Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.420
Filtrar
1.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38717262

RESUMO

Climate change is a prominent factor reshaping the distribution of invasive species. Metcalfa pruinosa (Say 1830) (Hemiptera: Flatidae), native to North America, has invaded other continents and poses a serious threat to various agricultural crops and the human residential environment. Understanding the distribution of M. pruinosa based on climatic conditions is a critical first step to prevent its further invasion. Therefore, based on its occurrence records and associated environmental variables, a Maxent model was developed to predict suitable areas for this species in the present and future on a global scale. The model exhibited outstanding performance, with a mean area under the receiver operating characteristic curve and true skill statistic values of 0.9329 and 0.926, respectively. The model also indicated that annual precipitation (Bio12) and max temperature of the warmest month (Bio5) were the key environmental variables limiting the distribution of M. pruinosa. Moreover, the model revealed that the current suitable area is 1.01 × 107 km2 worldwide, with southern China, southern Europe, and the eastern United States predicted to be the primary and highly suitable areas in the latter 2 regions. This area is expected to increase under future climate scenarios, mainly in the northern direction. The study's findings contribute to our understanding of climate change's impact on M. pruinosa distribution, and they will aid governments in developing appropriate pest management strategies, including global monitoring and strict quarantine measures.


Assuntos
Distribuição Animal , Mudança Climática , Espécies Introduzidas , Animais , Hemípteros/fisiologia , Controle de Insetos/métodos
2.
Braz J Biol ; 84: e282231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808790

RESUMO

The technique of terrestrial sampling of boll weevil (BW) populations is expensive and inefficient over large areas, but may be cheaper and more efficient without involving the manipulation of cotton squares. The aim of this study was to develop a technique to sampling cotton squares based on the observation of opened and/or yellowing bracts to determine the need and efficacy of chemical control of BW in cotton crops. The first experiment aimed to estimate the ratio between the number of cotton squares with opened and/or yellowed bracts and that of squares with BW oviposition punctures. The second experiment, aimed to determine the efficacy of chemical control for BW by sampling cotton squares with opened and/or yellowed bracts. The ratio between the number of opened and/or yellowed bracts and the number of cotton squares with oviposition punctures was 2:1. The level and efficiency of chemical control of BW, based on the percentage and sampling of cotton plants with opened and/or yellowed bracts, was 5% and did not differ from the one based on the observation of cotton plants with 10% cotton squares with oviposition punctures by BW females. The control level based on sampling cotton plants with open and/or yellowing bracts was 5%. The efficiency of chemical insecticides using this economic threshold against the BW did not differ from that based on sampling cotton plants with 10% of cotton squares with oviposition punctures by BW females. This indicates that the chemical control of cotton boll weevil can be carried out based on cotton squares with open and/or yellowed bracts.


Assuntos
Gossypium , Controle de Insetos , Oviposição , Gorgulhos , Gorgulhos/fisiologia , Gossypium/parasitologia , Animais , Oviposição/fisiologia , Feminino , Controle de Insetos/métodos , Inseticidas
3.
Arch Insect Biochem Physiol ; 116(1): e22121, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38783691

RESUMO

Invasive insect pests, currently, pose a serious economic threat to several staple crops all over the world, one such being the fall armyworm, Spodoptera frugiperda. It was first observed in Africa since 2016, outside of its natural habitat in the Americas. Subsequently, it invaded several countries in South and South East Asia and also very recently in Australia. In all the newly invaded regions, maize is the principal crop attacked causing a serious economic concern to the poor farmers, particularly in the developing countries. Owing to the innate genetic ability, it defies many of the management options that include insecticides, Bt transgenics, and so forth. This is due to its high mobility, polyphagy and ability for quick development of resistance to several classes of insecticides. At this critical juncture, CRISPR/Cas9 mediated genome editing has shown a lot of promise in developing a novel area-wide pest management strategy called precision-guided sterile insect technique (pgSIT). pgSIT was initially demonstrated in Drosophila melanogaster which holds a greater promise for the environmentally friendly management of several globally significant agricultural pests such as S. frugiperda. Therefore, before developing both sgRNA and Cas9 transgenic lines, we have validated the target gene such as tssk2 through a non-transgenic approach by microinjecting ribo nucleo protein complex (Cas9 protein and tssk2 sgRNA) into G0 eggs of S. frugiperda. In the current investigation, we have obtained five edited males with distinct mutations which were further used for crossing studies to ascertain the effect of tssk2 editing affecting egg hatchability.


