Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.726
Filtrar
1.
Transl Vis Sci Technol ; 13(5): 3, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38696180

RESUMO

Purpose: The biosynthetic Symatix membrane (SM) was developed to replace fresh human amniotic membrane (hAM) in ocular surgical applications. The purpose of this study was to test the biocompatibility of the SM with human limbus-derived epithelial cells with regard to their physical and biological properties. Methods: Different physical properties of SM were tested ex vivo by simulation on human corneas. In vitro, primary limbal epithelial cells from limbal explants were used to test biological properties such as cell migration, proliferation, metabolic activity, and limbal epithelial cell markers on the SM, hAM, and freeze-dried amniotic membrane (FDAM). Results: The surgical handleability of the SM was equivalent to that of the hAM. Ultrastructural and histological studies demonstrated that epithelial cells on the SM had the typical tightly apposed, polygonal, corneal epithelial cell morphology. The epithelial cells were well stratified on the SM, unlike on the hAM and FDAM. Rapid wound healing occurred on the SM within 3 days. Immunofluorescence studies showed positive expression of CK-19, Col-1, laminin, ZO-1, FN, and p-63 on the SM, plastic, and FDAM compared to positive expression of ZO-1, Col-1, laminin, FN, and p63 and negative expression of CK-19 in the hAM. Conclusions: These results indicate that the SM is a better substrate for limbal epithelial cell migration, proliferation, and tight junction formation. Altogether, the SM can provide a suitable alternative to the hAM for surgical application in sight-restoring operations. Translational Relevance: The hAM, currently widely used in ocular surface surgery, has numerous variations and limitations. The biocompatibility of corneal epithelial cells with the SM demonstrated in this study suggests that it can be a viable substitute for the hAM.


Assuntos
Âmnio , Movimento Celular , Proliferação de Células , Humanos , Âmnio/metabolismo , Células Cultivadas , Limbo da Córnea/metabolismo , Limbo da Córnea/citologia , Epitélio Corneano/metabolismo , Epitélio Corneano/citologia , Cicatrização/fisiologia , Células Epiteliais/metabolismo , Procedimentos Cirúrgicos Oftalmológicos/métodos , Laminina/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
2.
J Cancer Res Clin Oncol ; 150(5): 230, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703300

RESUMO

OBJECTIVES: Gastric cancer (GC) is a prevalent malignant tumor widely distributed globally, exhibiting elevated incidence and fatality rates. The gene LAMC2 encodes the laminin subunit gamma-2 chain and is found specifically in the basement membrane of epithelial cells. Its expression is aberrant in multiple types of malignant tumors. This research elucidated a link between LAMC2 and the clinical characteristics of GC and investigated the potential involvement of LAMC2 in GC proliferation and advancement. MATERIALS AND METHODS: LAMC2 expressions were detected in GC cell lines and normal gastric epithelial cell lines via qRT-PCR. Silencing and overexpression of the LAMC2 were conducted by lentiviral transfection. A xenograft mouse model was also developed for in vivo analysis. Cell functional assays were conducted to elucidate the involvement of LAMC2 in cell growth, migration, and penetration. Further, immunoblotting was conducted to investigate the impact of LAMC2 on the activation of signal pathways after lentiviral transfection. RESULTS: In the findings, LAMC2 expression was markedly upregulated in GC cell lines as opposed to normal gastric epithelial cells. In vitro analysis showed that sh-LAMC2 substantially inhibited GC cell growth, migration, and invasion, while oe-LAMC2 displayed a contrasting effect. Xenograft tumor models demonstrated that oe-LAMC2 accelerated tumor growth via high expression of Ki-67. Immunoblotting analysis revealed a substantial decrease in various signaling pathway proteins, PI3K, p-Akt, and Vimentin levels upon LAMC2 knockdown, followed by increased E-cadherin expression. Conversely, its overexpression exhibited contrasting effects. Besides, epithelial-mesenchymal transition (EMT) was accelerated by LAMC2. CONCLUSION: This study provides evidence indicating that LAMC2, by stimulating signaling pathways, facilitated EMT and stimulated the progression of GC cells in laboratory settings and mouse models. Research also explored that the abnormal LAMC2 expression acts as a biomarker for GC.


