Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.696
Filtrar
1.
Sci Rep ; 14(1): 8228, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589405

RESUMO

Nowadays, an efficient and robust virtual screening procedure is crucial in the drug discovery process, especially when performed on large and chemically diverse databases. Virtual screening methods, like molecular docking and classic QSAR models, are limited in their ability to handle vast numbers of compounds and to learn from scarce data, respectively. In this study, we introduce a universal methodology that uses a machine learning-based approach to predict docking scores without the need for time-consuming molecular docking procedures. The developed protocol yielded 1000 times faster binding energy predictions than classical docking-based screening. The proposed predictive model learns from docking results, allowing users to choose their preferred docking software without relying on insufficient and incoherent experimental activity data. The methodology described employs multiple types of molecular fingerprints and descriptors to construct an ensemble model that further reduces prediction errors and is capable of delivering highly precise docking score values for monoamine oxidase ligands, enabling faster identification of promising compounds. An extensive pharmacophore-constrained screening of the ZINC database resulted in a selection of 24 compounds that were synthesized and evaluated for their biological activity. A preliminary screen discovered weak inhibitors of MAO-A with a percentage efficiency index close to a known drug at the lowest tested concentration. The approach presented here can be successfully applied to other biological targets as target-specific knowledge is not incorporated at the screening phase.


Assuntos
Inibidores da Monoaminoxidase , Farmacóforo , Simulação de Acoplamento Molecular , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Relação Quantitativa Estrutura-Atividade , Aprendizado de Máquina , Ligantes
2.
J Chromatogr A ; 1722: 464896, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38631224

RESUMO

In this study, a novel magnetic bead-based ligand fishing method was developed for rapid discovery of monoterpene indoles as monoamine oxidase A inhibitors from natural products. In order to improve the screening efficiency, two different magnetic beads, i.e. amine and carboxyl terminated magnetic beads, were comprehensively compared in terms of their ability to immobilize monoamine oxidase A (MAOA), biocatalytic activity and specific adsorption rates for affinity ligands. Carboxyl terminated magnetic beads performed better for MAOA immobilization and demonstrated superior performance in ligand fishing. The MAOA immobilized magnetic beads were applied to screen novel monoamine oxidase inhibitors in an alkaloid-rich plant, Hunteria zeylanica. Twelve MAOA affinity ligands were screened out, and ten of them were identified as monoterpene indole alkaloids by HPLC-Obitrap-MS/MS. Among them, six ligands, namely geissoschizol, vobasinol, yohimbol, dihydrocorynanthenol, eburnamine and (+)-isoeburnamine which exhibited inhibitory activity against MAOA with low IC50 values. To further explore their inhibitory mechanism, enzyme kinetic analysis and molecular docking studies were conducted.


Assuntos
Simulação de Acoplamento Molecular , Inibidores da Monoaminoxidase , Monoaminoxidase , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/isolamento & purificação , Monoaminoxidase/metabolismo , Monoaminoxidase/química , Ligantes , Indóis/química , Monoterpenos/química , Monoterpenos/isolamento & purificação , Cinética , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Enzimas Imobilizadas/antagonistas & inibidores , Humanos , Extratos Vegetais/química
3.
J Clin Psychopharmacol ; 44(3): 278-283, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38639428

RESUMO

PURPOSE: The prevalence of comorbid depression and chronic kidney disease (CKD) is high. The aim of this brief report was to review 2 cases of treatment with tranylcypromine (TCP) in patients with treatment-resistant depression (TRD) and CKD. Tests of the plasma concentration of TCP were included. METHODS: Medical and psychiatric notes of the 2 patients were reviewed with plasma concentrations of TCP as a key aspect of the discussion. The data are evaluated in the context of relevant medical and pharmacokinetic literature. FINDINGS: Plasma concentrations of TCP are highly variable both in patients with and without CKD. Plasma concentrations of TCP were not increased in the 2 cases with CKD as compared with literature data of patients without CKD. No signs of intoxication were detected in 2 cases with CKD that impaired continuous treatment of depression with TCP. IMPLICATIONS: TCP may be considered in selected cases of TRD with concomitant CKD. More clinical data and tests of plasma concentrations of TCP are needed in patients with CKD.