Assuntos
Sistemas CRISPR-Cas , Spodoptera , Animais , Spodoptera/genética , Masculino , Controle Biológico de Vetores/métodos , Edição de Genes/métodos , Espermatogênese/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Feminino , Controle de Insetos/métodos
4.
J Agric Food Chem ; 72(19): 10936-10943, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691835

RESUMO

RNAi plays a crucial role in insect gene function research and pest control field. Nonetheless, the variable efficiency of RNAi across diverse insects and off-target effects also limited its further application. In this study, we cloned six essential housekeeping genes from Solenopsis invicta and conducted RNAi experiments by orally administering dsRNA. Then, we found that mixing with liposomes significantly enhanced the RNAi efficiency by targeting for SiV-ATPaseE. Additionally, we observed a certain lethal effect of this dsRNA on queens by our established RNAi system. Furthermore, no strict sequence-related off-target effects were detected. Finally, the RNAi effect of large-scale bacteria expressing dsRNA was successfully confirmed for controlling S. invicta. In summary, this study established an RNAi system for S. invicta and provided a research template for the future development of nucleic acid drugs based on RNAi.


Assuntos
Formigas , Proteínas de Insetos , Interferência de RNA , Animais , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Formigas/genética , Controle de Insetos/métodos , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Controle Biológico de Vetores/métodos , Feminino , Formigas Lava-Pés
5.
J Agric Food Chem ; 72(19): 10794-10804, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38711396

RESUMO

Chitin-degrading enzymes are critical components in regulating the molting process of the Asian corn borer and serve as potential targets for controlling this destructive pest of maize. Here, we used a scaffold-hopping strategy to design a series of efficient naphthylimide insecticides. Among them, compound 8c exhibited potent inhibition of chitinase from OfChi-h and OfChtI at low nanomolar concentrations (IC50 = 1.51 and 9.21 nM, respectively). Molecular docking simulations suggested that 8c binds to chitinase by mimicking the interaction of chitin oligosaccharide substrates with chitinase. At low ppm concentrations, compound 8c performed comparably to commercial insecticides in controlling the highly destructive plant pest, the Asian corn borer. Tests on a wide range of nontarget organisms indicate that compound 8c has very low toxicity. In addition, the effect of inhibitor treatment on the expression of genes associated with the Asian corn borer chitin-degrading enzymes was further investigated by quantitative real-time polymerase chain reaction. In conclusion, our study highlights the potential of 8c as a novel chitinase-targeting insecticide for effective control of the Asian corn borer, providing a promising solution in the quest for sustainable pest management.


Assuntos
Quitina , Quitinases , Proteínas de Insetos , Inseticidas , Simulação de Acoplamento Molecular , Mariposas , Zea mays , Animais , Quitinases/química , Quitinases/genética , Quitinases/metabolismo , Mariposas/enzimologia , Mariposas/efeitos dos fármacos , Mariposas/genética , Quitina/química , Quitina/metabolismo , Inseticidas/química , Inseticidas/farmacologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/antagonistas & inibidores , Zea mays/química , Zea mays/parasitologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Desenho de Fármacos , Controle de Insetos , Larva/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Relação Estrutura-Atividade
6.
BMC Ecol Evol ; 24(1): 60, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734594

RESUMO

BACKGROUND: Foraging behavior in insects is optimised for locating scattered resources in a complex environment. This behavior can be exploited for use in pest control. Inhibition of feeding can protect crops whereas stimulation can increase the uptake of insecticides. For example, the success of a bait spray, depends on either contact or ingestion, and thus on the insect finding it. METHODS: To develop an effective bait spray against the invasive pest, Drosophila suzukii, we investigated aspects of foraging behavior that influence the likelihood that the pest interacts with the baits, in summer and winter morphotypes. We video-recorded the flies' approach behavior towards four stimuli in a two-choice experiment on strawberry leaflets. To determine the most effective bait positioning, we also assessed where on plants the pest naturally forages, using a potted raspberry plant under natural environmental conditions. We also studied starvation resistance at 20 °C and 12 °C for both morphs. RESULTS: We found that summer morph flies spent similar time on all baits (agar, combi-protec, yeast) whereas winter morphs spent more time on yeast than the other baits. Both morphs showed a preference to feed at the top of our plant's canopy. Colder temperatures enhanced survival under starvation conditions in both morphs, and mortality was reduced by food treatment. CONCLUSIONS: These findings on feeding behavior support informed decisions on the type and placement of a bait to increase pest control.