Assuntos
Proliferação de Células , Laminina , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Neoplasias Gástricas , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Humanos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos , Laminina/metabolismo , Linhagem Celular Tumoral , Camundongos Nus , Transição Epitelial-Mesenquimal , Movimento Celular , Feminino , Masculino , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica
3.
Acta Neuropathol Commun ; 12(1): 71, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38706008

RESUMO

Diffuse Intrinsic Pontine Glioma (DIPG) is a highly aggressive and fatal pediatric brain cancer. One pre-requisite for tumor cells to infiltrate is adhesion to extracellular matrix (ECM) components. However, it remains largely unknown which ECM proteins are critical in enabling DIPG adhesion and migration and which integrin receptors mediate these processes. Here, we identify laminin as a key ECM protein that supports robust DIPG cell adhesion and migration. To study DIPG infiltration, we developed a DIPG-neural assembloid model, which is composed of a DIPG spheroid fused to a human induced pluripotent stem cell-derived neural organoid. Using this assembloid model, we demonstrate that knockdown of laminin-associated integrins significantly impedes DIPG infiltration. Moreover, laminin-associated integrin knockdown improves DIPG response to radiation and HDAC inhibitor treatment within the DIPG-neural assembloids. These findings reveal the critical role of laminin-associated integrins in mediating DIPG progression and drug response. The results also provide evidence that disrupting integrin receptors may offer a novel therapeutic strategy to enhance DIPG treatment outcomes. Finally, these results establish DIPG-neural assembloid models as a powerful tool to study DIPG disease progression and enable drug discovery.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Integrinas , Laminina , Humanos , Laminina/metabolismo , Integrinas/metabolismo , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/patologia , Neoplasias do Tronco Encefálico/metabolismo , Neoplasias do Tronco Encefálico/terapia , Glioma Pontino Intrínseco Difuso/patologia , Glioma Pontino Intrínseco Difuso/genética , Adesão Celular/efeitos dos fármacos , Movimento Celular , Linhagem Celular Tumoral , Glioma/patologia , Glioma/metabolismo , Glioma/genética , Glioma/terapia
4.
ACS Biomater Sci Eng ; 10(5): 3218-3231, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38593429

RESUMO

Spinal cord organoids are of significant value in the research of spinal cord-related diseases by simulating disease states, thereby facilitating the development of novel therapies. However, the complexity of spinal cord structure and physiological functions, along with the lack of human-derived inducing components, presents challenges in the in vitro construction of human spinal cord organoids. Here, we introduce a novel human decellularized placenta-derived extracellular matrix hydrogel (DPECMH) and, combined with a new induction protocol, successfully construct human spinal cord organoids. The human placenta-sourced decellularized extracellular matrix (dECM), verified through hematoxylin and eosin staining, DNA quantification, and immunofluorescence staining, retained essential ECM components such as elastin, fibronectin, type I collagen, laminin, and so forth. The temperature-sensitive hydrogel made from human placenta dECM demonstrated good biocompatibility and promoted the differentiation of human induced pluripotent stem cell (hiPSCs)-derived spinal cord organoids into neurons. It displayed enhanced expression of laminar markers in comparison to Matrigel and showed higher expression of laminar markers compared to Matrigel, accelerating the maturation process of spinal cord organoids and demonstrating its potential as an organoid culture substrate. DPECMH has the potential to replace Matrigel as the standard additive for human spinal cord organoids, thus advancing the development of spinal cord organoid culture protocols and their application in the in vitro modeling of spinal cord-related diseases.


Assuntos
Diferenciação Celular , Matriz Extracelular Descelularizada , Hidrogéis , Células-Tronco Pluripotentes Induzidas , Organoides , Placenta , Medula Espinal , Humanos , Organoides/citologia , Organoides/metabolismo , Organoides/efeitos dos fármacos , Feminino , Placenta/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Gravidez , Hidrogéis/química , Hidrogéis/farmacologia , Medula Espinal/citologia , Medula Espinal/metabolismo , Diferenciação Celular/efeitos dos fármacos , Matriz Extracelular Descelularizada/farmacologia , Matriz Extracelular Descelularizada/química , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Laminina/farmacologia , Laminina/química
6.
Biomater Adv ; 160: 213847, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657288