Assuntos
Transtorno Depressivo Resistente a Tratamento , Insuficiência Renal Crônica , Tranilcipromina , Humanos , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/complicações , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Transtorno Depressivo Resistente a Tratamento/sangue , Feminino , Pessoa de Meia-Idade , Masculino , Idoso , Inibidores da Monoaminoxidase/sangue , Adulto
4.
Biosci Biotechnol Biochem ; 88(6): 665-670, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38561637

RESUMO

Bee pollen is an apicultural product collected by honeybees from flower stamens and used as a functional food worldwide. In the present study, we aim to elucidate the functions of Australian bee pollen. Australian bee pollen extracts and their main components were tested for catechol-O-methyltransferase (COMT) and monoamine oxidase B (MAOB) inhibitory activities. These enzymes are key neurotransmitters involved in Parkinson's disease and depression. Myricetin (5), tricetin (6), and luteolin (7) exhibited high COMT inhibitory activities (half maximal inhibitory concentration [IC50] = 23.3, 13.8, and 47.4 µM, respectively). In contrast, 5, 7, and annulatin (8) exhibited MAOB inhibitory activities (IC50 = 89.7, 32.8, and 153 µM, respectively). Quantitative analysis via high-performance liquid chromatography revealed that 5 was abundant in Australian bee pollen extracts. Our findings suggest that 5 contributes to the COMT and MAOB inhibitory activities of Australian bee pollen.


Assuntos
Catecol O-Metiltransferase , Inibidores da Monoaminoxidase , Monoaminoxidase , Pólen , Pólen/química , Abelhas , Animais , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Catecol O-Metiltransferase/metabolismo , Austrália , Inibidores de Catecol O-Metiltransferase/farmacologia
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124168, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38513420

RESUMO

A typical drug used to treat Parkinson's disease is called rasagiline. It belongs to an assortment of drugs known as monoamine oxidase inhibitors, which function by raising dopamine levels in the brain. This work created a unique spectrofluorimetric method for the analytical assay of rasagiline for the first time. The approach utilized the synergistic utility of the fluorogenic properties of benzofurazan and salting-out assisted liquid-liquid extraction. By combining these techniques an ultrasensitive, and highly selective methodology for the assay of rasagiline was established. Measurements were made of the resultant yellow fluorescent product at 533 nm by applying an excitation wavelength of 475.3 nm. The calibration graph was examined to assess its linearity across a range of 30-600 ng/ml. Through estimation, the limit of detection was discovered to be 8.9 ng/ml, while the quantitation limit was estimated to be 27 ng/ml. All relevant parameters influencing the fulfillment of the developed method were thoroughly examined and tuned. Following the directives set by the (ICH) the suggested approach was confirmed and demonstrated its capability for the accurate determination of rasagiline in tablets, as well as for testing content uniformity. The incorporation of salting-out assisted liquid-liquid extraction technology enables effective tracking of rasagiline in plasma samples, providing a novel and innovative approach for its analysis in biological matrices.


Assuntos
4-Cloro-7-nitrobenzofurazano , Inibidores da Monoaminoxidase , Cloreto de Sódio , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/uso terapêutico , Indanos , Extração Líquido-Líquido/métodos
6.
J Mol Model ; 30(4): 103, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478122

RESUMO

CONTEXT: Monoamine oxidase B (MAO-B), an enzyme of significant relevance in the realm of neurodegenerative disorders, has garnered considerable attention as a potential target for therapeutic intervention. Natural compounds known as chalcones have shown potential as MAO-B inhibitors. In this particular study, we employed a multimodal computational method to evaluate the inhibitory effects of chalcones on MAO-B. METHODS: Molecular docking methods were used to study and assess the complicated binding interactions that occur between chalcones and MAO-B. This extensive analysis provided a valuable and deep understanding of possible binding methods as well as the key residues implicated in the inhibition process. Furthermore, the ADME investigation gave valuable insights into the pharmacokinetic properties of chalcones. This allowed them to be assessed in terms of drug-like attributes. The use of MD simulations has benefited in the research of ligand-protein interactions' dynamic behaviour and temporal stability. MM-PBSA calculations were also done to estimate the binding free energies and acquire a better knowledge and understanding of the binding affinity between chalcones and MAO-B. Our thorough method gives a thorough knowledge of chalcones' potential as MAO-B inhibitors, which will be useful for future experimental validation and drug development efforts in the context of neurodegenerative illnesses.


