Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.590
Filtrar
1.
Mol Biol Rep ; 51(1): 641, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727798

RESUMO

BACKGROUND: The interrelationship between cellular metabolism and the epithelial-to-mesenchymal transition (EMT) process has made it an interesting topic to investigate the adjuvant effect of therapeutic diets in the treatment of cancers. However, the findings are controversial. In this study, the effects of glucose limitation along and with the addition of beta-hydroxybutyrate (bHB) were examined on the expression of specific genes and proteins of EMT, Wnt, Hedgehog, and Hippo signaling pathways, and also on cellular behavior of gastric cancer stem-like (MKN-45) and non-stem-like (KATO III) cells. METHODS AND RESULTS: The expression levels of chosen genes and proteins studied in cancer cells gradually adopted a low-glucose condition of one-fourth, along and with the addition of bHB, and compared to the unconditioned control cells. The long-term switching of the metabolic fuels successfully altered the expression profiles and behaviors of both gastric cancer cells. However, the results for some changes were the opposite. Glucose limitation along and with the addition of bHB reduced the CD44+ population in MKN-45 cells. In KATO III cells, glucose restriction increased the CD44+ population. Glucose deprivation alleviated EMT-related signaling pathways in MKN-45 cells but stimulated EMT in KATO III cells. Interestingly, bHB enrichment reduced the beneficial effect of glucose starvation in MKN-45 cells, but also alleviated the adverse effects of glucose restriction in KATO III cells. CONCLUSIONS: The findings of this research clearly showed that some controversial results in clinical trials for ketogenic diet in cancer patients stemmed from the different signaling responses of various cells to the metabolic changes in a heterogeneous cancer mass.


Assuntos
Ácido 3-Hidroxibutírico , Transição Epitelial-Mesenquimal , Glucose , Transdução de Sinais , Neoplasias Gástricas , Transição Epitelial-Mesenquimal/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Humanos , Linhagem Celular Tumoral , Ácido 3-Hidroxibutírico/farmacologia , Ácido 3-Hidroxibutírico/metabolismo , Glucose/metabolismo , Cetose/metabolismo , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/genética
2.
Genes (Basel) ; 15(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38674346

RESUMO

Ketosis is a common metabolic disorder in the early lactation of dairy cows. It is typically diagnosed by measuring the concentration of ß-hydroxybutyrate (BHB) in the blood. This study aimed to estimate the genetic parameters of blood BHB and conducted a genome-wide association study (GWAS) based on the estimated breeding value. Phenotypic data were collected from December 2019 to August 2023, comprising blood BHB concentrations in 45,617 Holstein cows during the three weeks post-calving across seven dairy farms. Genotypic data were obtained using the Neogen Geneseek Genomic Profiler (GGP) Bovine 100 K SNP Chip and GGP Bovine SNP50 v3 (Illumina Inc., San Diego, CA, USA) for genotyping. The estimated heritability and repeatability values for blood BHB levels were 0.167 and 0.175, respectively. The GWAS result detected a total of ten genome-wide significant associations with blood BHB. Significant SNPs were distributed in Bos taurus autosomes (BTA) 2, 6, 9, 11, 13, and 23, with 48 annotated candidate genes. These potential genes included those associated with insulin regulation, such as INSIG2, and those linked to fatty acid metabolism, such as HADHB, HADHA, and PANK2. Enrichment analysis of the candidate genes for blood BHB revealed the molecular functions and biological processes involved in fatty acid and lipid metabolism in dairy cattle. The identification of novel genomic regions in this study contributes to the characterization of key genes and pathways that elucidate susceptibility to ketosis in dairy cattle.


Assuntos
Ácido 3-Hidroxibutírico , Estudo de Associação Genômica Ampla , Lactação , Polimorfismo de Nucleotídeo Único , Animais , Bovinos/genética , Ácido 3-Hidroxibutírico/sangue , Estudo de Associação Genômica Ampla/métodos , Estudo de Associação Genômica Ampla/veterinária , Feminino , Lactação/genética , Cetose/veterinária , Cetose/genética , Cetose/sangue , Patrimônio Genético , Doenças dos Bovinos/genética , Doenças dos Bovinos/sangue , Genótipo
3.
Nutrients ; 16(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674903

