Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.487
Filtrar
1.
Sci Rep ; 14(1): 12917, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839811

RESUMO

Allii Macrostemonis Bulbus (AMB) is a traditional Chinese medicine with medicinal and food homology. AMB has various biological activities, including anti-coagulation, lipid-lowering, anti-tumor, and antioxidant effects. Saponins from Allium macrostemonis Bulbus (SAMB), the predominant beneficial compounds, also exhibited lipid-lowering and anti-inflammatory properties. However, the effect of SAMB on atherosclerosis and the underlying mechanisms are still unclear. This study aimed to elucidate the pharmacological impact of SAMB on atherosclerosis. In apolipoprotein E deficiency (ApoE-/-) mice with high-fat diet feeding, oral SAMB administration significantly attenuated inflammation and atherosclerosis plaque formation. The in vitro experiments demonstrated that SAMB effectively suppressed oxidized-LDL-induced foam cell formation by down-regulating CD36 expression, thereby inhibiting lipid endocytosis in bone marrow-derived macrophages. Additionally, SAMB effectively blocked LPS-induced inflammatory response in bone marrow-derived macrophages potentially through modulating the NF-κB/NLRP3 pathway. In conclusion, SAMB exhibits a potential anti-atherosclerotic effect by inhibiting macrophage foam cell formation and inflammation. These findings provide novel insights into potential preventive and therapeutic strategies for the clinical management of atherosclerosis.


Assuntos
Aterosclerose , Células Espumosas , Inflamação , Saponinas , Animais , Células Espumosas/efeitos dos fármacos , Células Espumosas/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Saponinas/farmacologia , Camundongos , Inflamação/tratamento farmacológico , Inflamação/patologia , Allium/química , Masculino , Apolipoproteínas E/deficiência , Dieta Hiperlipídica/efeitos adversos , NF-kappa B/metabolismo , Camundongos Endogâmicos C57BL , Lipoproteínas LDL/metabolismo
2.
Sci Rep ; 14(1): 13831, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879647

RESUMO

Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells (ECs) that play an important role in liver development and regeneration. Additionally, it is involved in various pathological processes, including steatosis, inflammation, fibrosis and hepatocellular carcinoma. However, the rapid dedifferentiation of LSECs after culture greatly limits their use in vitro modeling for biomedical applications. In this study, we developed a highly efficient protocol to induce LSEC-like cells from human induced pluripotent stem cells (hiPSCs) in only 8 days. Using single-cell transcriptomic analysis, we identified several novel LSEC-specific markers, such as EPAS1, LIFR, and NID1, as well as several previously revealed markers, such as CLEC4M, CLEC1B, CRHBP and FCN3. These LSEC markers are specifically expressed in our LSEC-like cells. Furthermore, hiPSC-derived cells expressed LSEC-specific proteins and exhibited LSEC-related functions, such as the uptake of acetylated low density lipoprotein (ac-LDL) and immune complex endocytosis. Overall, this study confirmed that our novel protocol allowed hiPSCs to rapidly acquire an LSEC-like phenotype and function in vitro. The ability to generate LSECs efficiently and rapidly may help to more precisely mimic liver development and disease progression in a liver-specific multicellular microenvironment, offering new insights into the development of novel therapeutic strategies.


Assuntos
Diferenciação Celular , Células Endoteliais , Células-Tronco Pluripotentes Induzidas , Fígado , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Fígado/metabolismo , Fígado/citologia , Análise de Célula Única/métodos , Células Cultivadas , Biomarcadores/metabolismo , Lipoproteínas LDL/metabolismo , Perfilação da Expressão Gênica
3.
Mol Med ; 30(1): 76, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840067