RESUMO

Three-dimensional (3D) organoid models have been instrumental in understanding molecular mechanisms responsible for many cellular processes and diseases. However, established organic biomaterial scaffolds used for 3D hydrogel cultures, such as Matrigel, are biochemically complex and display significant batch variability, limiting reproducibility in experiments. Recently, there has been significant progress in the development of synthetic hydrogels for in vitro cell culture that are reproducible, mechanically tuneable, and biocompatible. Self-assembling peptide hydrogels (SAPHs) are synthetic biomaterials that can be engineered to be compatible with 3D cell culture. Here we investigate the ability of PeptiGel® SAPHs to model the mammary epithelial cell (MEC) microenvironment in vitro. The positively charged PeptiGel®Alpha4 supported MEC viability, but did not promote formation of polarised acini. Modifying the stiffness of PeptiGel® Alpha4 stimulated changes in MEC viability and changes in protein expression associated with altered MEC function, but did not fully recapitulate the morphologies of MECs grown in Matrigel. To supply the appropriate biochemical signals for MEC organoids, we supplemented PeptiGels® with laminin. Laminin was found to require negatively charged PeptiGel® Alpha7 for functionality, but was then able to provide appropriate signals for correct MEC polarisation and expression of characteristic proteins. Thus, optimisation of SAPH composition and mechanics allows tuning to support tissue-specific organoids.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Colágeno , Combinação de Medicamentos , Células Epiteliais , Hidrogéis , Laminina , Peptídeos , Proteoglicanas , Laminina/farmacologia , Laminina/química , Hidrogéis/química , Hidrogéis/farmacologia , Proteoglicanas/farmacologia , Proteoglicanas/química , Colágeno/química , Colágeno/farmacologia , Peptídeos/farmacologia , Peptídeos/química , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/citologia , Humanos , Feminino , Técnicas de Cultura de Células em Três Dimensões/métodos , Sobrevivência Celular/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Glândulas Mamárias Humanas/citologia , Organoides/efeitos dos fármacos , Organoides/citologia , Técnicas de Cultura de Células/métodos
7.
Exp Neurol ; 376: 114776, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38609046

RESUMO

BACKGROUND AND PURPOSE: The poor prognosis in patients with subarachnoid hemorrhage (SAH) is often attributed to neuronal apoptosis. Recent evidence suggests that Laminin subunit gamma 1 (LAMC1) is essential for cell survival and proliferation. However, the effects of LAMC1 on early brain injury after SAH and the underlying mechanisms are unknown. The current study aimed to reveal the anti-neuronal apoptotic effect and the potential mechanism of LAMC1 in the rat and in the in vitro SAH models. METHODS: The SAH model of Sprague-Dawley rats was established by endovascular perforation. Recombinant LAMC1 (rLAMC1) was administered intranasally 30 min after modeling. LAMC1 small interfering RNA (LAMC1 siRNA), focal adhesion kinase (FAK)-specific inhibitor Y15 and PI3K-specific inhibitor LY294002 were administered before SAH modeling to explore the neuroprotection mechanism of rLAMC1. HT22 cells were cultured and stimulated by oxyhemoglobin to establish an in vitro model of SAH. Subsequently, SAH grades, neurobehavioral tests, brain water content, blood-brain barrier permeability, western blotting, immunofluorescence, TUNEL, and Fluoro-Jade C staining were performed. RESULTS: The expression of endogenous LAMC1 was markedly decreased after SAH, both in vitro and in vivo. rLAMC1 significantly reduced the brain water content and blood-brain barrier permeability, improved short- and long-term neurobehavior, and decreased neuronal apoptosis. Furthermore, rLAMC1 treatment significantly increased the expression of p-FAK, p-PI3K, p-AKT, Bcl-XL, and Bcl-2 and decreased the expression of Bax and cleaved caspase -3. Conversely, knockdown of endogenous LAMC1 aggravated the neurological impairment, suppressed the expression of Bcl-XL and Bcl-2, and upregulated the expression of Bax and cleaved caspase-3. Additionally, the administration of Y15 and LY294002 abolished the protective roles of rLAMC1. In vitro, rLAMC1 significantly reduced neuronal apoptosis, and the protective effects were also abolished by Y15 and LY294002. CONCLUSION: Exogenous LAMC1 treatment improved neurological deficits after SAH in rats, and attenuated neuronal apoptosis in both in vitro and in vivo SAH models, at least partially through the FAK/PI3K/AKT pathway.


Assuntos
Apoptose , Laminina , Neurônios , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Transdução de Sinais , Hemorragia Subaracnóidea , Animais , Hemorragia Subaracnóidea/metabolismo , Hemorragia Subaracnóidea/patologia , Hemorragia Subaracnóidea/tratamento farmacológico , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Laminina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Modelos Animais de Doenças , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Camundongos
8.
PLoS One ; 19(4): e0302031, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38603692

