oxidized ophiobolins exhibit significant cytotoxic activity and potential medicinal value. There is an urgent need for large amounts of ophiobolins supplication for drug development. The synthetic biology approach has been successfully employed in lots of terpene compound production and inspired us to develop a cell factory for ophiobolin biosynthesis. RESULTS: We developed a systematic metabolic engineering strategy to construct an ophiobolin biosynthesis chassis based on Saccharomyces cerevisiae. The whole-cell biotransformation methods were further combined with metabolic engineering to enhance the expression of key ophiobolin biosynthetic genes and improve the supply of precursors and cofactors. A high yield of 5.1 g/L of ophiobolin F was reached using ethanol and fatty acids as substrates. To accumulate oxidized ophiobolins, we optimized the sources and expression conditions for P450-CPR and alleviated the toxicity of bioactive compounds to cells through PDR engineering. We unexpectedly obtained a novel ophiobolin intermediate with potent cytotoxicity, 5-hydroxy-21-formyl-ophiobolin F, and the known bioactive compound ophiobolin U. Finally, we achieved the ophiobolin U titer of 128.9 mg/L. CONCLUSIONS: We established efficient cell factories based on S. cerevisiae, enabling de novo biosynthesis of the ophiobolin skeleton ophiobolin F and oxidized ophiobolins derivatives. This work has filled the gap in the heterologous biosynthesis of sesterterpenoids in S. cerevisiae and provided valuable solutions for new drug development based on sesterterpenoids.


Assuntos
Engenharia Metabólica , Saccharomyces cerevisiae , Sesterterpenos , Sesterterpenos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética
10.
Microb Cell Fact ; 23(1): 132, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711050

RESUMO

BACKGROUND: 1,5-pentanediol (1,5-PDO) is a linear diol with an odd number of methylene groups, which is an important raw material for polyurethane production. In recent years, the chemical methods have been predominantly employed for synthesizing 1,5-PDO. However, with the increasing emphasis on environmentally friendly production, it has been a growing interest in the biosynthesis of 1,5-PDO. Due to the limited availability of only three reported feasible biosynthesis pathways, we developed a new biosynthetic pathway to form a cell factory in Escherichia coli to produce 1,5-PDO. RESULTS: In this study, we reported an artificial pathway for the synthesis of 1,5-PDO from lysine with an integrated cofactor and co-substrate recycling and also evaluated its feasibility in E.coli. To get through the pathway, we first screened aminotransferases originated from different organisms to identify the enzyme that could successfully transfer two amines from cadaverine, and thus GabT from E. coli was characterized. It was then cascaded with lysine decarboxylase and alcohol dehydrogenase from E. coli to achieve the whole-cell production of 1,5-PDO from lysine. To improve the whole-cell activity for 1,5-PDO production, we employed a protein scaffold of EutM for GabT assembly and glutamate dehydrogenase was also validated for the recycling of NADPH and α-ketoglutaric acid (α-KG). After optimizing the cultivation and bioconversion conditions, the titer of 1,5-PDO reached 4.03 mM. CONCLUSION: We established a novel pathway for 1,5-PDO production through two consecutive transamination reaction from cadaverine, and also integrated cofactor and co-substrate recycling system, which provided an alternative option for the biosynthesis of 1,5-PDO.


Assuntos
Vias Biossintéticas , Escherichia coli , Escherichia coli/metabolismo , Escherichia coli/genética , Engenharia Metabólica/métodos , Glicóis/metabolismo , Lisina/metabolismo , Lisina/biossíntese , Álcool Desidrogenase/metabolismo , Transaminases/metabolismo , Transaminases/genética , Carboxiliases/metabolismo
11.
Biotechnol J ; 19(5): e2400178, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38719574