RESUMO

It is widely acknowledged that the ketogenic diet (KD) has positive physiological effects as well as therapeutic benefits, particularly in the treatment of chronic diseases. Maintaining nutritional ketosis is of utmost importance in the KD, as it provides numerous health advantages such as an enhanced lipid profile, heightened insulin sensitivity, decreased blood glucose levels, and the modulation of diverse neurotransmitters. Nevertheless, the integration of the KD with pharmacotherapeutic regimens necessitates careful consideration. Due to changes in their absorption, distribution, metabolism, or elimination, the KD can impact the pharmacokinetics of various medications, including anti-diabetic, anti-epileptic, and cardiovascular drugs. Furthermore, the KD, which is characterised by the intake of meals rich in fats, has the potential to impact the pharmacokinetics of specific medications with high lipophilicity, hence enhancing their absorption and bioavailability. However, the pharmacodynamic aspects of the KD, in conjunction with various pharmaceutical interventions, can provide either advantageous or detrimental synergistic outcomes. Therefore, it is important to consider the pharmacokinetic and pharmacodynamic interactions that may arise between the KD and various drugs. This assessment is essential not only for ensuring patients' compliance with treatment but also for optimising the overall therapeutic outcome, particularly by mitigating adverse reactions. This highlights the significance and necessity of tailoring pharmacological and dietetic therapies in order to enhance the effectiveness and safety of this comprehensive approach to managing chronic diseases.


Assuntos
Dieta Cetogênica , Interações Alimento-Droga , Cetose , Humanos , Disponibilidade Biológica , Fármacos Cardiovasculares/farmacocinética , Doença Crônica/tratamento farmacológico , Doença Crônica/terapia , Interações Medicamentosas , Hipoglicemiantes/farmacocinética , Cetose/metabolismo
5.
Pol J Vet Sci ; 27(1): 107-116, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38511631

RESUMO

Our main aim was to investigate the predictive value of prepartum behaviors such as total daily rumination (TDR), total daily activity (TDA) and dry matter intake (DMI) as early indicators to detect cows at risk for hyperketonemia (HYK), hypoglycemia (HYG) or high non-esterified fatty acid (NEFA) status in the first (wk1) and second week (wk2) postpartum. In a case control study, 64 Holstein cows were enrolled 3 weeks before the expected time of calving and monitored until 15 days in milk (DIM). Postpartum blood samples were taken at D3 and D6 for wk1 and at D12 and D15 for wk2 to measure beta-hydroxybutyrate, NEFA and glucose concentration. Ear-mounted accelerometers were used to measure TDR and TDA. DMI and milk yield were obtained from farm records. Relationships between the average daily rate of change in prepartum TDR (ΔTDR), TDA (ΔTDA), and DMI (ΔDMI) with postpartum HYK, HYG and NEFA status in wk1 and wk2 post-partum were evaluated using linear regression models. Models were adjusted for potential confounding variables, and covariates retained in the final models were determined by backward selection. No evidence was found to support the premise that prepartum ΔTDR, ΔTDA or ΔDMI predicted postpartum HYK, HYG or NEFA status in wk1 or in wk2. Overall, prepartum ΔTDR, ΔTDA and ΔDMI were not effective predictors of HYK, HYG or NEFA status in the first 2 weeks postpartum.


Assuntos
Doenças dos Bovinos , Cetose , Feminino , Bovinos , Animais , Lactação , Dieta/veterinária , Ácidos Graxos não Esterificados , Estudos de Casos e Controles , Período Pós-Parto , Leite , Cetose/veterinária , Ácido 3-Hidroxibutírico , Biomarcadores , Doenças dos Bovinos/diagnóstico
7.
Sci Rep ; 14(1): 5092, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429369

RESUMO

Upon both acute and prolonged alcohol intake, the brain undergoes a metabolic shift associated with increased acetate metabolism and reduced glucose metabolism, which persists during abstinence, putatively leading to energy depletion in the brain. This study evaluates the efficacy of ketogenic treatments to rescue psychiatric and neurochemical alterations during long-term alcohol withdrawal. Female mice were intermittently exposed to alcohol vapor or air for three weeks, during which mice were introduced to either a ketogenic diet (KD), control diet supplemented with ketone ester (KE) or remained on control diet (CD). Withdrawal symptoms were assessed over a period of four weeks followed by re-exposure using several behavioral and biochemical tests. Alcohol-exposed mice fed CD displayed long-lasting depressive-like symptoms measured by saccharin preference and tail suspension, as well as decreased norepinephrine levels and serotonin turnover in the hippocampus. Both KD and KE rescued anhedonia for up to three weeks of abstinence. KD mice showed higher latency to first immobility in the tail suspension test, as well as lower plasma cholesterol levels. Our findings show promising effects of nutritional ketosis in ameliorating alcohol withdrawal symptoms in mice. KD seemed to better rescue these symptoms compared to KE.