Assuntos
Drosophila , Comportamento Alimentar , Controle de Insetos , Animais , Drosophila/fisiologia , Controle de Insetos/métodos , Comportamento Alimentar/fisiologia , Inseticidas/farmacologia , Inseticidas/administração & dosagem , Rubus , Fragaria , Feminino , Estações do Ano
7.
PLoS One ; 19(5): e0300187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38722866

RESUMO

Leaf-cutting ants are the most important pests in several cropping systems in the Neotropics. Granulated baits containing active ingredients, considered hazardous by the Stockholm Convention, are the usual method to control these ants. Isocycloseram is a new insecticide molecule with high safety margin for mammals, but without registration for the ants in general. Thus, this study investigated the effectiveness of granulated baits with isocycloseram in leaf-cutting ants control under laboratory and field conditions. Initially, the mortality of Atta sexdens workers, fed with dehydrated citrus pulp paste containing different concentrations of isocycloseram was evaluated in the laboratory for 21 days, for toxicological classification. Subsequently, the loading, devolution, and incorporation of baits with different concentrations of isocycloseram and the mortality of A. sexdens colonies were evaluated in the laboratory. After that, the percentages of loading and devolution of baits, foraging activity, and colony mortality treated with 0.05, 0.1, 0.2, and 0.3% of isocycloseram were evaluated for the species A. sexdens, A. laevigata, and Acromyrmex lundii in field conditions. All concentrations of isocycloseram killed more than 15% of ants in 24 h and more than 90% in 21 days in the laboratory, being classified as a fast-acting and highly effective active ingredient. Baits with 0.001 to 0.03% of isocycloseram were highly loaded and exhibited low rate of devolution. The mortality of A. sexdens colony was higher at concentrations between 0.075 and 0.3%, in the laboratory. Baits containing isocycloseram at concentrations of 0.2 and 0.3% were highly loaded, presented low devolution rates, and were highly efficient in controlling A. sexdens, A. laevigata, and A. lundii in the field, at dosages of 6, 10, and 12 g/m² of nest. This is the first report of the use of isocycloseram against leaf-cutting ants, contributing to the development of efficient and toxicologically safer ant baits.


Assuntos
Formigas , Inseticidas , Animais , Formigas/efeitos dos fármacos , Inseticidas/farmacologia , Controle de Insetos/métodos
8.
J Agric Food Chem ; 72(21): 12146-12155, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38747516

RESUMO

In this study, an α-amylase-responsive controlled-release formulation was developed by capping polydopamine onto ß-cyclodextrin-modified abamectin-loaded hollow mesoporous silica nanoparticles. The prepared Aba@HMS@CD@PDA were subjected to characterization using various analytical techniques. The findings revealed that Aba@HMS@CD@PDA, featuring a loading rate of 18.8 wt %, displayed noteworthy release behavior of abamectin in the presence of α-amylase. In comparison to abamectin EC, Aba@HMS@CD@PDA displayed a significantly foliar affinity and improved rainfastness on lotus leaves. The results of field trail demonstrated a significantly higher control efficacy against Spodoptera litura Fabricius compared to abamectin EC at all concentrations after 7, 14, and 21 days of spaying, showcasing the remarkable persistence of Aba@HMS@CD@PDA. These results underscore the potential of Aba@HMS@CD@PDA as a novel and persistently effective strategy for sustainable on-demand crop protection. The application of nanopesticides can enhance the effectiveness and efficiency of pesticide utilization, contributing to more sustainable agricultural practices.


Assuntos
Proteção de Cultivos , Inseticidas , Nanopartículas , Spodoptera , alfa-Amilases , Animais , alfa-Amilases/química , alfa-Amilases/metabolismo , alfa-Amilases/antagonistas & inibidores , Nanopartículas/química , Proteção de Cultivos/métodos , Spodoptera/efeitos dos fármacos , Inseticidas/química , Inseticidas/farmacologia , Ivermectina/análogos & derivados , Ivermectina/química , Ivermectina/farmacologia , Polímeros/química , Dióxido de Silício/química , Controle de Insetos , Praguicidas/química , Praguicidas/farmacologia , Indóis/química , Indóis/farmacologia
9.
Arch Insect Biochem Physiol ; 116(1): e22115, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38770623