RESUMO

Chronic neuroinflammation is characterized by increased blood-brain barrier (BBB) permeability, leading to molecular changes in the central nervous system that can be explored with biomarkers of active neuroinflammatory processes. Magnetic resonance imaging (MRI) has contributed to detecting lesions and permeability of the BBB. Ultra-small superparamagnetic particles of iron oxide (USPIO) are used as contrast agents to improve MRI observations. Therefore, we validate the interaction of peptide-88 with laminin, vectorized on USPIO, to explore BBB molecular alterations occurring during neuroinflammation as a potential tool for use in MRI. The specific labeling of NPS-P88 was verified in endothelial cells (hCMEC/D3) and astrocytes (T98G) under inflammation induced by interleukin 1ß (IL-1ß) for 3 and 24 hours. IL-1ß for 3 hours in hCMEC/D3 cells increased their co-localization with NPS-P88, compared with controls. At 24 hours, no significant differences were observed between groups. In T98G cells, NPS-P88 showed similar nonspecific labeling among treatments. These results indicate that NPS-P88 has a higher affinity towards brain endothelial cells than astrocytes under inflammation. This affinity decreases over time with reduced laminin expression. In vivo results suggest that following a 30-minute post-injection, there is an increased presence of NPS-P88 in the blood and brain, diminishing over time. Lastly, EAE animals displayed a significant accumulation of NPS-P88 in MRI, primarily in the cortex, attributed to inflammation and disruption of the BBB. Altogether, these results revealed NPS-P88 as a biomarker to evaluate changes in the BBB due to neuroinflammation by MRI in biological models targeting laminin.


Assuntos
Barreira Hematoencefálica , Laminina , Animais , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/metabolismo , Laminina/metabolismo , Doenças Neuroinflamatórias , Células Endoteliais/metabolismo , Inflamação/diagnóstico por imagem , Inflamação/metabolismo , Imageamento por Ressonância Magnética/métodos
9.
Commun Biol ; 7(1): 418, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582945

RESUMO

Fuchs endothelial corneal dystrophy (FECD) is a leading indication for corneal transplantation, but its molecular etiology remains poorly understood. We performed genome-wide association studies (GWAS) of FECD in the Million Veteran Program followed by multi-ancestry meta-analysis with the previous largest FECD GWAS, for a total of 3970 cases and 333,794 controls. We confirm the previous four loci, and identify eight novel loci: SSBP3, THSD7A, LAMB1, PIDD1, RORA, HS3ST3B1, LAMA5, and COL18A1. We further confirm the TCF4 locus in GWAS for admixed African and Hispanic/Latino ancestries and show an enrichment of European-ancestry haplotypes at TCF4 in FECD cases. Among the novel associations are low frequency missense variants in laminin genes LAMA5 and LAMB1 which, together with previously reported LAMC1, form laminin-511 (LM511). AlphaFold 2 protein modeling, validated through homology, suggests that mutations at LAMA5 and LAMB1 may destabilize LM511 by altering inter-domain interactions or extracellular matrix binding. Finally, phenome-wide association scans and colocalization analyses suggest that the TCF4 CTG18.1 trinucleotide repeat expansion leads to dysregulation of ion transport in the corneal endothelium and has pleiotropic effects on renal function.


Assuntos
Distrofia Endotelial de Fuchs , Humanos , Distrofia Endotelial de Fuchs/genética , Distrofia Endotelial de Fuchs/metabolismo , Estudo de Associação Genômica Ampla , Fator de Transcrição 4/genética , Colágeno , Laminina/genética
10.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612582

RESUMO

Ischemic heart disease, a leading cause of death worldwide, manifests clinically as myocardial infarction. Contemporary therapies using mesenchymal stromal cells (MSCs) and their derivative (exosomes, EXOs) were developed to decrease the progression of cell damage during ischemic injury. Laminin alpha 2 (LAMA2) is an important extracellular matrix protein of the heart. Here, we generated MSC-derived exosomes cultivated under LAMA2 coating to enhance human-induced pluripotent stem cell (hiPSC)-cardiomyocyte recognition of LAMA2-EXOs, thus, increasing cell protection during ischemia reoxygenation. We mapped the mRNA content of LAMA2 and gelatin-EXOs and identified 798 genes that were differentially expressed, including genes associated with cardiac muscle development and extracellular matrix organization. Cells were treated with LAMA2-EXOs 2 h before a 4 h ischemia period (1% O2, 5% CO2, glucose-free media). LAMA2-EXOs had a two-fold protective effect compared to non-treatment on plasma membrane integrity and the apoptosis activation pathway; after a 1.5 h recovery period (20% O2, 5% CO2, cardiomyocyte-enriched media), cardiomyocytes treated with LAMA2-EXOs showed faster recovery than did the control group. Although EXOs had a protective effect on endothelial cells, there was no LAMA2-enhanced protection on these cells. This is the first report of LAMA2-EXOs used to treat cardiomyocytes that underwent ischemia-reoxygenation injury. Overall, we showed that membrane-specific EXOs may help improve cardiomyocyte survival in treating ischemic cardiovascular disease.