Assuntos
Chalconas , Monoaminoxidase , Monoaminoxidase/química , Monoaminoxidase/metabolismo , Simulação de Acoplamento Molecular , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Chalconas/farmacologia , Chalconas/química , Relação Estrutura-Atividade
7.
Eur J Drug Metab Pharmacokinet ; 49(3): 331-341, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38446388

RESUMO

BACKGROUND AND OBJECTIVES: HEC122505 is a potent and selectively monoamine oxidase B inhibitor that is safe and well-tolerated in preclinical models of Parkinson's disease. The objectives of single ascending dose and multiple dose pharmacokinetic trials of HEC122505 oral tablets were to determine the safety and tolerability of HEC122505, and to examine the food effect on the pharmacokinetic parameters of HEC122505 and its major metabolite HEC129870. METHODS: The phase I study (NCT04625361) consisted of three arms: single ascending dose study (5, 20, 50, 100, 200, 300 or 400 mg HEC122505 tablets or placebo), multiple ascending dose study (20, 50 or 100 mg HEC122505 tablets or placebo once daily), and food effect (100 mg HEC122505 tablets single dose after a high-fat, high-calorie meal). All subjects completed all trial arms and were analyzed as planned. RESULTS: Pharmacokinetic analysis showed that HEC122505 rapidly absorbed with the time to peak plasma concentration (Tmax) ranged from 0.5 to 1.75 h. In addition, maximum plasma drug concentration (Cmax) and area under the plasma concentration-time curve (AUC) increased in a dose proportional manner. Food effect study showed that a high-fat, high-calorie meal had no significant effect on the pharmacokinetics of HEC122505 and its major metabolite HEC129870, suggesting that HEC122505 could be administered in both fasted and fed state in clinical trials. The subsequent multiple-dose study evaluated doses from 20 to 100 mg dose once daily for up to 8 days. HEC122505 reached steady state after approximately 5 days with a once daily dose. In these studies, all dose of HEC122505 was generally safe and well tolerated. No grade ≥ 3 drug related adverse events (AEs) occurred. CONCLUSION: HEC122505 was generally safe and well tolerated in the single ascending dose (ranging from 5 to 400 mg) and multiple ascending dose (50 to 200 mg once daily doses) studies. All the drug related adverse events (AEs) were Grade ≤ 2. There were no deaths, no subjects discontinued the trial due to AEs, and there were no other serious AEs. The safety and pharmacokinetic profile support once daily administration of HEC122505.


Assuntos
Área Sob a Curva , Interações Alimento-Droga , Voluntários Saudáveis , Inibidores da Monoaminoxidase , Humanos , Masculino , Adulto , Adulto Jovem , Inibidores da Monoaminoxidase/farmacocinética , Inibidores da Monoaminoxidase/administração & dosagem , Inibidores da Monoaminoxidase/efeitos adversos , Feminino , Relação Dose-Resposta a Droga , Administração Oral , Método Duplo-Cego , Comprimidos , Pessoa de Meia-Idade , Povo Asiático , População do Leste Asiático
8.
Eur J Med Chem ; 269: 116266, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38490063

RESUMO

In neurodegenerative diseases, using a single molecule that can exert multiple effects to modify the disease may have superior activity over the classical "one molecule-one target" approach. Herein, we describe the discovery of 6-hydroxybenzothiazol-2-carboxamides as highly potent and selective MAO-B inhibitors. Variation of the amide substituent led to several potent compounds having diverse side chains with cyclohexylamide 40 displaying the highest potency towards MAO-B (IC50 = 11 nM). To discover new compounds with extended efficacy against neurotoxic mechanisms in neurodegenerative diseases, MAO-B inhibitors were screened against PHF6, R3 tau, cellular tau and α-synuclein (α-syn) aggregation. We identified the phenethylamide 30 as a multipotent inhibitor of MAO-B (IC50 = 41 nM) and α-syn and tau aggregation. It showed no cytotoxic effects on SH-SY5Y neuroblastoma cells, while also providing neuroprotection against toxicities induced by α-syn and tau. The evaluation of key physicochemical and in vitro-ADME properties revealed a great potential as drug-like small molecules with multitarget neuroprotective activity.