RESUMO

Zeugodacus cucurbitae (Coquillett) is an important fruit and vegetable pest, especially in high-temperature seasons. In our previous research, we developed a temperature-sensitive sustained-release attractant for Z. cucurbitae, that not only can control the release rate of cuelure according to the temperature change, but also shows an excellent trapping effect on Z. cucurbitae. To further enhance the killing effect of the temperature-sensitive attractant on Z. cucurbitae, this study proposed using it in combination with an insecticide to prepare a temperature-sensitive insecticide for Z. cucurbitae. Based on the controlled release technology of pesticides, a temperature-sensitive Z. cucurbitae insecticide was developed by using PNIPAM gel as a temperature-sensitive switch to carry both cuelure and insecticide at the same time. In addition, the lethal effect of different pesticides on Z. cucurbitae were tested by indoor toxicity test, and the best pesticide combination was screened out. The temperature-sensitive insecticide prepared in this study not only had excellent thermal response and controlled release ability, but also enhanced its toxicological effects on Z. cucurbitae because it contained insecticides. Among them, combining thiamethoxam and clothianidin with the temperature-sensitive attractants was the most effective, and their lethality reached more than 97% against Z. cucurbitae. This study is not only of great practical significance for the monitoring and controlling Z. cucurbitae, but also provides theoretical basis and reference value for the combination of temperature-sensitive attractant and insecticide.


Assuntos
Inseticidas , Neonicotinoides , Temperatura , Inseticidas/farmacologia , Animais , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Controle de Insetos/métodos , Gorgulhos/efeitos dos fármacos , Tiazóis/farmacologia
10.
J Math Biol ; 88(6): 73, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679652

RESUMO

Insect growth regulators (IGRs) have been developed as effective control measures against harmful insect pests to disrupt their normal development. This study is to propose a mathematical model to evaluate the cost-effectiveness of IGRs for pest management. The key features of the model include the temperature-dependent growth of insects and realistic impulsive IGRs releasing strategies. The impulsive releases are carefully modeled by counting the number of implements during an insect's temperature-dependent development duration, which introduces a surviving probability determined by a product of terms corresponding to each release. Dynamical behavior of the model is illustrated through dynamical system analysis and a threshold-type result is established in terms of the net reproduction number. Further numerical simulations are performed to quantitatively evaluate the effectiveness of IGRs to control populations of harmful insect pests. It is interesting to observe that the time-changing environment plays an important role in determining an optimal pest control scheme with appropriate release frequencies and time instants.


Assuntos
Simulação por Computador , Insetos , Conceitos Matemáticos , Modelos Biológicos , Controle Biológico de Vetores , Animais , Insetos/crescimento & desenvolvimento , Controle Biológico de Vetores/métodos , Controle Biológico de Vetores/estatística & dados numéricos , Hormônios Juvenis , Temperatura , Controle de Insetos/métodos , Análise Custo-Benefício
11.
PLoS Negl Trop Dis ; 18(4): e0011578, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38626189

RESUMO

BACKGROUND: The insecticide-treated baits known as Tiny Targets are one of the cheapest means of controlling riverine species of tsetse flies, the vectors of the trypanosomes that cause sleeping sickness in humans. Models of the efficacy of these targets deployed near rivers are potentially useful in planning control campaigns and highlighting the principles involved. METHODS AND PRINCIPAL FINDINGS: To evaluate the potential of models, we produced a simple non-seasonal model of the births, deaths, mobility and aging of tsetse, and we programmed it to simulate the impact of seven years of target use against the tsetse, Glossina fuscipes fuscipes, in the riverine habitats of NW Uganda. Particular attention was given to demonstrating that the model could explain three matters of interest: (i) good control can be achieved despite the degradation of targets, (ii) local elimination of tsetse is impossible if invasion sources are not tackled, and (iii) with invasion and target degradation it is difficult to detect any effect of control on the age structure of the tsetse population. CONCLUSIONS: Despite its simplifications, the model can assist planning and teaching, but allowance should be made for any complications due to seasonality and management challenges associated with greater scale.