Assuntos
Exossomos , Células-Tronco Pluripotentes Induzidas , Laminina , Humanos , Miócitos Cardíacos , Dióxido de Carbono , Células Endoteliais , Isquemia
11.
Lasers Med Sci ; 39(1): 119, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679671

RESUMO

Orofacial nerve injuries may result in temporary or long-term loss of sensory function and decreased quality of life in patients. B vitamins are required for DNA synthesis and the repair and maintenance of phospholipids. In particular, vitamins B1, B6, and B12 are essential for neuronal function. Deficiency in vitamin B complex (VBC) has been linked to increased oxidative stress, inflammation and demyelination. Photobiomodulation (PBM) has antioxidant activity and is neuroprotective. In addition, a growing literature attests to the positive effects of PBM on nerve repair. To assess the effect of PBM and VBC on regenerative process we evaluated the expression of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), myelin basic protein (MBP), laminin and neurofilaments (NFs) using Western blotting to identify regenerative pattern after chronic constriction injury of the infraorbital nerve (CCI IoN) treated by PBM, VBC or its combination. After CCI IoN, the rats were divided into six groups naive, sham, injured (CCI IoN), treated with photobiomodulation (904 nm, 6.23 J/cm2, CCI IoN + PBM), treated with VBC (containing B1, B6 and B12) 5 times, CCI IoN + VBC) and treated with PBM and VBC (CCI IoN + VBC + PBM). The treatments could revert low expression of BDNF, MBP and laminin. Also reverted the higher expression of neurofilaments and enhanced expression of NGF. PBM and VBC could accelerate injured infraorbital nerve repair in rats through reducing the expression of neurofilaments, increasing the expression of BDNF, laminin and MBP and overexpressing NGF. These data support the notion that the use of PBM and VBC may help in the treatment of nerve injuries. This finding has potential clinical applications.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Modelos Animais de Doenças , Terapia com Luz de Baixa Intensidade , Fator de Crescimento Neural , Regeneração Nervosa , Complexo Vitamínico B , Animais , Ratos , Regeneração Nervosa/efeitos da radiação , Terapia com Luz de Baixa Intensidade/métodos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator de Crescimento Neural/metabolismo , Masculino , Laminina/metabolismo , Traumatismos do Nervo Facial/radioterapia , Traumatismos do Nervo Facial/terapia , Ratos Wistar , Proteína Básica da Mielina/metabolismo
12.
Cancer Rep (Hoboken) ; 7(4): e2034, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38577721

RESUMO

BACKGROUND: Adhesion of cancer cells to extracellular matrix laminin through the integrin superfamily reportedly induces drug resistance. Heterodimers of integrin α6 (CD49f) with integrin ß1 (CD29) or ß4 (CD104) are major functional receptors for laminin. Higher CD49f expression is reportedly associated with a poorer response to induction therapy in childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Moreover, a xenograft mouse model transplanted with primary BCP-ALL cells revealed that neutralized antibody against CD49f improved survival after chemotherapy. AIMS: Considering the poor outcomes in Philadelphia chromosome (Ph)-positive ALL treated with conventional chemotherapy without tyrosine kinase inhibitors, we sought to investigate an involvement of the laminin adhesion. METHODS AND RESULTS: Ph-positive ALL cell lines expressed the highest levels of CD49f among the BCP-ALL cell lines with representative translocations, while CD29 and CD104 were ubiquitously expressed in BCP-ALL cell lines. The association of Ph-positive ALL with high levels of CD49f gene expression was also confirmed in two databases of childhood ALL cohorts. Ph-positive ALL cell lines attached to laminin and their laminin-binding properties were disrupted by blocking antibodies against CD49f and CD29 but not CD104. The cell surface expression of CD49f, but not CD29 and CD104, was downregulated by imatinib treatment in Ph-positive ALL cell lines, but not in their T315I-acquired sublines. Consistently, the laminin-binding properties were disrupted by the imatinib pre-treatment in the Ph-positive ALL cell line, but not in its T315I-acquired subline. CONCLUSION: BCR::ABL1 plays an essential role in the laminin adhesion of Ph-positive ALL cells through upregulation of CD49f.