RESUMO

Sucrose isomerase (SIase) catalyzes the hydrolysis and isomerization of sucrose into isomaltulose, a functional sugar extensively used in the food industry. However, the lack of safe and efficient heterologous expression systems for SIase has constrained its production and application. In this study, an engineered Bacillus subtilis strain for antibiotic-free SIase production was developed via a food-grade expression system. First, the B. subtilis strain TEA was modified through the CRISPR/Cas9 system, resulting in a mutant strain TEA4, which exhibited enhanced capabilities for recombinant protein expression. For efficient and safe production of SIase, different constitutive and inducible promoters were evaluated. The maltose-inducible promoter Poglv was found to have an extracellular SIase activity of 21.7 U mL-1 in engineered strain TEA4. Subsequent optimization of the culture medium further increased SIase activity to 26.4 U mL-1 during shake flask cultivation. Eventually, using the crude enzyme solution of the engineered strain in biotransformation reactions resulted in a high yield of isomaltulose under high concentrations sucrose, achieving a maximum yield of 83.1%. These findings demonstrated an engineered B. subtilis strain for antibiotic-free SIase production, paving the way for its scale-up industrial production and application.


Assuntos
Bacillus subtilis , Glucosiltransferases , Isomaltose , Proteínas Recombinantes , Sacarose , Bacillus subtilis/genética , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Isomaltose/metabolismo , Isomaltose/análogos & derivados , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Sacarose/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Engenharia Metabólica/métodos , Regiões Promotoras Genéticas/genética , Sistemas CRISPR-Cas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
12.
Biotechnol J ; 19(5): e2400014, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38719614

RESUMO

Microbial production of L-malic acid from renewable carbon sources has attracted extensive attention. The reduced cofactor NADPH plays a key role in biotransformation because it participates in both biosynthetic reactions and cellular stress responses. In this study, NADPH or its precursors nicotinamide and nicotinic acid were added to the fermentation medium of Aspergillus niger RG0095, which significantly increased the yield of malic acid by 11%. To further improve the titer and productivity of L-malic acid, we increased the cytoplasmic NADPH levels of A. niger by upregulating the NAD kinases Utr1p and Yef1p. Biochemical analyses demonstrated that overexpression of Utr1p and Yef1p reduced oxidative stress, while also providing more NADPH to catalyze the conversion of glucose into malic acid. Notably, the strain overexpressing Utr1p reached a malate titer of 110.72 ± 1.91 g L-1 after 108 h, corresponding to a productivity of 1.03 ± 0.02 g L-1 h-1. Thus, the titer and productivity of malate were increased by 24.5% and 44.7%, respectively. The strategies developed in this study may also be useful for the metabolic engineering of fungi to produce other industrially relevant bulk chemicals.


Assuntos
Aspergillus niger , Fermentação , Malatos , Engenharia Metabólica , NADP , Aspergillus niger/metabolismo , Aspergillus niger/genética , Malatos/metabolismo , Engenharia Metabólica/métodos , NADP/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucose/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
13.
Molecules ; 29(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38731602

RESUMO

Diverse secondary metabolites in plants, with their rich biological activities, have long been important sources for human medicine, food additives, pesticides, etc. However, the large-scale cultivation of host plants consumes land resources and is susceptible to pest and disease problems. Additionally, the multi-step and demanding nature of chemical synthesis adds to production costs, limiting their widespread application. In vitro cultivation and the metabolic engineering of plants have significantly enhanced the synthesis of secondary metabolites with successful industrial production cases. As synthetic biology advances, more research is focusing on heterologous synthesis using microorganisms. This review provides a comprehensive comparison between these two chassis, evaluating their performance in the synthesis of various types of secondary metabolites from the perspectives of yield and strategies. It also discusses the challenges they face and offers insights into future efforts and directions.