Assuntos
Controle de Insetos , Inseticidas , Moscas Tsé-Tsé , Moscas Tsé-Tsé/fisiologia , Moscas Tsé-Tsé/parasitologia , Animais , Controle de Insetos/métodos , Uganda , Inseticidas/farmacologia , Humanos , Tripanossomíase Africana/prevenção & controle , Tripanossomíase Africana/epidemiologia , Insetos Vetores/parasitologia , Insetos Vetores/fisiologia
12.
Med Vet Entomol ; 38(2): 216-226, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38563591

RESUMO

Vector control remains one of the best strategies to prevent the transmission of trypanosome infections in humans and livestock and, thus, a good way to achieve the elimination of human African trypanosomiasis and animal African trypanosomiasis. A key prerequisite for the success of any vector control strategy is the accurate identification and correct mapping of tsetse species. In this work, we updated the tsetse fly species identification and distribution in many geographical areas in Cameroon. Tsetse flies were captured from six localities in Cameroon, and their species were morphologically identified. Thereafter, DNA was extracted from legs of each tsetse fly and the length polymorphism of internal transcribed spacer-1 (ITS1) region of each fly was investigated using PCR. ITS1 DNA fragments of each tsetse species were sequenced. The sequences obtained were analysed and compared to those available in GenBank. This enabled to confirm/infirm results of the morphologic identification and then, to establish the phylogenetic relationships between tsetse species. Morphologic features allowed to clearly distinguish all the tsetse species captured in the South Region of Cameroon, that is, Glossina palpalis palpalis, G. pallicera, G. caliginea and G. nigrofusca. In the northern area, G. morsitans submorsitans could also be distinguished from G. palpalis palpalis, G. tachinoides and G. fuscipes, but these three later could not be distinguished with routine morphological characters. The ITS1 length polymorphism was high among most of the studied species and allowed to identify the following similar species with a single PCR, that is, G. palpalis palpalis with 241 or 242 bp and G. tachinoides with 221 or 222 bp, G. fuscipes with 236 or 237 bp. We also updated the old distribution of tsetse species in the areas assessed, highlighting the presence of G. palpalis palpalis instead of G. fuscipes in Mbakaou, or in sympatry with G. morsitans submorsitans in Dodeo (northern Cameroon). This study confirms the presence of G. palpalis palpalis in the Adamawa Region of Cameroon. It highlights the limits of using morphological criteria to differentiate some tsetse species. Molecular tools based on the polymorphism of ITS1 of tsetse flies can differentiate tsetse species through a simple PCR before downstream analyses or vector control planning.


Assuntos
Insetos Vetores , Polimorfismo Genético , Moscas Tsé-Tsé , Animais , Camarões , Moscas Tsé-Tsé/genética , Insetos Vetores/genética , Insetos Vetores/classificação , Distribuição Animal , Filogenia , DNA Intergênico/genética , Feminino , Controle de Insetos , Masculino , DNA Espaçador Ribossômico/análise , DNA Espaçador Ribossômico/genética , Análise de Sequência de DNA
13.
Acta Trop ; 255: 107228, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38670443

RESUMO

Aggregation is a spatial distribution pattern where individuals can be grouped through interaction with particular signals or cues [e.g., chemical substances]. Numerous triatomine species exhibit attraction and aggregation around both conspecific and heterospecific feces. It remains unclear whether compounds released by feces function as signals (pheromones or synomones) or cues. Employing a bioassay that mimics field conditions, we investigated the response of Triatoma pallidipennis bugs to volatiles present in its feces and blends of these compounds. Our findings indicate that short-chain aldehydes, namely nonanal, octanal, heptanal, and hexanal, attract fifth-instar nymphs. Furthermore, insects responded to individual compounds as well as secondary, ternary, and quaternary blends. The most attractive blend consisted of all four aldehydes. Additionally, quaternary blends at various compound ratios attracted fifth-instar nymphs of T. phyllosoma and T. longipennis. We discuss the potential roles of these compounds as signals or cues and explore their application as bait in control programs.


Assuntos
Ninfa , Triatoma , Animais , Triatoma/efeitos dos fármacos , Triatoma/crescimento & desenvolvimento , Triatoma/fisiologia , Ninfa/efeitos dos fármacos , Fezes/química , Feromônios/farmacologia , Controle de Insetos/métodos , Aldeídos/farmacologia , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/química
14.
Pestic Biochem Physiol ; 200: 105816, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582574