RESUMO

BACKGROUND: Advanced glycation end product-modified low-density lipoprotein (AGE-LDL) is related to inflammation and the development of atherosclerosis. Additionally, it has been demonstrated that receptor for advanced glycation end products (RAGE) has a role in the condition known as calcific aortic valve disease (CAVD). Here, we hypothesized that the AGE-LDL/RAGE axis could also be involved in the pathophysiological mechanism of CAVD. METHODS: Human aortic valve interstitial cells (HAVICs) were stimulated with AGE-LDL following pre-treatment with or without interleukin 37 (IL-37). Low-density lipoprotein receptor deletion (Ldlr-/-) hamsters were randomly allocated to chow diet (CD) group and high carbohydrate and high fat diet (HCHFD) group. RESULTS: AGE-LDL levels were significantly elevated in patients with CAVD and in a hamster model of aortic valve calcification. Our in vitro data further demonstrated that AGE-LDL augmented the expression of intercellular cell adhesion molecule-1 (ICAM-1), interleukin-6 (IL-6) and alkaline phosphatase (ALP) in a dose-dependent manner through NF-κB activation, which was attenuated by nuclear factor kappa-B (NF-κB) inhibitor Bay11-7082. The expression of RAGE was augmented in calcified aortic valves, and knockdown of RAGE in HAVICs attenuated the AGE-LDL-induced inflammatory and osteogenic responses as well as NF-κB activation. IL-37 suppressed inflammatory and osteogenic responses and NF-κB activation in HAVICs. The vivo experiment also demonstrate that supplementation with IL-37 inhibited valvular inflammatory response and thereby suppressed valvular osteogenic activities. CONCLUSIONS: AGE-LDL promoted inflammatory responses and osteogenic differentiation through RAGE/NF-κB pathway in vitro and aortic valve lesions in vivo. IL-37 suppressed the AGE-LDL-induced inflammatory and osteogenic responses in vitro and attenuated aortic valve lesions in a hamster model of CAVD.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica , Calcinose , Produtos Finais de Glicação Avançada , Lipoproteínas LDL , NF-kappa B , Osteogênese , Receptor para Produtos Finais de Glicação Avançada , Transdução de Sinais , Animais , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Produtos Finais de Glicação Avançada/metabolismo , NF-kappa B/metabolismo , Humanos , Calcinose/metabolismo , Calcinose/patologia , Calcinose/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/etiologia , Estenose da Valva Aórtica/patologia , Cricetinae , Osteogênese/efeitos dos fármacos , Masculino , Lipoproteínas LDL/metabolismo , Modelos Animais de Doenças , Feminino , Pessoa de Meia-Idade , Proteínas Glicadas
4.
PLoS One ; 19(6): e0298610, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38870109

RESUMO

SUMMARY: Utilizing the Mendelian randomization technique, this research clarifies the putative causal relationship between body mass index (BMI) andbone mineral density (BMD), and the mediating role of low-density lipoprotein (LDL). The implications of these findings present promising opportunities for enhancing our understanding of complex bone-related characteristics and disorders, offering potential directions for treatment and intervention. OBJECTIVE: The objective of this study is to examine the correlation between BMI and BMD, while exploring the intermediary role of LDL in mediating the causal impact of BMI on BMD outcomes via Mendelian randomization. METHODS: In this study, we employed genome-wide association study (GWAS) data on BMI, LDL, and BMD to conduct a comparative analysis using both univariate and multivariate Mendelian randomization. RESULTS: Our study employed a two-sample Mendelian randomization design. Considering BMI as the exposure and BMD as the outcome, our results suggest that BMI may function as a potential protective factor for BMD (ß = 0.05, 95% CI 1.01 to 1.09, P = 0.01). However, when treating LDL as the exposure and BMD as the outcome, our findings indicate LDL as a risk factor for BMD (ß = -0.04, 95% CI 0.92 to 0.99, P = 0.04). In our multivariate Mendelian randomization (MVMR) model, the combined influence of BMI and LDL was used as the exposure for BMD outcomes. The analysis pointed towards a substantial protective effect of LDL on BMD (ß = 0.08, 95% CI 0.85 to 0.97, P = 0.006). In the analysis of mediation effects, LDL was found to mediate the relationship between BMI and BMD, and the effect was calculated at (ß = 0.05, 95% CI 1.052 to 1.048, P = 0.04). CONCLUSION: Our findings suggest that BMI may be considered a protective factor for BMD, while LDL may act as a risk factor. Moreover, LDL appears to play a mediatory role in the causal influence of BMI on BMD.