Assuntos
Alcoolismo , Cetose , Síndrome de Abstinência a Substâncias , Camundongos , Feminino , Animais , Camundongos Endogâmicos C57BL , Etanol , Cetonas , Cetose/terapia
8.
Vet J ; 304: 106103, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38522779

RESUMO

The objectives of this study were to assess: 1) differences in the metabolic status, systemic inflammation, daily milk yield, and daily rumination time between Holstein dairy cows with different vaginal discharge scores (VDS) in the first 7±3 DIM, and 2) effects of intrauterine dextrose infusion on metabolic status, systemic inflammation, daily milk yield and daily rumination time in dairy cows with VDS4 and VDS5. Cows (n=641) from a farm located in central Pennsylvania were screened at 7±3 DIM (study d 0) to assess vaginal discharge scores. Vaginal discharge was scored using a five-point scale (i.e., 1- clear fluid, 2- <50% white purulent fluid, 3- >50% white purulent fluid, 4- red-brownish fluid without fetid smell, and 5- fetid red-brownish watery fluid). Cows with VDS4 and VDS5 were blocked by parity and randomly assigned to one of two treatment groups: 1) CONV (VDS4 n=15; VDS5 n= 23): two injections of ceftiofur (per label; 6.6 mg/Kg) 72 h apart; and 2) DEX (VDS4 n=15; VDS5 n=22): three intrauterine infusions of a 50% dextrose solution (1 L/cow) every 24 h. Cows that presented a VDS 1, 2, and 3 were categorized as normal vaginal discharge animals (NOMVDS; n=35) and were randomly selected and matched by parity to CONV and DEX cows. Daily milk yield and rumination time for the first 150 DIM were collected from on-farm computer records. Blood samples were collected to assess haptoglobin (HP) and ß-hydroxybutyrate (BHB) concentrations at study d 0, d 7, and d 14 relative to enrollment. Subclinical ketosis was defined as having a BHB concentration >1.2 mmol/dL at any of the sampling points. The data were analyzed using the MIXED and GLIMMIX procedures of SAS as a randomized complete block design. When comparing cows with different VDS (i.e., NOMVDS, VDS4, VDS5) separately, cows with VDS5 had the highest concentration of HP at enrollment compared to cows with VDS4 and NOMVDS; however, cows with VDS4 had higher concentrations of HP compared to cows with NOMVDS. Cows with VDS4 or VDS5 had a higher incidence of subclinical ketosis compared to cows with NOMVDS (p=0.005; VDS4= 62.08±9.16%; VDS5=74.44±6.74%; NOMVDS=34.36±8.53%). Similarly, daily milk yield (p<.0001; VDS4=30.17±1.32 kg/d; VDS5=27.40±1.27 kg/d; NOMVDS=35.14±1.35 kg/d) and daily rumination time (p=0.001; VDS4=490.77±19.44 min; VDS5=465±16.67 min; NOMVDS=558.29±18.80 min) was lower for cows with VDS4 and VDS5 compared to cows with NOMVDS at 7±3 days in milk. When analyzing HP concentration between treatment groups in cows with VDS4 (p=0.70), VDS5 (p=0.25), or VDS4 and VDS5 combined (p=0.31), there was no difference in HP concentration by study d 14 between treatment groups. Interestingly, when only cows with VDS4 were considered for treatment, both treatments, DEX and CONV, increased the daily milk yield to the levels of NOMVDS cows by 14 days in milk. On the other hand, when only cows with VDS5 were considered for treatment, cows treated with DEX produced, on average, 4.48 kg/d less milk in the first 150 days in milk compared to cows treated with CONV or cows that had NOMVDS. Similarly, when cows with either VDS4 or VDS5 were considered for treatment, DEX treatment also impaired milk yield. These results suggest that cows with either VDS 4 or 5 have an altered inflammatory status, and decreased milk yield and rumination compared to cows with NOMVDS. Furthermore, DEX treatment may have similar effects on daily milk yield and metabolic status compared to CONV in cows with VDS4, while DEX is not recommended for cows with VDS5.