RESUMO

The melon fly Zeugodacus cucurbitae Coquillett (Diptera: Tephritidae) is an agricultural quarantine pest threatening fruit and vegetable production. Heat shock cognate 70 (Hsc70), which is a homolog of the heat shock protein 70 (Hsp70), was first discovered in mice testes and plays an important role in spermatogenesis. In this study, we identified and cloned five Hsc70 genes from melon fly, namely ZcHsc70_1/2/3/4/5. Phylogenetic analysis showed that these proteins are closely related to Hsc70s from other Diptera insects. Spatiotemporal expression analysis showed that ZcHsc70_1 and ZcHsc70_2 are highly expressed in Z. cucurbitae testes. Fluorescence in situ hybridization further demonstrated that ZcHsc70_1 and ZcHsc70_2 are expressed in the transformation and maturation regions of testes, respectively. Moreover, RNA interference-based suppression of ZcHsc70_1 or ZcHsc70_2 resulted in a significant decrease of 74.61% and 63.28% in egg hatchability, respectively. Suppression of ZcHsc70_1 expression delayed the transformation of sperm cells to mature sperms. Meanwhile, suppression of ZcHsc70_2 expression decreased both sperm cells and mature sperms by inhibiting the meiosis of spermatocytes. Our findings show that ZcHsc70_1/2 regulates spermatogenesis and further affects the male fertility in the melon fly, showing potential as targets for pest control in sterile insect technique by genetic manipulation of males.


Assuntos
Sementes , Tephritidae , Masculino , Animais , Camundongos , Filogenia , Hibridização in Situ Fluorescente , Tephritidae/genética , Controle de Insetos/métodos , Espermatogênese/genética , Fertilidade/genética , Resposta ao Choque Térmico
15.
Pestic Biochem Physiol ; 200: 105838, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582600

RESUMO

Diaspididae are one of the most serious small herbivorous insects with piercing-sucking mouth parts and are major economic pests as they attack and destroy perennial ornamentals and food crops. Chemical control is the primary management approach for armored scale infestation. However, chemical insecticides do not possess selectivity in action and not always effective enough for the control of armored scale insects. Our previous work showed that green oligonucleotide insecticides (olinscides) are highly effective against armored and soft scale insects. Moreover, olinscides possess affordability, selectivity in action, fast biodegradability, and a low carbon footprint. Insect pest populations undergo microevolution and olinscides should take into account the problem of insecticide resistance. Using sequencing results, it was found that in the mixed populations of insect pests Dynaspidiotus britannicus Newstead and Aonidia lauri Bouche, predominates the population of A. lauri. Individuals of A. lauri comprised for 80% of individuals with the sequence 3'-ATC-GTT-GGC-AT-5' in the 28S rRNA site, and 20% of the population comprised D. britannicus individuals with the sequence 3'-ATC-GTC-GGT-AT-5'. We created olinscides Diasp80-11 (5'-ATG-CCA-ACG-AT-3') and Diasp20-11 (5'-ATA-CCG-ACG-AT-3') with perfect complementarity to each of the sequences. Mortality of insects on the 14th day comprised 98.19 ± 3.12% in Diasp80-11 group, 64.66 ± 0.67% in Diasp20-11 group (p < 0.05), and 3.77 ± 0.94% in the control group. Results indicate that for maximum insecticidal effect it is necessary to use an oligonucleotide insecticide that corresponds to the dominant species. Mortality in Diasp80-11 group was accompanied with significant decrease in target 28S rRNA concentration and was 8.44 ± 0.14 and 1.72 ± 0.36 times lower in comparison with control (p < 0.05) on the 10th and 14th days, respectively. We decided to make single nucleotide substitutions in Diasp20-11 olinscide to understand which nucleotide will play the most important role in insecticidal effect. We created three sequences with single nucleotide transversion substitutions at the 5'-end - Diasp20(5')-11 (A to T), 3'-end - Diasp20(3')-11 (T to A), and in the middle of the sequence - Diasp20(6)-11 (6th nitrogenous base of the sequence; G to C), respectively. As a result, mortality of mixed population of the field experiment decreased and comprised 53.89 ± 7.25% in Diasp20(5')-11 group, 40.68 ± 4.33% in Diasp20(6)-11 group, 35.74 ± 5.51% in Diasp20(3')-11 group, and 3.77 ± 0.94% in the control group on the 14th day. Thus, complementarity of the 3'-end nucleotide to target 28S rRNA was the most important for pronounced insecticidal effect (significance of complementarity of nucleotides for insecticidal effect: 5' nt < 6 nt < 3' nt). As was found in our previous research works, the most important rule to obtain maximum insecticidal effect is complete complementarity to the target rRNA sequence and maximum coverage of target sequence in insect pest populations. However, in this article we also show that the complementarity of 3'-end is a second important factor for insecticidal potential of olinscides. Also in this article we propose 2-step DNA containment mechanism of action of olinscides, recruiting RNase H. The data obtained indicate the selectivity of olinscides and at the same time provide a simple and flexible platform for the creation of effective plant protection products, based on antisense DNA oligonucleotides.