Assuntos
Engenharia Metabólica , Plantas , Metabolismo Secundário , Plantas/metabolismo , Engenharia Metabólica/métodos , Biologia Sintética/métodos
14.
World J Microbiol Biotechnol ; 40(6): 197, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722384

RESUMO

Physiological and environmental cues prompt microbes to synthesize diverse carotenoids, including dihydroxy xanthophylls, facilitating their adaptation and survival. Lutein and its isomeric counterpart, zeaxanthin, are notable dihydroxy xanthophylls with bioactive properties such as antioxidative, anti-inflammatory, anticancer, and neuroprotective effects, particularly beneficial for human ocular health. However, global natural resources for co-producing lutein and zeaxanthin are scarce, with zeaxanthin lacking commercial sources, unlike lutein sourced from marigold plants and microalgae. Traditionally, dihydroxy xanthophyll production primarily relies on petrochemical synthetic routes, with limited biological sourcing reported. Nonetheless, microbiological synthesis presents promising avenues as a commercial source, albeit challenged by low dihydroxy xanthophyll yield at high cell density. Strategies involving optimization of physical and chemical parameters are essential to achieve high-quality dihydroxy xanthophyll products. This overview briefly discusses dihydroxy xanthophyll biosynthesis and highlights recent advancements, discoveries, and industrial benefits of lutein and zeaxanthin production from microorganisms as alternative biofactories.


Assuntos
Luteína , Xantofilas , Zeaxantinas , Luteína/biossíntese , Luteína/metabolismo , Zeaxantinas/metabolismo , Xantofilas/metabolismo , Engenharia Metabólica/métodos , Carotenoides/metabolismo , Bactérias/metabolismo , Humanos , Vias Biossintéticas
15.
Microb Cell Fact ; 23(1): 138, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750569

RESUMO

BACKGROUND: Genome-scale metabolic models (GEMs) serve as effective tools for understanding cellular phenotypes and predicting engineering targets in the development of industrial strain. Enzyme-constrained genome-scale metabolic models (ecGEMs) have emerged as a valuable advancement, providing more accurate predictions and unveiling new engineering targets compared to models lacking enzyme constraints. In 2022, a stoichiometric GEM, iDL1450, was reconstructed for the industrially significant fungus Myceliophthora thermophila. To enhance the GEM's performance, an ecGEM was developed for M. thermophila in this study. RESULTS: Initially, the model iDL1450 underwent refinement and updates, resulting in a new version named iYW1475. These updates included adjustments to biomass components, correction of gene-protein-reaction (GPR) rules, and a consensus on metabolites. Subsequently, the first ecGEM for M. thermophila was constructed using machine learning-based kcat data predicted by TurNuP within the ECMpy framework. During the construction, three versions of ecGEMs were developed based on three distinct kcat collection methods, namely AutoPACMEN, DLKcat and TurNuP. After comparison, the ecGEM constructed using TurNuP-predicted kcat values performed better in several aspects and was selected as the definitive version of ecGEM for M. thermophila (ecMTM). Comparing ecMTM to iYW1475, the solution space was reduced and the growth simulation results more closely resembled realistic cellular phenotypes. Metabolic adjustment simulated by ecMTM revealed a trade-off between biomass yield and enzyme usage efficiency at varying glucose uptake rates. Notably, hierarchical utilization of five carbon sources derived from plant biomass hydrolysis was accurately captured and explained by ecMTM. Furthermore, based on enzyme cost considerations, ecMTM successfully predicted reported targets for metabolic engineering modification and introduced some new potential targets for chemicals produced in M. thermophila. CONCLUSIONS: In this study, the incorporation of enzyme constraint to iYW1475 not only improved prediction accuracy but also broadened the model's applicability. This research demonstrates the effectiveness of integrating of machine learning-based kcat data in the construction of ecGEMs especially in situations where there is limited measured enzyme kinetic parameters for a specific organism.


Assuntos
Aprendizado de Máquina , Redes e Vias Metabólicas , Sordariales , Sordariales/metabolismo , Sordariales/enzimologia , Sordariales/genética , Engenharia Metabólica/métodos , Biomassa , Modelos Biológicos , Cinética , Genoma Fúngico
16.
Metab Eng ; 83: 206-215, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38710300