Assuntos
Doenças dos Bovinos , Endometrite , Cetose , Descarga Vaginal , Gravidez , Feminino , Animais , Bovinos , Antibacterianos/uso terapêutico , Antibacterianos/metabolismo , Endometrite/tratamento farmacológico , Endometrite/veterinária , Leite/metabolismo , Inflamação/tratamento farmacológico , Inflamação/veterinária , Descarga Vaginal/tratamento farmacológico , Descarga Vaginal/veterinária , Descarga Vaginal/metabolismo , Glucose , Cetose/veterinária , Lactação , Doenças dos Bovinos/tratamento farmacológico , Período Pós-Parto
9.
Res Vet Sci ; 169: 105177, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38350170

RESUMO

Subclinical ketosis (SCK) in dairy cows is often misdiagnosed because it lacks clinical signs and detection indicators. However, it is highly prevalent and may transform into clinical ketosis if not treated promptly. Due to the negative energy balance, a large amount of fat is mobilized, producing NEFA that exceeds the upper limit of liver processing, which in turn leads to the disturbance of liver lipid metabolism. The silent information regulator 1 (SIRT1) is closely related to hepatic lipid metabolism disorders. Exosomes as signal transmitters, also play a role in the circulatory system. We hypothesize that the circulating exosome-mediated adenosine 5'-monophosphate (AMP)-activated protein kinase alpha (AMPKα)-SIRT1 pathway regulates lipid metabolism disorders in SCK cows. We extracted the exosomes required for the experiment from the peripheral circulating blood of non-ketotic (NK) and SCK cows. We investigated the effect of circulating exosomes on the expression levels of mRNA and protein of the AMPKα-SIRT1 pathway in non-esterified fatty acid (NEFA)-induced dairy cow primary hepatocytes using in vitro cell experiments. The results showed that circulating exosomes increased the expression levels of Lipolysis-related genes and proteins (AMPKα, SIRT1, and PGC-1α) in hepatocytes treated with 1.2 mM NEFA, and inhibited the expression of lipid synthesis-related genes and protein (SREBP-1C). The regulation of exosomes on lipid metabolism disorders caused by 1.2 mM NEFA treatment showed the same trend as for SIRT1-overexpressing adenovirus. The added exosomes could regulate NEFA-induced lipid metabolism in hepatocytes by mediating the AMPKα-SIRT1 pathway, consistent with the effect of transfected SIRT1 adenovirus.


Assuntos
Doenças dos Bovinos , Exossomos , Cetose , Transtornos do Metabolismo dos Lipídeos , Feminino , Animais , Bovinos , Metabolismo dos Lipídeos/fisiologia , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuína 1/farmacologia , Ácidos Graxos não Esterificados , Exossomos/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Transtornos do Metabolismo dos Lipídeos/metabolismo , Transtornos do Metabolismo dos Lipídeos/veterinária , Proteínas Quinases Ativadas por AMP/genética , Cetose/veterinária , Doenças dos Bovinos/metabolismo
10.
Paediatr Anaesth ; 34(5): 467-476, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38358320

RESUMO

BACKGROUND: Genetic mitochondrial diseases impact over 1 in 4000 individuals, most often presenting in infancy or early childhood. Seizures are major clinical sequelae in some mitochondrial diseases including Leigh syndrome, the most common pediatric presentation of mitochondrial disease. Dietary ketosis has been used to manage seizures in mitochondrial disease patients. Mitochondrial disease patients often require surgical interventions, leading to anesthetic exposures. Anesthetics have been shown to be toxic in the setting of mitochondrial disease, but the impact of a ketogenic diet on anesthetic toxicities in this setting has not been studied. AIMS: Our aim in this study was to determine whether dietary ketosis impacts volatile anesthetic toxicities in the setting of genetic mitochondrial disease. METHODS: The impact of dietary ketosis on toxicities of volatile anesthetic exposure in mitochondrial disease was studied by exposing young Ndufs4(-/-) mice fed ketogenic or control diet to isoflurane anesthesia. Blood metabolites were measured before and at the end of exposures, and survival and weight were monitored. RESULTS: Compared to a regular diet, the ketogenic diet exacerbated hyperlactatemia resulting from isoflurane exposure (control vs. ketogenic diet in anesthesia mean difference 1.96 mM, Tukey's multiple comparison adjusted p = .0271) and was associated with a significant increase in mortality during and immediately after exposures (27% vs. 87.5% mortality in the control and ketogenic diet groups, respectively, during the exposure period, Fisher's exact test p = .0121). Our data indicate that dietary ketosis and volatile anesthesia interact negatively in the setting of mitochondrial disease. CONCLUSIONS: Our findings suggest that extra caution should be taken in the anesthetic management of mitochondrial disease patients in dietary ketosis.