Assuntos
Neuroblastoma , Doenças Neurodegenerativas , Humanos , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Neuroproteção , Monoaminoxidase/metabolismo , Relação Estrutura-Atividade
9.
Bioorg Chem ; 146: 107255, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38457955

RESUMO

Monoaminooxidases (MAOs) are important targets for drugs used in the treatment of neurological and psychiatric disorders and particularly on Parkinson's Disease (PD). Compounds containing a trans-stilbenoid skeleton have demonstrated good selective and reversible MAO-B inhibition. Here, twenty-two (Z)-3-benzylidenephthalides (benzalphthalides, BPHs) displaying a trans-stilbenoid skeleton have been synthesised and evaluated as inhibitors of the MAO-A and MAO-B isoforms. Some BPHs have selectively inhibited MAO-B, with IC50 values ranging from sub-nM to µM. The most potent compound with IC50 = 0.6 nM was the 3',4'-dichloro-BPH 16, which showed highly selective and reversible MAO-B inhibitory activity. Furthermore, the most selective BPHs displayed a significant protection against the apoptosis, and mitochondrial toxic effects induced by 6-hydroxydopamine (6OHDA) on SH-SY5Y cells, used as a cellular model of PD. The results of virtual binding studies on the most potent compounds docked in MAO-B and MAO-A were in agreement with the potencies and selectivity indexes found experimentally. Additionally, related to toxicity risks, drug-likeness and ADME properties, the predictions found for the most relevant BPHs in this research were within those ranges established for drug candidates.


Assuntos
Neuroblastoma , Doença de Parkinson , Estilbenos , Humanos , Simulação de Acoplamento Molecular , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/química , Doença de Parkinson/tratamento farmacológico , Ácidos Ftálicos/química , Ácidos Ftálicos/farmacologia , Relação Estrutura-Atividade , Compostos de Benzil/síntese química , Compostos de Benzil/química , Compostos de Benzil/farmacologia
10.
Methods Mol Biol ; 2761: 329-336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427248

RESUMO

Monoamine oxidase (MAO) catalyzes the oxidative deamination of monoamines with two isoforms, namely, MAO-A and MAO-B, in mitochondrial outer membranes. These two types of MAO-A and MAO-B participate in changes in levels of neurotransmitter such as serotonin (5-hydroxytryptamine) and dopamine. Selective MAO-A inhibitors have been targeted for anti-depression treatment, while selective MAO-B inhibitors are targets of therapeutic agents for Alzheimer's disease and Parkinson's disease. For this reason, study on the development of MAO inhibitors has recently become important. Here, we describe methods of MAO activity assay, especially continuous spectrophotometric methods, which give relatively high accuracy. MAO-A and MAO-B can be assayed using kynuramine and benzylamine as substrates, respectively, at 316 nm and 250 nm, respectively, to measure their respective products, 4-hydroxyquinoline and benzaldehyde. Inhibition degree and pattern can be analyzed by using the Lineweaver-Burk and secondary plots in the presence of inhibitor, and reversibility of inhibitor can be determined by using the dialysis method.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Humanos , Monoaminoxidase , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/uso terapêutico , Antidepressivos/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico
11.
J Med Chem ; 67(5): 4170-4193, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38436571

RESUMO

We report here the first dual inhibitors of brain carbonic anhydrases (CAs) and monoamine oxidase-B (MAO-B) for the management of Alzheimer's disease. Classical CA inhibitors (CAIs) such as methazolamide prevent amyloid-ß-peptide (Aß)-induced overproduction of reactive oxygen species (ROS) and mitochondrial dysfunction. MAO-B is also implicated in ROS production, cholinergic system disruption, and amyloid plaque formation. In this work, we combined a reversible MAO-B inhibitor of the coumarin and chromone type with benzenesulfonamide fragments as highly effective CAIs. A hit-to-lead optimization led to a significant set of derivatives showing potent low nanomolar inhibition of the target brain CAs (KIs in the range of 0.1-90.0 nM) and MAO-B (IC50 in the range of 6.7-32.6 nM). Computational studies were conducted to elucidate the structure-activity relationship and predict ADMET properties. The most effective multitarget compounds totally prevented Aß-related toxicity, reverted ROS formation, and restored the mitochondrial functionality in an SH-SY5Y cell model surpassing the efficacy of single-target drugs.