Assuntos
Integrina alfa6 , Laminina , Leucemia-Linfoma Linfoblástico de Células Precursoras , Regulação para Cima , Animais , Humanos , Camundongos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Integrina alfa6/genética , Laminina/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
13.
J Transl Med ; 22(1): 391, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678297

RESUMO

BACKGROUND: Laminin subunit gamma-1 (LAMC1) is a major extracellular matrix molecule involved in the tumor microenvironment. Knowledge of the biological features and clinical relevance of LAMC1 in cancers remains limited. METHODS: We conducted comprehensive bioinformatics analysis of LAMC1 gene expression and clinical relevance in pan-cancer datasets of public databases and validated LAMC1 expression in glioma tissues and cell lines. The association and regulatory mechanism between hypoxia inducible factor-1α (HIF-1α) and LAMC1 expression were explored. RESULTS: LAMC1 expression in most cancers in The Cancer Genome Atlas (TCGA) including glioma was significantly higher than that in normal tissues, which had a poor prognosis and were related to various clinicopathological features. Data from the Chinese Glioma Genome Atlas also showed high expression of LAMC1 in glioma associated with poor prognoses. In clinical glioma tissues, LAMC1 protein was highly expressed and correlated to poor overall survival. LAMC1 knockdown in Hs683 glioma cells attenuated cell proliferation, migration, and invasion, while overexpression of LAMC1 in U251 cells leads to the opposite trend. Most TCGA solid cancers including glioma showed enhancement of HIF-1α expression. High HIF-1α expression leads to adverse prognosis in gliomas, besides, HIF-1α expression was positively related to LAMC1. Mechanistically, HIF-1α directly upregulated LAMC1 promotor activity. Hypoxia (2% O2)-treated Hs683 and U251 cells exhibited upregulated HIF-1α and LAMC1 expression, which was significantly attenuated by HIF-1α inhibitor YC-1 and accompanied by attenuated cell proliferation and invasion. CONCLUSIONS: High expression of LAMC1 in some solid tumors including gliomas suggests a poor prognosis. The hypoxic microenvironment in gliomas activates the HIF-1α/LAMC1 signaling, thereby promoting tumor progression. Targeted intervention on the HIF-1α/LAMC1 signaling attenuates cell growth and invasion, suggesting a new strategy for glioma treatment.


Assuntos
Regulação Neoplásica da Expressão Gênica , Glioma , Subunidade alfa do Fator 1 Induzível por Hipóxia , Laminina , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Prognóstico , Laminina/metabolismo , Laminina/genética , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Masculino , Reprodutibilidade dos Testes , Feminino , Movimento Celular/genética , Invasividade Neoplásica , Bases de Dados Genéticas , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/genética
14.
ACS Biomater Sci Eng ; 10(5): 3203-3217, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38557027

RESUMO

The intricate electrophysiological functions and anatomical structures of spinal cord tissue render the establishment of in vitro models for spinal cord-related diseases highly challenging. Currently, both in vivo and in vitro models for spinal cord-related diseases are still underdeveloped, complicating the exploration and development of effective therapeutic drugs or strategies. Organoids cultured from human induced pluripotent stem cells (hiPSCs) hold promise as suitable in vitro models for spinal cord-related diseases. However, the cultivation of spinal cord organoids predominantly relies on Matrigel, a matrix derived from murine sarcoma tissue. Tissue-specific extracellular matrices are key drivers of complex organ development, thus underscoring the urgent need to research safer and more physiologically relevant organoid culture materials. Herein, we have prepared a rat decellularized brain extracellular matrix hydrogel (DBECMH), which supports the formation of hiPSC-derived spinal cord organoids. Compared with Matrigel, organoids cultured in DBECMH exhibited higher expression levels of markers from multiple compartments of the natural spinal cord, facilitating the development and maturation of spinal cord organoid tissues. Our study suggests that DBECMH holds potential to replace Matrigel as the standard culture medium for human spinal cord organoids, thereby advancing the development of spinal cord organoid culture protocols and their application in in vitro modeling of spinal cord-related diseases.


Assuntos
Encéfalo , Hidrogéis , Células-Tronco Pluripotentes Induzidas , Organoides , Medula Espinal , Organoides/efeitos dos fármacos , Organoides/citologia , Organoides/metabolismo , Humanos , Animais , Medula Espinal/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Encéfalo/metabolismo , Ratos , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacologia , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Laminina/farmacologia , Laminina/química , Proteoglicanas/química , Ratos Sprague-Dawley , Combinação de Medicamentos , Colágeno
16.
Mol Ther ; 32(5): 1497-1509, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429928

RESUMO

The hallmark of epidermolysis bullosa (EB) is fragile attachment of epithelia due to genetic variants in cell adhesion genes. We describe 16 EB patients treated in the ear, nose, and throat department of a tertiary pediatric hospital linked to the United Kingdom's national EB unit between 1992 and 2023. Patients suffered a high degree of morbidity and mortality from laryngotracheal stenosis. Variants in laminin subunit alpha-3 (LAMA3) were found in 10/15 patients where genotype was available. LAMA3 encodes a subunit of the laminin-332 heterotrimeric extracellular matrix protein complex and is expressed by airway epithelial basal stem cells. We investigated the benefit of restoring wild-type LAMA3 expression in primary EB patient-derived basal cell cultures. EB basal cells demonstrated weak adhesion to cell culture substrates, but could otherwise be expanded similarly to non-EB basal cells. In vitro lentiviral overexpression of LAMA3A in EB basal cells enabled them to differentiate in air-liquid interface cultures, producing cilia with normal ciliary beat frequency. Moreover, transduction restored cell adhesion to levels comparable to a non-EB donor culture. These data provide proof of concept for a combined cell and gene therapy approach to treat airway disease in LAMA3-affected EB.