Assuntos
Anestesia , Anestésicos , Isoflurano , Cetose , Doença de Leigh , Doenças Mitocondriais , Humanos , Criança , Pré-Escolar , Camundongos , Animais , Doença de Leigh/genética , Dieta , Cetose/metabolismo , Convulsões , Complexo I de Transporte de Elétrons/metabolismo
11.
Nutr Metab Cardiovasc Dis ; 34(3): 581-589, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38326186

RESUMO

The term "ketogenic diet" (KD) is used for a wide variety of diets with diverse indications ranging from obesity to neurological diseases, as if it was the same diet. This terminology is confusing for patients and the medical and scientific community. The term "ketogenic" diet implies a dietary regimen characterized by increased levels of circulating ketone bodies that should be measured in blood (beta-hydroxybutyrate), urine (acetoacetate) or breath (acetone) to verify the "ketogenic metabolic condition". Our viewpoint highlights that KDs used for epilepsy and obesity are not the same; the protocols aimed at weight loss characterized by low-fat, low-CHO and moderate/high protein content are not ketogenic by themselves but may become mildly ketogenic when high calorie restriction is applied. In contrast, there are standardized protocols for neurological diseases treatment for which ketosis has been established to be part of the mechanism of action. Therefore, in our opinion, the term ketogenic dietary therapy (KDT) should be reserved to the protocols considered for epilepsy and other neurological diseases, as suggested by the International Study Group in 2018. We propose to adjust the abbreviations in VLCHKD for Very Low CarboHydrate Ketogenic Diet and VLEKD for Very Low Energy Ketogenic Diet, to clarify the differences in dietary composition. We recommend that investigators describe the researchers describing efficacy or side effects of KDs, to clearly specify the dietary protocol used with its unique acronym and level of ketosis, when ketosis is considered as a component of the diet's mechanism of action.


Assuntos
Dieta Cetogênica , Epilepsia , Cetose , Humanos , Dieta Cetogênica/efeitos adversos , Obesidade/diagnóstico , Epilepsia/diagnóstico , Corpos Cetônicos , Cetose/diagnóstico
12.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(1): 62-66, 2024 Jan 15.
Artigo em Chinês | MEDLINE | ID: mdl-38269461

RESUMO

OBJECTIVES: To investigate the risk factors for diabetic ketoacidosis (DKA) in children/adolescents with type 1 diabetes mellitus (T1DM) and to establish a model for predicting the risk of DKA. METHODS: A retrospective analysis was performed on 217 children/adolescents with T1DM who were admitted to General Hospital of Ningxia Medical University from January 2018 to December 2021. Among the 217 children/adolescents,169 cases with DKA were included as the DKA group and 48 cases without DKA were included as the non-DKA group. The risk factors for DKA in the children/adolescents with T1DM were analyzed, and a nomogram model was established for predicting the risk of DKA in children/adolescents with T1DM. RESULTS: For the 217 children/adolescents with T1DM, the incidence rate of DKA was 77.9% (169/217). The multivariate logistic regression analysis showed that high levels of random blood glucose, hemoglobin A1c (HbA1c), blood ketone body, and triglyceride on admission were closely associated with the development of DKA in the children/adolescents with T1DM (OR=1.156, 3.2031015, 20.131, and 9.519 respectively; P<0.05). The nomogram prediction model had a C-statistic of 0.95, with a mean absolute error of 0.004 between the risk of DKA predicted by the nomogram model and the actual risk of DKA, indicating that the model had a good overall prediction ability. CONCLUSIONS: High levels of random blood glucose, HbA1c, blood ketone body, and triglyceride on admission are closely associated with the development of DKA in children/adolescents with T1DM, and targeted intervention measures should be developed to reduce the risk of DKA.


Assuntos
Diabetes Mellitus Tipo 1 , Cetose , Criança , Adolescente , Humanos , Diabetes Mellitus Tipo 1/complicações , Glicemia , Hemoglobinas Glicadas , Estudos Retrospectivos , Fatores de Risco , Corpos Cetônicos , Triglicerídeos
13.
J Diabetes Res ; 2024: 8889415, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38225984