Assuntos
Doença de Alzheimer , Anidrases Carbônicas , Doenças Mitocondriais , Neuroblastoma , Humanos , Monoaminoxidase/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Peptídeos beta-Amiloides/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Doença de Alzheimer/tratamento farmacológico , Relação Estrutura-Atividade , Estresse Oxidativo , Encéfalo/metabolismo
12.
Curr Top Med Chem ; 24(5): 401-415, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318823

RESUMO

Depression is one of the key conditions addressed by the Mental Health Gap Action Programme (mhGAP) of WHO that can lead to self-harm and suicide. Depression is associated with low levels of neurotransmitters, which eventually play a key role in the progression and development of mental illness. The nitrogen-containing heterocyclic compounds exhibit the most prominent pharmacological profile as antidepressants. Pyrazoline, a dihydro derivative of pyrazole, is a well-known five-membered heterocyclic moiety that exhibits a broad spectrum of biological activities. Many researchers have reported pyrazoline scaffold-containing molecules as potential antidepressant agents with selectivity for monoamine oxidase enzyme (MAO) isoforms. Several studies indicated a better affinity of pyrazoline-based moiety as (monoamine oxidase inhibitors) MAOIs. In this review, we have focused on the recent advancements (2019-2023) in the development of pyrazoline-containing derivatives exhibiting promising inhibition of MAO-A enzyme to treat depression. This review provides structural insights on pyrazoline-based molecules along with their SAR analysis, in silico exploration of binding interactions between pyrazoline derivatives and MAO-A enzyme, and clinical trial status of various drug molecules against depression. The in-silico exploration of potent pyrazoline derivatives at the active site of the MAOA enzyme will provide further insights into the development of new potential MAO-A inhibitors for the treatment of depression.


Assuntos
Antidepressivos , Inibidores da Monoaminoxidase , Monoaminoxidase , Pirazóis , Humanos , Monoaminoxidase/metabolismo , Antidepressivos/farmacologia , Antidepressivos/química , Antidepressivos/síntese química , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/síntese química , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Relação Estrutura-Atividade , Depressão/tratamento farmacológico , Estrutura Molecular , Animais
13.
Neurochem Int ; 174: 105698, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364939

RESUMO

Parkinson's disease (PD) is one of the most prevalent age-related neurodegenerative disorders. Behavioral complexities worsen over time due to progressive dopaminergic (DArgic) neuronal loss at substantia nigra region of brain. Available treatments typically aim to increase dopamine (DA) levels at striatum. DA is degraded by Monoamine oxidase (MAO), thus dietary phytochemicals with MAO inhibitory properties can contribute to elevate DA levels and reduce the ailment. Characterization of naturally occurring dietary MAO inhibitors is inadequate. Based on available knowledge, we selected different classes of molecules and conducted a screening process to assess their potential as MAO inhibitors. The compounds mostly derived from food sources, broadly belonging to triterpenoids (ursane, oleanane and hopane), alkaloid, polyphenolics, monoterpenoids, alkylbenzene, phenylpropanoid and aromatic alcohol classes. Among all the molecules, highest level of MAO inhibition is offered by α-viniferin, a resveratrol trimer. Cell viability, mitochondrial morphology and reactive oxygen species (ROS) generation remained unaltered by 50 µM α-viniferin treatment in-vitro. Toxicity studies in Drosophila showed unchanged gross neuronal morphology, ROS level, motor activity or long-term survival. α-Viniferin inhibited MAO in mice brain and elevated striatal DA levels. PD-related akinesia and cataleptic behavior were attenuated by α-viniferin due to increase in striatal DA. Our study implies that α-viniferin can be used as an adjunct phytotherapeutic agent for mitigating PD-related behavioral deterioration.