Assuntos
Adesão Celular , Epidermólise Bolhosa , Laminina , Lentivirus , Humanos , Laminina/metabolismo , Laminina/genética , Epidermólise Bolhosa/genética , Epidermólise Bolhosa/metabolismo , Epidermólise Bolhosa/terapia , Epidermólise Bolhosa/patologia , Criança , Lentivirus/genética , Masculino , Feminino , Pré-Escolar , Terapia Genética/métodos , Vetores Genéticos/genética , Células Epiteliais/metabolismo , Células Cultivadas , Expressão Gênica , Adolescente , Lactente
17.
Cells ; 13(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474393

RESUMO

CD40 induces pro-inflammatory responses in endothelial and Müller cells and is required for the development of diabetic retinopathy (DR). CD40 is upregulated in these cells in patients with DR. CD40 upregulation is a central feature of CD40-driven inflammatory disorders. What drives CD40 upregulation in the diabetic retina remains unknown. We examined the role of advanced glycation end products (AGEs) in CD40 upregulation in endothelial cells and Müller cells. Human endothelial cells and Müller cells were incubated with unmodified or methylglyoxal (MGO)-modified fibronectin. CD40 expression was assessed by flow cytometry. The expression of ICAM-1 and CCL2 was examined by flow cytometry or ELISA after stimulation with CD154 (CD40 ligand). The expression of carboxymethyl lysine (CML), fibronectin, and laminin as well as CD40 in endothelial and Müller cells from patients with DR was examined by confocal microscopy. Fibronectin modified by MGO upregulated CD40 in endothelial and Müller cells. CD40 upregulation was functionally relevant. MGO-modified fibronectin enhanced CD154-driven upregulation of ICAM-1 and CCL2 in endothelial and Müller cells. Increased CD40 expression in endothelial and Müller cells from patients with DR was associated with increased CML expression in fibronectin and laminin. These findings identify AGEs as inducers of CD40 upregulation in endothelial and Müller cells and enhancers of CD40-dependent pro-inflammatory responses. CD40 upregulation in these cells is associated with higher CML expression in fibronectin and laminin in patients with DR. This study revealed that CD40 and AGEs, two important drivers of DR, are interconnected.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Fibronectinas/metabolismo , Células Ependimogliais/metabolismo , Células Endoteliais/metabolismo , Óxido de Magnésio/metabolismo , Retina/metabolismo , Antígenos CD40/metabolismo , Ligante de CD40/metabolismo , Laminina/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Diabetes Mellitus/metabolismo
18.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474131

RESUMO

Mutations of PKD1 coding for polycystin-1 (PC1) account for most cases of autosomal-dominant polycystic kidney disease (ADPKD). The extracellular region of PC1 contains many evolutionarily conserved domains for ligand interactions. Among these are the leucine-rich repeats (LRRs) in the far N-terminus of PC1. Using zebrafish (Danio rerio) as an in vivo model system, we explored the role of LRRs in the function of PC1. Zebrafish expresses two human PKD1 paralogs, pkd1a and pkd1b. Knockdown of both genes in zebrafish by morpholino antisense oligonucleotides produced phenotypes of dorsal-axis curvature and pronephric cyst formation. We found that overexpression of LRRs suppressed both phenotypes in pkd1-morphant zebrafish. Purified recombinant LRR domain inhibited proliferation of HEK cells in culture and interacted with the heterotrimeric basement membrane protein laminin-511 (α5ß1γ1) in vitro. Mutations of amino acid residues in LRRs structurally predicted to bind laminin-511 disrupted LRR-laminin interaction in vitro and neutralized the ability of LRRs to inhibit cell proliferation and cystogenesis. Our data support the hypothesis that the extracellular region of PC1 plays a role in modulating PC1 interaction with the extracellular matrix and contributes to cystogenesis of PC1 deficiency.