RESUMO

This study is aimed at examining which factors are useful for the diagnosis and distinction of ketoacidosis. We recruited 21 diabetic ketoacidosis (DKA) and alcoholic ketoacidosis (AKA) patients hospitalized in Kawasaki Medical School General Medical Center from April 2015 to March 2021. Almost all patients in this study were brought to the emergency room in a coma and hospitalized. All patients underwent blood gas aspiration and laboratory tests. We evaluated the difference in diagnosis markers in emergencies between DKA and alcoholic ketoacidosis AKA. Compared to AKA patients, DKA patients had statistically higher values of serum acetoacetic acid and lower values of serum lactate, arterial blood pH, and base excess. In contrast, total ketone bodies, ß-hydroxybutyric acid, and ß-hydroxybutyric acid/acetoacetic acid ratio in serum did not differ between the two patient groups. It was shown that evaluation of each pathology such as low body weight, diabetes, liver dysfunction, and dehydration was important. It is important to perform differential diagnosis for taking medical histories such as insulin deficiency, alcohol abuse, or starvation as the etiology in Japanese subjects with DKA or AKA. Moreover, it is important to precisely comprehend the pathology of dehydration and alcoholic metabolism which would lead to appropriate treatment for DKA and AKA.


Assuntos
Acetoacetatos , Diabetes Mellitus , Cetoacidose Diabética , Cetose , Humanos , Cetoacidose Diabética/complicações , Cetoacidose Diabética/diagnóstico , Cetoacidose Diabética/terapia , Estudos Retrospectivos , Ácido 3-Hidroxibutírico , Desidratação/complicações , Cetose/diagnóstico , Cetose/etiologia , Cetose/metabolismo
14.
Kidney360 ; 5(2): 320-326, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38227425

RESUMO

Ketone bodies have a negative image because of ketoacidosis, one of the acute and serious complications in diabetes. The negative image persists despite the fact that ketone bodies are physiologically produced in the liver and serve as an indispensable energy source in extrahepatic organs, particularly during long-term fasting. However, accumulating experimental evidence suggests that ketone bodies exert various health benefits. Particularly in the field of aging research, there is growing interest in the potential organoprotective effects of ketone bodies. In addition, ketone bodies have a potential role in preventing kidney diseases, including diabetic kidney disease (DKD), a diabetic complication caused by prolonged hyperglycemia that leads to a decline in kidney function. Ketone bodies may help alleviate the renal burden from hyperglycemia by being used as an alternative energy source in patients with diabetes. Furthermore, ketone body production may reduce inflammation and delay the progression of several kidney diseases in addition to DKD. Although there is still insufficient research on the use of ketone bodies as a treatment and their effects, their renoprotective effects are being gradually proven. This review outlines the ketone body-mediated renoprotective effects in DKD and other kidney diseases.


Assuntos
Complicações do Diabetes , Diabetes Mellitus , Nefropatias Diabéticas , Hiperglicemia , Cetose , Humanos , Corpos Cetônicos/metabolismo , Cetose/metabolismo
15.
J Nutr Biochem ; 126: 109562, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38176626

RESUMO

Ketogenic diets (KDs) are very high-fat low-carbohydrate diets that promote nutritional ketosis and are widely used for weight loss, although concerns about potential adverse cardiovascular effects remain. We investigated a very high-fat KD's vascular impact and plasma metabolic signature compared to a non-ketogenic high-fat diet (HFD). Apolipoprotein E deficient (ApoE -/-) mice were fed a KD (%kcal:81:1:18, fat/carbohydrate/protein), a non-ketogenic high-fat diet with half of the fat content (HFD) (%kcal:40:42:18, fat/carbohydrate/protein) for 12 weeks. Plasma samples were used to quantify the major ketone body beta-hydroxybutyrate (BHB) and several pro-inflammatory cytokines (IL-6, MCP-1, MIP-1alpha, and TNF alpha), and to targeted metabolomic profiling by mass spectrometry. In addition, aortic atherosclerotic lesions were quantified ex-vivo by magnetic resonance imaging (MRI) on a 14-tesla system. KD was atherogenic when compared to the control diet, but KD mice, when compared to the HFD group (1) had markedly higher levels of BHB and lower levels of cytokines, confirming the presence of ketosis that alleviated the well-established fat-induced systemic inflammation; (2) displayed significant changes in the plasma metabolome that included a decrease in lipophilic metabolites and an increase in hydrophilic metabolites; (3) had significantly lower levels of several atherogenic lipid metabolites, including phosphatidylcholines, cholesterol esters, sphingomyelins, and ceramides; and (4) presented significantly lower aortic plaque burden. KD was atherogenic and was associated with specific metabolic changes but alleviated the fat-induced inflammation and lessened the progression of atherosclerosis when compared to the HFD.