Assuntos
Índice de Massa Corporal , Densidade Óssea , Estudo de Associação Genômica Ampla , Lipoproteínas LDL , Análise da Randomização Mendeliana , Humanos , Densidade Óssea/genética , Lipoproteínas LDL/sangue , Polimorfismo de Nucleotídeo Único , Feminino
5.
Mol Med Rep ; 30(2)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38873985

RESUMO

Macrophage pyroptosis mediates vascular inflammation and atherosclerosis (AS). Hydrogen sulfide (H2S) exerts a protective role in preventing inflammation and AS. However, its molecular mechanisms of regulating the pyroptosis signaling pathway and inhibiting macrophage pyroptosis remain unexplored. The present study aimed to determine whether H2S mitigates macrophage pyroptosis by downregulating the pyroptosis signaling pathway and S­sulfhydrating caspase­1 under the stimulation of oxidized low­density lipoprotein (ox­LDL), a pro­atherosclerotic factor. Macrophages derived from THP­1 monocytes were pre­treated using exogenous H2S donors sodium hydrosulfide (NaHS) and D,L­propargylglycine (PAG), a pharmacological inhibitor of endogenous H2S­producing enzymes, alone or in combination. Subsequently, cells were stimulated with ox­LDL or the desulfhydration reagent dithiothreitol (DTT) in the presence or absence of NaHS and/or PAG. Following treatment, the levels of H2S in THP­1 derived macrophages were measured by a methylene blue colorimetric assay. The pyroptotic phenotype of THP­1 cells was observed and evaluated by light microscopy, Hoechst 33342/propidium iodide fluorescent staining and lactate dehydrogenase (LDH) release assay. Caspase­1 activity in THP­1 cells was assayed by caspase­1 activity assay kit. Immunofluorescence staining was used to assess the accumulation of active caspase­1. Western blotting and ELISA were performed to determine the expression of pyroptosis­specific markers (NLRP3, pro­caspase­1, caspase­1, GSDMD and GSDMD­N) in cells and the secretion of pyroptosis­related cytokines [interleukin (IL)­1ß and IL­18] in the cell­free media, respectively. The S­sulfhydration of pro­caspase­1 in cells was assessed using a biotin switch assay. ox­LDL significantly induced macrophage pyroptosis by activating the pyroptosis signaling pathway. Inhibition of endogenous H2S synthesis by PAG augmented the pro­pyroptotic effects of ox­LDL. Conversely, exogenous H2S (NaHS) ameliorated ox­LDL­and ox­LDL + PAG­induced macrophage pyroptosis by suppressing the activation of the pyroptosis signaling pathway. Mechanistically, ox­LDL and the DTT increased caspase­1 activity and downstream events (IL­1ß and IL­18 secretion) of the caspase­1­dependent pyroptosis pathway by reducing S­sulfhydration of pro­caspase­1. Conversely, NaHS increased S­sulfhydration of pro­caspase­1, reducing caspase­1 activity and caspase­1­dependent macrophage pyroptosis. The present study demonstrated the molecular mechanism by which H2S ameliorates macrophage pyroptosis by suppressing the pyroptosis signaling pathway and S­sulfhydration of pro­caspase­1, thereby suppressing the generation of active caspase-1 and activity of caspase-1.


Assuntos
Caspase 1 , Sulfeto de Hidrogênio , Lipoproteínas LDL , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas de Ligação a Fosfato , Piroptose , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Piroptose/efeitos dos fármacos , Humanos , Caspase 1/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacologia , Proteínas de Ligação a Fosfato/metabolismo , Células THP-1 , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Gasderminas , Alcinos , Glicina/análogos & derivados , Sulfetos
6.
Int J Immunopathol Pharmacol ; 38: 3946320241254083, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38869980