Assuntos
Hemípteros , Inseticidas , Humanos , Animais , Inseticidas/farmacologia , Oligonucleotídeos , Nucleotídeos , RNA Ribossômico 28S , Insetos/genética , Controle de Insetos/métodos
16.
PLoS One ; 19(3): e0300866, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512951

RESUMO

The Male Annihilation Technique (also termed the Male Attraction Technique; "MAT") is often used to eradicate pestiferous tephritid fruit flies, such as Bactrocera dorsalis (Hendel). MAT involves the application of male-specific attractants combined with an insecticide in spots or stations across an area to reduce the male population to such a low level that suppression or eradication is achieved. Currently, implementations of MAT in California and Florida targeting B. dorsalis utilize the male attractant methyl eugenol (ME) accompanied with a toxicant, such as spinosad, mixed into a waxy, inert emulsion STATIC ME (termed here "SPLAT-MAT-ME"). While highly effective against ME-responding species, such applications are expensive owing largely to the high cost of the carrier matrix and labor for application. Until recently the accepted protocol called for the application of approximately 230 SPLAT-MAT-ME spots per km2; however, findings from Hawaii suggest a lower density may be more effective. The present study adopted the methods of that earlier work and estimated kill rates of released B. dorsalis under varying spot densities in areas of California and Florida that have had recent incursions of this invasive species. Specifically, we directly compared trap captures of sterilized marked B. dorsalis males released in different plots under three experimental SPLAT-MAT-ME densities (50, 110, and 230 per km2) in Huntington Beach, CA; Anaheim, CA; and Sarasota-Bradenton, FL. The plots with a density of 110 sites per km2 had a significantly higher recapture proportion than plots with 50 or 230 sites per km2. This result suggests that large amounts of male attractant may reduce the ability of males to locate the source of the odor, thus lowering kill rates and the effectiveness of eradication efforts. Eradication programs would directly benefit from reduced costs and improved eradication effectiveness by reducing the application density of SPLAT-MAT-ME.


Assuntos
Eugenol/análogos & derivados , Inseticidas , Tephritidae , Animais , Masculino , Controle de Insetos/métodos , Inseticidas/farmacologia , Drosophila
17.
J Insect Sci ; 24(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38402603

RESUMO

Methods to measure the diversity and biological control impact of parasitoids for the control of spotted-wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) are being developed in support of biological control programs around the world. Existing methods to determine parasitism levels and parasitoid species composition focus on sampling D. suzukii within fresh and rotting fruit. However, many D. suzukii pupate in the soil or in dropped fruit, where additional parasitism could occur and where their parasitoids are thought to overwinter. Here we introduce a method for extracting parasitized D. suzukii puparia from the soil through a sieve and flotation system, allowing for effective collection of puparia, from which parasitoids can then be reared. Although the method considerably underestimates the absolute number of puparia in soil samples, it nonetheless yields a high number of puparia relative to sampling effort and provides a robust estimate of the relative abundance of puparia among samples. Using this method, we confirmed that at least 5 species of parasitoids, including some that have rarely been detected in past studies, overwinter in their immature stages inside D. suzukii puparia in south coastal British Columbia, Canada. The ability to sample puparia from the soil will lead to a more comprehensive view of both D. suzukii and parasitoid abundance throughout the season, help confirm parasitoid establishment following intentional releases, and provide a way to measure the diversity of parasitoid species and potential interactions among parasitoids (e.g., hyper- or klepto-parasitism) that may often occur on the soil surface.


Assuntos
Drosophila , Frutas , Animais , Estações do Ano , Colúmbia Britânica , Controle de Insetos
18.
J Insect Sci ; 24(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340047

RESUMO

Chemical-based interventions are mostly used to control insects that are harmful to human health and agriculture or that simply cause a nuisance. An overreliance on these insecticides however raises concerns for the environment, human health, and the development of resistance, not only in the target species. As such, there is a critical need for the development of novel nonchemical technologies to control insects. Electrocution traps using UV light as an attractant are one classical nonchemical approach to insect control but lack the specificity necessary to target only pest insects and to avoid harmless or beneficial species. Here we review the fundamental physics behind electric fields (EFs) and place them in context with electromagnetic fields more broadly. We then focus on how novel uses of strong EFs, some of which are being piloted in the field and laboratory, have the potential to repel, capture, or kill (electrocute) insects without the negative side effects of other classical approaches. As EF-insect science remains in its infancy, we provide recommendations for future areas of research in EF-insect science.