Assuntos
Benzofuranos , Monoaminoxidase , Doença de Parkinson , Camundongos , Animais , Monoaminoxidase/metabolismo , Doença de Parkinson/tratamento farmacológico , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/uso terapêutico , Espécies Reativas de Oxigênio , Dopamina/metabolismo
14.
Sci Rep ; 14(1): 4868, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418571

RESUMO

Monoamine oxidases (MAOs), specifically MAO-A and MAO-B, play important roles in the breakdown of monoamine neurotransmitters. Therefore, MAO inhibitors are crucial for treating various neurodegenerative disorders, including Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS). In this study, we developed a novel cheminformatics pipeline by generating three diverse molecular feature-based machine learning-assisted quantitative structural activity relationship (ML-QSAR) models concerning MAO-B inhibition. PubChem fingerprints, substructure fingerprints, and one-dimensional (1D) and two-dimensional (2D) molecular descriptors were implemented to unravel the structural insights responsible for decoding the origin of MAO-B inhibition in 249 non-reductant molecules. Based on a random forest ML algorithm, the final PubChem fingerprint, substructure fingerprint, and 1D and 2D molecular descriptor prediction models demonstrated significant robustness, with correlation coefficients of 0.9863, 0.9796, and 0.9852, respectively. The significant features of each predictive model responsible for MAO-B inhibition were extracted using a comprehensive variance importance plot (VIP) and correlation matrix analysis. The final predictive models were further developed as a web application, MAO-B-pred ( https://mao-b-pred.streamlit.app/ ), to allow users to predict the bioactivity of molecules against MAO-B. Molecular docking and dynamics studies were conducted to gain insight into the atomic-level molecular interactions between the ligand-receptor complexes. These findings were compared with the structural features obtained from the ML-QSAR models, which supported the mechanistic understanding of the binding phenomena. The presented models have the potential to serve as tools for identifying crucial molecular characteristics for the rational design of MAO-B target inhibitors, which may be used to develop effective drugs for neurodegenerative disorders.


Assuntos
Aplicativos Móveis , Doenças Neurodegenerativas , Humanos , Simulação de Acoplamento Molecular , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/química , Doenças Neurodegenerativas/tratamento farmacológico , Dopaminérgicos/farmacologia , Internet , Relação Estrutura-Atividade
15.
Bioorg Chem ; 144: 107148, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38306828

RESUMO

Arylpiperazine clubbed various heterocyclic molecules present potential pharmacophoric structural features for the development of psychoactive drugs. There are various CNS active molecules possessing arylpiperazine moiety in their pharmacophore approved by USFDA. In the current study, we have explored the benzhydrylpiperazine moiety clubbed with various substituted oxadiazole moieties (AP1-12) for their monoamine oxidase (MAO) inhibition and antidepressant potential. Compounds AP3 and AP12 exhibited highly potent and selective MAO-A inhibition with IC50 values of 1.34 ± 0.93 µM and 1.13 ± 0.54 µM, respectively, and a selectivity index of 10- and 13-folds, respectively. Both the compounds displayed reversible binding character at the active site of MAO-A. In further in vivo evaluation, both the compounds AP3 and AP12 displayed potential antidepressant-like character in FST and TST studies via significantly reduced immobility time in comparison to non-treated animals. These compounds displayed no cytotoxicity in SH-SY5Y cell lines, which indicates that these compounds are safe for further evaluation. In silico studies reveal that synthesized compounds possess drug-likeness with minimal to no toxicity. In silico studies were conducted to understand the binding interactions and stability of compounds at the binding pocket of enzyme and observed that both the best compounds fit well at the active site of MAO-A lined by amino acid residues Tyr69, Asn181, Phe208, Ile335, Leu337, Phe352, and Tyr444 similar to standard MAO-A inhibitor clorgiline. The molecular dynamic studies demonstrated that AP3 and AP12 formed quite a stable complex at the active site of MAO-A and did not break under small abruption forces. The favourable binding interactions and appropriate ADMET properties present the benzhydrylpiperazine clubbed oxadiazole pharmacophoric features as a potential structural skeleton for further clinical evaluation and development of a new antidepressant drug molecule.