RESUMO

Shewanella oneidensis MR-1 has found widespread applications in pollutant transformation and bioenergy production, closely tied to its outstanding heme synthesis capabilities. However, this significant biosynthetic potential is still unexploited so far. Here, we turned this bacterium into a highly-efficient bio-factory for green synthesis of 5-Aminolevulinic Acid (5-ALA), an important chemical for broad applications in agriculture, medicine, and the food industries. The native C5 pathway genes of S. oneidensis was employed, together with the introduction of foreign anti-oxidation module, to establish the 5-ALA production module, resulting 87-fold higher 5-ALA yield and drastically enhanced tolerance than the wild type. Furthermore, the metabolic flux was regulated by using CRISPR interference and base editing techniques to suppress the competitive pathways to further improve the 5-ALA titer. The engineered strain exhibited 123-fold higher 5-ALA production capability than the wild type. This study not only provides an appealing new route for 5-ALA biosynthesis, but also presents a multi-dimensional modularized engineering strategy to broaden the application scope of S. oneidensis.


Assuntos
Ácido Aminolevulínico , Engenharia Metabólica , Shewanella , Shewanella/genética , Shewanella/metabolismo , Ácido Aminolevulínico/metabolismo
17.
Microb Cell Fact ; 23(1): 143, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773442

RESUMO

BACKGROUND: Zymomonas mobilis is well known for its outstanding ability to produce ethanol with both high specific productivity and with high yield close to the theoretical maximum. The key enzyme in the ethanol production pathway is the pyruvate decarboxylase (PDC) which is converting pyruvate to acetaldehyde. Since it is widely considered that its gene pdc is essential, metabolic engineering strategies aiming to produce other compounds derived from pyruvate need to find ways to reduce PDC activity. RESULTS: Here, we present a new platform strain (sGB027) of Z. mobilis in which the native promoter of pdc was replaced with the IPTG-inducible PT7A1, allowing for a controllable expression of pdc. Expression of lactate dehydrogenase from E. coli in sGB027 allowed the production of D-lactate with, to the best of our knowledge, the highest reported specific productivity of any microbial lactate producer as well as with the highest reported lactate yield for Z. mobilis so far. Additionally, by expressing the L-alanine dehydrogenase of Geobacillus stearothermophilus in sGB027 we produced L-alanine, further demonstrating the potential of sGB027 as a base for the production of compounds other than ethanol. CONCLUSION: We demonstrated that our new platform strain can be an excellent starting point for the efficient production of various compounds derived from pyruvate with Z. mobilis and can thus enhance the establishment of this organism as a workhorse for biotechnological production processes.


Assuntos
Escherichia coli , Etanol , Ácido Láctico , Engenharia Metabólica , Piruvato Descarboxilase , Zymomonas , Zymomonas/metabolismo , Zymomonas/genética , Piruvato Descarboxilase/metabolismo , Piruvato Descarboxilase/genética , Engenharia Metabólica/métodos , Etanol/metabolismo , Ácido Láctico/metabolismo , Ácido Láctico/biossíntese , Escherichia coli/metabolismo , Escherichia coli/genética , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/genética , Alanina/metabolismo , Ácido Pirúvico/metabolismo , Fermentação
18.
Microb Cell Fact ; 23(1): 147, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783320

RESUMO

Aminopyrrolnitrin (APRN), a natural halogenated phenylpyrrole derivative (HPD), has strong antifungal and antiparasitic activities. Additionally, it showed 2.8-fold increased photostability compared to pyrrolnitrin, a commercially available HPD with antimicrobial activity. For microbial production of APRN, we first engineered anthranilate phosphoribosyltransferase encoded by trpD from Corynebacterium glutamicum, resulting in a TrpDA162D mutation that exhibits feedback-resistant against L-tryptophan and higher substrate affinity compared to wild-type TrpD. Plasmid-borne expression of trpDA162D in C. glutamicum TP851 strain with two copies of trpDA162D in the genome led to the production of 3.1 g/L L-tryptophan in flask culture. Subsequent step for L-tryptophan chlorination into 7-chloro-L-tryptophan was achieved by introducing diverse sources of genes encoding tryptophan 7-halogenase (PrnA or RebH) and flavin reductase (Fre, PrnF, or RebF). The combined expression of prnA from Serratia grimesii or Serratia plymuthica with flavin reductase gene from Escherichia coli, Pseudomonas fluorescens, or Lechevalieria aerocolonigenes yielded higher production of 7-chloro-L-tryptophan in comparison to other sets of two-component systems. In the next step, production of putative monodechloroaminopyrrolnitrin (MDAP) from 7-chloro-L-tryptophan was achieved through the expression of prnB encoding MDAP synthase from S. plymuthica or P. fluorescens. Finally, an artificial APRN biosynthetic pathway was constructed by simultaneously expressing genes coding for tryptophan 7-halogenase, flavin reductase, MDAP synthase, and MDAP halogenase (PrnC) from different microbial sources within the L-tryptophan-producing TP851 strain. As prnC from S. grimesii or S. plymuthica was introduced into the host strain, which carried plasmids expressing prnA from S. plymuthica, fre from E. coli, and prnB from S. plymuthica, APN3639 and APN3638 accumulated 29.5 mg/L and 28.1 mg/L of APRN in the culture broth. This study represents the first report on the fermentative APRN production by metabolically engineered C. glutamicum.