Assuntos
Aterosclerose , Cetose , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Aterosclerose/etiologia , Aterosclerose/patologia , Inflamação/metabolismo , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Metaboloma
16.
Physiology (Bethesda) ; 39(3): 0, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38260943

RESUMO

The discovery of insulin approximately a century ago greatly improved the management of diabetes, including many of its life-threatening acute complications like ketoacidosis. This breakthrough saved many lives and extended the healthy lifespan of many patients with diabetes. However, there is still a negative perception of ketone bodies stemming from ketoacidosis. Originally, ketone bodies were thought of as a vital source of energy during fasting and exercise. Furthermore, in recent years, research on calorie restriction and its potential impact on extending healthy lifespans, as well as studies on ketone bodies, have gradually led to a reevaluation of the significance of ketone bodies in promoting longevity. Thus, in this review, we discuss the emerging and hidden roles of ketone bodies in various organs, including the heart, kidneys, skeletal muscles, and brain, as well as their potential impact on malignancies and lifespan.


Assuntos
Diabetes Mellitus , Cetose , Humanos , Corpos Cetônicos , Longevidade , Coração
17.
PLoS One ; 19(1): e0296523, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38166036

RESUMO

PURPOSE: Ketogenic diets may positively influence cancer through pleiotropic mechanisms, but only a few small and short-term studies have addressed feasibility and efficacy in cancer patients. The primary goals of this study were to evaluate the feasibility and the sustained metabolic effects of a personalized well-formulated ketogenic diet (WFKD) designed to achieve consistent blood beta-hydroxybutyrate (ßHB) >0.5 mM in women diagnosed with stage IV metastatic breast cancer (MBC) undergoing chemotherapy. METHODS: Women (n = 20) were enrolled in a six month, two-phase, single-arm WFKD intervention (NCT03535701). Phase I was a highly-supervised, ad libitum, personalized WFKD, where women were provided with ketogenic-appropriate food daily for three months. Phase II transitioned women to a self-administered WFKD with ongoing coaching for an additional three months. Fasting capillary ßHB and glucose were collected daily; weight, body composition, plasma insulin, and insulin resistance were collected at baseline, three and six months. RESULTS: Capillary ßHB indicated women achieved nutritional ketosis (Phase I mean: 0.8 mM (n = 15); Phase II mean: 0.7 mM (n = 9)). Body weight decreased 10% after three months, primarily from body fat. Fasting plasma glucose, plasma insulin, and insulin resistance also decreased significantly after three months (p < 0.01), an effect that persisted at six months. CONCLUSIONS: Women diagnosed with MBC undergoing chemotherapy can safely achieve and maintain nutritional ketosis, while improving body composition and insulin resistance, out to six months.


Assuntos
Neoplasias da Mama , Dieta Cetogênica , Resistência à Insulina , Insulinas , Cetose , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Estudos de Viabilidade , Ácido 3-Hidroxibutírico
18.
Sci Rep ; 14(1): 1438, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228786

RESUMO

Abdominal aortic aneurysms (AAAs) are prevalent with aging, and AAA rupture is associated with increased mortality. There is currently no effective medical therapy to prevent AAA rupture. The monocyte chemoattractant protein (MCP-1)/C-C chemokine receptor type 2 (CCR2) axis critically regulates AAA inflammation, matrix-metalloproteinase (MMP) production, and extracellular matrix (ECM) stability. We therefore hypothesized that a diet intervention that can modulate CCR2 axis may therapeutically impact AAA risk of rupture. Since ketone bodies (KBs) can trigger repair mechanisms in response to inflammation, we evaluated whether systemic ketosis in vivo could reduce CCR2 and AAA progression. Male Sprague-Dawley rats underwent surgical AAA formation using porcine pancreatic elastase and received daily ß-aminopropionitrile to promote AAA rupture. Rats with AAAs received either a standard diet, ketogenic diet (KD), or exogenous KBs (EKB). Rats receiving KD and EKB reached a state of ketosis and had significant reduction in AAA expansion and incidence of rupture. Ketosis also led to significantly reduced aortic CCR2 content, improved MMP balance, and reduced ECM degradation. Consistent with these findings, we also observed that Ccr2-/- mice have significantly reduced AAA expansion and rupture. In summary, this study demonstrates that CCR2 is essential for AAA expansion, and that its modulation with ketosis can reduce AAA pathology. This provides an impetus for future clinical studies that will evaluate the impact of ketosis on human AAA disease.