Assuntos
Neuroblastoma , Farmacóforo , Animais , Humanos , Antidepressivos/farmacologia , Inibidores da Monoaminoxidase/química , Monoaminoxidase/metabolismo , Relação Estrutura-Atividade
16.
Arch Pharm (Weinheim) ; 357(5): e2300557, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38321839

RESUMO

A series of sulfonyl thioureas 6a-q containing a benzo[d]thiazole ring with an ester functional group was synthesized from corresponding substituted 2-aminobenzo[d]thiazoles 3a-q and p-toluenesulfonyl isothiocyanate. They had remarkable inhibitory activity against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), monoamine oxidase (MAO)-A, and MAO-B. Among thioureas, several compounds had notable activity in the order of 6k > 6 h > 6c (AChE), 6j > 6g > 6k (BChE), 6k > 6g > 6f (MAO-A), and 6i > 6k > 6h (MAO-B). Compound 6k was an inhibitor of interest due to its potent or good activity against all studied enzymes, with IC50 values of 0.027 ± 0.008 µM (AChE), 0.043 ± 0.004 µM (BChE), 0.353 ± 0.01 µM (MAO-A), and 0.716 ± 0.02 µM (MAO-B). This inhibitory capacity was comparable to that of the reference drugs for each enzyme. Kinetic studies of two compounds with potential activity, 6k (against AChE) and 6j (against BChE), had shown that both 6k and 6j followed competitive-type enzyme inhibition, with Ki constants of 24.49 and 12.16 nM, respectively. Induced fit docking studies for enzymes 4EY7, 7BO4, 2BXR, and 2BYB showed active interactions between sulfonyl thioureas of benzo[d]thiazoles and the residues in the active pocket with ligands 6k, 6i, and 6j, respectively. The stability of the ligand-protein complexes while each ligand entered the active site of each enzyme (4EY7, 7BO4, 2BXR, or 2BYB) was confirmed by molecular dynamics simulations.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Inibidores da Colinesterase , Simulação de Acoplamento Molecular , Inibidores da Monoaminoxidase , Monoaminoxidase , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Monoaminoxidase/metabolismo , Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Relação Estrutura-Atividade , Estrutura Molecular , Tioureia/farmacologia , Tioureia/química , Tioureia/síntese química , Relação Dose-Resposta a Droga , Benzotiazóis/farmacologia , Benzotiazóis/química , Benzotiazóis/síntese química , Tiazóis/farmacologia , Tiazóis/química , Tiazóis/síntese química
17.
Bioorg Chem ; 145: 107156, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387393

RESUMO

A real-time and specific for the detection of Monoamine Oxidase B (MAO-B) to investigate the MAO-B-relevant disease development and treatment process is urgently desirable. Here, we utilized MAO-B to catalyze the conversion of propylamino groups to aldehyde groups, which was then quickly followed by a ß-elimination process to produce fluorescent probes (FNJP) that may be used to detect MAO-B in vitro and in vivo. The FNJP probe possesses unique properties, including favorable reactivity (Km = 10.8 µM), high cell permeability, and NIR characteristics (λem = 610 nm). Moreover, the FNJP probe showed high selectivity for MAO-B and was able to detect endogenous MAO-B levels from a mixed population of NIH-3 T3 and HepG2 cells. MAO-B expression was found to be increased in cells under lipopolysaccharide-stimulated cellular oxidative stress in neuronal-like SH-SY5Y cells. In addition, the visualization of FNJP for MAO-B activity in zebrafish can be an effective tool for exploring the biofunctions of MAO-B. Considering these excellent properties, the FNJP probe may be a powerful tool for detecting MAO-B levels in living organisms and can be used for accurate clinical diagnoses of related diseases.


Assuntos
Monoaminoxidase , Neuroblastoma , Animais , Humanos , Monoaminoxidase/metabolismo , Peixe-Zebra/metabolismo , Fluorescência , Células Hep G2 , Corantes Fluorescentes , Inibidores da Monoaminoxidase
18.
Glia ; 72(4): 748-758, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38200694

RESUMO

Implantable neural probes have been extensively utilized in the fields of neurocircuitry, systems neuroscience, and brain-computer interface. However, the long-term functionality of these devices is hampered by the formation of glial scar and astrogliosis at the surface of electrodes. In this study, we administered KDS2010, a recently developed reversible MAO-B inhibitor, to mice through ad libitum drinking in order to prevent glial scar formation and astrogliosis. The administration of KDS2010 allowed long-term recordings of neural signals with implantable devices, which remained stable over a period of 6 months and even restored diminished neural signals after probe implantation. KDS2010 effectively prevented the formation of glial scar, which consists of reactive astrocytes and activated microglia around the implant. Furthermore, it restored neural activity by disinhibiting astrocytic MAO-B dependent tonic GABA inhibition induced by astrogliosis. We suggest that the use of KDS2010 is a promising approach to prevent glial scar formation around the implant, thereby enabling long-term functionality of neural devices.