Assuntos
Corynebacterium glutamicum , Engenharia Metabólica , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/genética , Engenharia Metabólica/métodos , Pirrolnitrina/biossíntese , Pirrolnitrina/metabolismo , Fermentação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Triptofano/biossíntese , Triptofano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Oxirredutases
19.
Mar Drugs ; 22(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38786607

RESUMO

Microalgal lipids hold significant potential for the production of biodiesel and dietary supplements. To enhance their cost-effectiveness and commercial competitiveness, it is imperative to improve microalgal lipid productivity. Metabolic engineering that targets the key enzymes of the fatty acid synthesis pathway, along with transcription factor engineering, are effective strategies for improving lipid productivity in microalgae. This review provides a summary of the advancements made in the past 5 years in engineering the fatty acid biosynthetic pathway in eukaryotic microalgae. Furthermore, this review offers insights into transcriptional regulatory mechanisms and transcription factor engineering aimed at enhancing lipid production in eukaryotic microalgae. Finally, the review discusses the challenges and future perspectives associated with utilizing microalgae for the efficient production of lipids.


Assuntos
Ácidos Graxos , Engenharia Metabólica , Microalgas , Microalgas/metabolismo , Engenharia Metabólica/métodos , Ácidos Graxos/biossíntese , Ácidos Graxos/metabolismo , Biocombustíveis , Vias Biossintéticas , Fatores de Transcrição/metabolismo , Animais , Humanos
20.
J Agric Food Chem ; 72(19): 11029-11040, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38699920

RESUMO

l-Phenylalanine (l-Phe) is widely used in the food and pharmaceutical industries. However, the biosynthesis of l-Phe using Escherichia coli remains challenging due to its lower tolerance to high concentration of l-Phe. In this study, to efficiently synthesize l-Phe, the l-Phe biosynthetic pathway was reconstructed by expressing the heterologous genes aroK1, aroL1, and pheA1, along with the native genes aroA, aroC, and tyrB in the shikimate-producing strain E. coli SA09, resulting in the engineered strain E. coli PHE03. Subsequently, adaptive evolution was conducted on E. coli PHE03 to enhance its tolerance to high concentrations of l-Phe, resulting in the strain E. coli PHE04, which reduced the cell mortality to 36.2% after 48 h of fermentation. To elucidate the potential mechanisms, transcriptional profiling was conducted, revealing MarA, a DNA-binding transcriptional dual regulator, as playing a crucial role in enhancing cell membrane integrity and fluidity for improving cell tolerance to high concentrations of l-Phe. Finally, the titer, yield, and productivity of l-Phe with E. coli PHE05 overexpressing marA were increased to 80.48 g/L, 0.27 g/g glucose, and 1.68 g/L/h in a 5-L fed-batch fermentation, respectively.


Assuntos
Escherichia coli , Fermentação , Engenharia Metabólica , Fenilalanina , Escherichia coli/genética , Escherichia coli/metabolismo , Fenilalanina/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Vias Biossintéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...