Assuntos
Aneurisma da Aorta Abdominal , Ruptura Aórtica , Cetose , Animais , Humanos , Masculino , Camundongos , Ratos , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/metabolismo , Ruptura Aórtica/patologia , Modelos Animais de Doenças , Regulação para Baixo , Matriz Extracelular/metabolismo , Inflamação/patologia , Cetose/patologia , Ratos Sprague-Dawley , Suínos
19.
Rev Med Liege ; 79(1): 11-16, 2024 Jan.
Artigo em Francês | MEDLINE | ID: mdl-38223964

RESUMO

Ketoacidosis is a serious complication of diabetes that only occurs in cases of absolute or severe relative insulin deficiency. This condition is rare in type 2 diabetes. The use of gliflozin during intense physiological stress associated with fasting can lead to the development of ketoacidosis without severe hyperglycaemia. The diagnosis of this normoglycaemic or euglycaemic diabetic ketoacidosis in the context of type 2 diabetes may be challenging. The treatment of metabolic acidosis cannot rely solely on symptomatic measures such as bicarbonate infusion. The demonstration of metabolic acidosis necessitates the search for an etiological diagnosis. The calculation of the anion gap is the cornerstone of the pathophysiological diagnosis of metabolic acidosis. In the context of diabetes, the occurrence of metabolic acidosis of unknown etiology requires its calculation and systematic measurement of ketones, even in the absence of severe hyperglycaemia. Only the etiological treatment of diabetic ketoacidosis, which is insulin therapy, allows for the lasting restoration of acid-base balance. Normoglycaemic ketoacidosis induced by the use of gliflozin during intense physiological stress associated with fasting should therefore be a recognized situation by healthcare providers.


L'acidocétose est une complication grave du diabète qui ne survient qu'en cas de déficit en insuline, absolu ou relatif sévère. Cette condition est rare dans le diabète de type 2. La prise de gliflozines en cas de stress physiologique intense, notamment associé à un jeûne, peut induire la survenue d'une acidocétose sans hyperglycémie sévère. Cette acidocétose diabétique dite normoglycémique ou euglycémique dans le cadre d'un diabète de type 2 est source d'errance diagnostique. Le traitement d'une acidose métabolique ne peut pas se satisfaire de l'instauration de mesures symptomatiques comme la perfusion de bicarbonates. La démonstration d'une acidose métabolique impose la recherche d'un diagnostic étiologique. Le calcul du trou anionique est la pierre angulaire du diagnostic physiopathologique d'une acidose métabolique. Dans le cadre du diabète, la survenue d'une acidose métabolique d'étiologie inconnue impose son calcul et le dosage systématique de la cétonémie, même en l'absence d'hyperglycémie sévère, a fortiori en cas de traitement par gliflozine. Seul le traitement étiologique d'une acidocétose diabétique, l'insulinothérapie, permet la restitution durable de l'équilibre acido-basique. L'acidocétose normoglycémique induite par la prise de gliflozines en cas de stress physiologique intense associé à un jeûne doit donc être une situation connue.


Assuntos
Diabetes Mellitus Tipo 2 , Cetoacidose Diabética , Hiperglicemia , Cetose , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Cetoacidose Diabética/induzido quimicamente , Cetoacidose Diabética/complicações , Cetoacidose Diabética/diagnóstico , Jejum/efeitos adversos , Hiperglicemia/induzido quimicamente , Insulina , Cetose/induzido quimicamente , Cetose/complicações , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos
20.
Am J Physiol Cell Physiol ; 326(3): C707-C711, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189135

RESUMO

Ketone bodies are short-chain fatty acids produced by the liver during periods of limited glucose availability, such as during fasting or low carbohydrate feeding. Recent studies have highlighted important nonmetabolic functions of the most abundant ketone body, ß-hydroxybutyrate (BHB). Notably, many of these functions, including limiting specific sources of inflammation, histone deacetylase inhibition, NFκB inhibition, and GPCR stimulation, are particularly important to consider in immune cells. Likewise, dietary manipulations like caloric restriction or ketogenic diet feeding have been associated with lowered inflammation, improved health outcomes, and improved host defense against infection. However, the underlying mechanisms of the broad benefits of ketosis remain incompletely understood. In this Perspective, we contextualize the current state of the field of nonmetabolic functions of ketone bodies specifically in the immune system and speculate on the molecular explanations and broader physiological significance.


Assuntos
Corpos Cetônicos , Cetose , Humanos , Ácido 3-Hidroxibutírico , Sistema Imunitário , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...