Assuntos
Astrócitos , Gliose , Camundongos , Animais , Gliose/tratamento farmacológico , Gliose/prevenção & controle , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/farmacologia , Macrófagos
19.
Cardiovasc Res ; 120(6): 596-611, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38198753

RESUMO

AIMS: A mechanistic link between depression and risk of arrhythmias could be attributed to altered catecholamine metabolism in the heart. Monoamine oxidase-A (MAO-A), a key enzyme involved in catecholamine metabolism and longstanding antidepressant target, is highly expressed in the myocardium. The present study aimed to elucidate the functional significance and underlying mechanisms of cardiac MAO-A in arrhythmogenesis. METHODS AND RESULTS: Analysis of the TriNetX database revealed that depressed patients treated with MAO inhibitors had a lower risk of arrhythmias compared with those treated with selective serotonin reuptake inhibitors. This effect was phenocopied in mice with cardiomyocyte-specific MAO-A deficiency (cMAO-Adef), which showed a significant reduction in both incidence and duration of catecholamine stress-induced ventricular tachycardia compared with wild-type mice. Additionally, cMAO-Adef cardiomyocytes exhibited altered Ca2+ handling under catecholamine stimulation, with increased diastolic Ca2+ reuptake, reduced diastolic Ca2+ leak, and diminished systolic Ca2+ release. Mechanistically, cMAO-Adef hearts had reduced catecholamine levels under sympathetic stress, along with reduced levels of reactive oxygen species and protein carbonylation, leading to decreased oxidation of Type II PKA and CaMKII. These changes potentiated phospholamban (PLB) phosphorylation, thereby enhancing diastolic Ca2+ reuptake, while reducing ryanodine receptor 2 (RyR2) phosphorylation to decrease diastolic Ca2+ leak. Consequently, cMAO-Adef hearts exhibited lower diastolic Ca2+ levels and fewer arrhythmogenic Ca2+ waves during sympathetic overstimulation. CONCLUSION: Cardiac MAO-A inhibition exerts an anti-arrhythmic effect by enhancing diastolic Ca2+ handling under catecholamine stress.


Assuntos
Sinalização do Cálcio , Proteínas de Ligação ao Cálcio , Cálcio , Catecolaminas , Modelos Animais de Doenças , Inibidores da Monoaminoxidase , Monoaminoxidase , Miócitos Cardíacos , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Monoaminoxidase/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Catecolaminas/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Humanos , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Cálcio/metabolismo , Masculino , Camundongos Knockout , Taquicardia Ventricular/enzimologia , Taquicardia Ventricular/prevenção & controle , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Camundongos Endogâmicos C57BL , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Feminino , Diástole/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Potenciais de Ação/efeitos dos fármacos , Células Cultivadas , Camundongos
20.
Chem Pharm Bull (Tokyo) ; 72(1): 56-60, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38171905

RESUMO

Twenty natural-product-like 2,8-dioxabicyclo[3.3.1]nonane derivatives were synthesized and their neuroprotective activities were tested using human monoamine oxidases (MAO) A and B and acetyl and butyryl cholinesterases (ChE). Compound 1s showed inhibitory activity for MAO-A, MAO-B and acetylcholinesterase (AChE) (IC50 values 34.0, 2.3 and 11.0 µM, respectively). The inhibition mode of (-)-1s for MAO-B was investigated. Chiral HPLC of (±)-1s separated the enantiomers and (-)-1s showed MAO-B inhibitory activity. Molecular docking simulation of (-)-1s and MAO-B revealed the binding mode.


Assuntos
Acetilcolinesterase , Inibidores da Monoaminoxidase , Humanos , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Monoaminoxidase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...