Assuntos
Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Animais , Humanos , Rim Policístico Autossômico Dominante/genética , Peixe-Zebra/genética , Leucina/metabolismo , Canais de Cátion TRPP/metabolismo , Doenças Renais Policísticas/metabolismo , Laminina/metabolismo , Rim/metabolismo
19.
FASEB J ; 38(6): e23561, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38530321

RESUMO

Hypertrophic scarring is a major source of morbidity. Sex hormones are not classically considered modulators of scarring. However, based on increased frequency of hypertrophic scarring in patients on testosterone, we hypothesized that androgenic steroids induce abnormal scarring and developed a preclinical porcine model to explore these effects. Mini-swine underwent castration, received no testosterone (noT) or biweekly testosterone therapy (+T), and underwent excisional wounding. To create a delayed wound healing model, a subset of wounds were re-excised at 2 weeks. Scars from postoperative day 42 (POD42) and delayed wounds (POD28) were harvested 6 weeks after initial wounding for analysis via histology, bulk RNA-seq, and mechanical testing. Histologic analysis of scars from +T animals showed increased mean fibrosis area (16 mm2noT, 28 mm2+T; p = .007) and thickness (0.246 mm2noT, 0.406 mm2+T; p < .001) compared to noT. XX+T and XY+T scars had greater tensile burst strength (p = .024 and p = .013, respectively) compared to noT swine. Color deconvolution analysis revealed greater deposition of type I and type III collagen as well as increased collagen type I:III ratio in +T scars. Dermatopathologist histology scoring showed that +T exposure was associated with worse overall scarring (p < .05). Gene ontology analysis found that testosterone exposure was associated with upregulation of cellular metabolism and immune response gene sets, while testosterone upregulated pathways related to keratinization and laminin formation on pathway analysis. In conclusion, we developed a preclinical porcine model to study the effects of the sex hormone testosterone on scarring. Testosterone induces increased scar tissue deposition and appears to increase physical strength of scars via supraphysiologic deposition of collagen and other ECM factors. The increased burst strength seen in both XX and XY animals suggests that hormone administration has a strong influence on scar mechanical properties independent of chromosomal sex. Anti-androgen topical therapies may be a promising future area of research.


Assuntos
Cicatriz Hipertrófica , Humanos , Suínos , Animais , Matriz Extracelular , Testosterona/farmacologia , Colágeno Tipo I , Laminina
20.
Redox Biol ; 71: 103102, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430684

RESUMO

Peroxidasin (PXDN) is a secreted heme peroxidase that catalyzes the oxidative crosslinking of collagen IV within the extracellular matrix (ECM) via intermediate hypobromous acid (HOBr) synthesis from hydrogen peroxide and bromide, but recent findings have also suggested alternative ECM protein modifications by PXDN, including incorporation of bromide into tyrosine residues. In this work, we sought to identify the major target proteins for tyrosine bromination by HOBr or by PXDN-mediated oxidation in ECM from mouse teratocarcinoma PFHR9 cells. We detected 61 bromotyrosine (BrY)-containing peptides representing 23 proteins in HOBr-modified ECM from PFHR9 cells, among which laminins displayed the most prominent bromotyrosine incorporation. Moreover, we also found that laminin α1, laminin ß1, and tubulointerstitial nephritis antigen-like (TINAGL1) contained BrY in untreated PFHR9 cells, which depended on PXDN. We extended these analyses to lung tissues from both healthy mice and mice with experimental lung fibrosis, and in lung tissues obtained from human subjects. Analysis of ECM-enriched mouse lung tissue extracts showed that 83 ECM proteins were elevated in bleomycin-induced fibrosis, which included various collagens and laminins, and PXDN. Similarly, mRNA and protein expression of PXDN and laminin α/ß1 were enhanced in fibrotic mouse lung tissues, and also in mouse bone-marrow-derived macrophages or human fibroblasts stimulated with transforming growth factor ß1, a profibrotic growth factor. We identified 11 BrY-containing ECM proteins, including collagen IV α2, collagen VI α1, TINAGL1, and various laminins, in both healthy and mouse fibrotic lung tissues, although the relative extent of tyrosine bromination of laminins was not significantly increased during fibrosis. Finally, we also identified 7 BrY-containing ECM proteins in human lung tissues, again including collagen IV α2, collagen VI α1, and TINAGL1. Altogether, this work demonstrates the presence of several bromotyrosine-modified ECM proteins, likely involving PXDN, even in normal lung tissues, suggesting a potential biological function for these modifications.


Assuntos
Bromatos , Proteínas da Matriz Extracelular , Fibrose Pulmonar , Humanos , Animais , Camundongos , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Brometos/efeitos adversos , Brometos/metabolismo , Laminina/genética , Laminina/metabolismo , Matriz Extracelular/metabolismo , Pulmão/metabolismo , Peroxidasina , Colágeno Tipo IV/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...