Assuntos
Controle de Insetos , Animais , Controle de Insetos/métodos , Inseticidas/toxicidade , Raios Ultravioleta
19.
Phytopathology ; 114(1): 137-145, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38318843

RESUMO

Interactions between microorganisms and frugivorous insects can modulate fruit rot disease epidemiology. Insect feeding and/or oviposition wounds may create opportunities for fungal infection. Passive and active dispersal of fungal inoculums by adult insects also increases disease incidence. In fall-bearing raspberries and blackberries, such vectoring interactions could increase crop damage from the invasive pestiferous vinegar fly Drosophila suzukii (spotted-wing drosophila). Periods of peak D. suzukii activity are known to overlap with several species of primary fruit rot pathogen, particularly Botrytis cinerea and Cladosporium cladosporioides, and previous work indicates that larvae co-occur with and feed on various filamentous fungi at low rates. To further our understanding of the epidemiological consequences that may emerge from these associations, we surveyed the filamentous fungal community associated with adult D. suzukii, isolating and molecularly identifying fungi externally and internally (indicating feeding) from field-collected adults over 3 years. We isolated and identified 37 unique genera of fungi in total, including known raspberry pathogens. Most fungi were detected infrequently, and flies acquired and carried fungi externally at higher richness, frequency, and density relative to internally. In a worst-case scenario laboratory vectoring assay, D. suzukii adults were able to transfer B. cinerea and C. cladosporioides to sterile media at 0, 24, 48, and 72 h after exposure to sporulating cultures in Petri dishes. These results collectively suggest an adventitious vectoring association between D. suzukii and fruit rot fungi that has the potential to alter caneberry disease dynamics.


Assuntos
Drosophila , Rubus , Animais , Feminino , Doenças das Plantas , Rubus/microbiologia , Larva , Frutas/microbiologia , Controle de Insetos/métodos
20.
Parasit Vectors ; 17(1): 66, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365773

RESUMO

BACKGROUND: Efforts to evaluate the residual efficacy of new indoor residual spraying (IRS) formulations have identified limitations with the industry standard laboratory sprayer, the Potter Spray Tower (PT). Calibrating the PT can be time-consuming, and the dosing of surfaces may not be as accurate or uniform as previously assumed. METHODS: To address these limitations, the Micron Horizontal Track Sprayer with Spray Cabinet (TS) was developed to provide higher efficiency, ease of operation and deposition uniformity equal to or better than the PT. A series of studies were performed using a fluorescent tracer and three IRS formulations (Actellic® 300CS, K-Othrine WG250 and Suspend PolyZone) sprayed onto surfaces using either the PT or the TS. RESULTS: Deposition volumes could be accurately calibrated for both spray systems. However, the uniformity of spray deposits was higher for the TS compared to the PT. Less than 12% of the volume sprayed using the PT reaches the target surface, with the remaining 88% unaccounted for, presumably vented out of the fume hood or coating the internal surfaces of the tower. In contrast, the TS deposits most of the spray on the floor of the spray chamber, with the rest contained therein. The total sprayed surface area in one run of the TS is 1.2 m2, and the operational zone for spray target placement is 0.7 m2, meaning that 58% of the applied volume deposits onto the targets. The TS can treat multiple surfaces (18 standard 15 × 15 cm tiles) in a single application, whereas the PT treats one surface at a time and a maximum area of around 0.0225 m2. An assessment of the time taken to perform spraying, including the setup, calibration and cleaning, showed that the cost of application using the TS was around 25-35 × less per tile sprayed. Standard operating procedures (SOPs) for calibration and use of both the Potter Tower and Track Sprayer have been developed. CONCLUSIONS: Overall, the TS represents a significant improvement over the PT in terms of the efficiency and accuracy of IRS formulation applications onto test substrates and offers a useful additional tool for researchers and manufacturers wanting to screen new active ingredients or evaluate the efficacy of IRS or other sprayable formulations for insect control.


Assuntos
Anopheles , Inseticidas , Compostos Organotiofosforados , Animais , Controle de Insetos , Controle de Mosquitos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...