RESUMO

INTRODUCTION: Corilagin possesses a diverse range of pharmacologic bioactivities. However, the specific protective effects and mechanisms of action of corilagin in the context of atherosclerosis remain unclear. In this study, we investigated the impact of corilagin on the toll-like receptor (TLR)4 signaling pathway in a mouse vascular smooth muscle cell line (MOVAS) stimulated by oxidized low-density lipoprotein (ox-LDL). Additionally, we examined the effects of corilagin in Sprague-Dawley rats experiencing atherosclerosis. METHODS: The cytotoxicity of corilagin was assessed using the CCK8 assay. MOVAS cells, pre-incubated with ox-LDL, underwent treatment with varying concentrations of corilagin. TLR4 expression was modulated by either downregulation through small interfering (si)RNA or upregulation via lentivirus transfection. Molecular expression within the TLR4 signaling pathway was analyzed using real-time polymerase chain reaction (PCR) and Western blotting. The proliferation capacity of MOVAS cells was determined through cell counting. In a rat model, atherosclerosis was induced in femoral arteries using an improved guidewire injury method, and TLR4 expression in plaque areas was assessed using immunofluorescence. Pathological changes were examined through hematoxylin and eosin staining, as well as Oil-Red-O staining. RESULTS: Corilagin demonstrated inhibitory effects on the TLR4 signaling pathway in MOVAS cells pre-stimulated with ox-LDL, consequently impeding the proliferative impact of ox-LDL. The modulation of TLR4 expression, either through downregulation or upregulation, similarly influenced the expression of downstream molecules. In an in vivo context, corilagin exhibited the ability to suppress TLR4 and MyD88 expression in the plaque lesion areas of rat femoral arteries, thereby alleviating the formation of atherosclerotic plaques. CONCLUSION: Corilagin can inhibit the TLR4 signaling pathway in VSMCs, possibly by downregulating TLR4 expression and, consequently, relieving atherosclerosis.


Assuntos
Aterosclerose , Glucosídeos , Taninos Hidrolisáveis , Lipoproteínas LDL , Músculo Liso Vascular , Ratos Sprague-Dawley , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Taninos Hidrolisáveis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Aterosclerose/patologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Lipoproteínas LDL/metabolismo , Masculino , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Camundongos , Linhagem Celular , Ratos , Proliferação de Células/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Modelos Animais de Doenças , Fator 88 de Diferenciação Mieloide/metabolismo
7.
Carbohydr Polym ; 340: 122289, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38858004

RESUMO

Allium Macrostemon Bge. (AMB) is a well-known homology of herbal medicine and food that has been extensively used for thousands of years to alleviate cardiovascular diseases. It contains a significant amount of polysaccharides, yet limited research exists on whether these polysaccharides are responsible for its cardiovascular protective effects. In this study, the anti-atherosclerosis effect of the crude polysaccharides of AMB (AMBP) was evaluated using ApoE-/- mice fed a high-fat diet, along with ox-LDL-induced Thp-1 foam cells. Subsequently, guided by the inhibitory activity of foam cells formation, a major homogeneous polysaccharide named AMBP80-1a was isolated and purified, yielding 11.1 % from AMB. The molecular weight of AMBP80-1a was determined to be 10.01 kDa. AMBP80-1a was firstly characterized as an agavin-type fructan with main chains consisting of →1)-ß-d-Fruf-(2→ and →1,6)-ß-d-Fruf-(2→ linked to an internal glucose moiety, with →6)-ß-d-Fruf-(2→ and ß-d-Fruf-(2→ serving as side chains. Furthermore, the bio-activity results indicated that AMBP80-1a reduced lipid accumulation and cholesterol contents in ox-LDL-induced Thp-1 foam cell. These findings supported the role of AMBP in alleviating atherosclerosis in vivo/vitro. AMBP80-1a, as the predominant homogeneous polysaccharide in AMB, was expected to be developed as a functional agent to prevent atherosclerosis.


Assuntos
Allium , Aterosclerose , Frutanos , Aterosclerose/tratamento farmacológico , Animais , Frutanos/farmacologia , Frutanos/química , Camundongos , Allium/química , Humanos , Masculino , Células Espumosas/efeitos dos fármacos , Células Espumosas/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Lipoproteínas LDL/metabolismo , Células THP-1 , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética
8.
Int J Mol Sci ; 25(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38732266

RESUMO

Metabolic syndrome (MS) is a widespread disease in developed countries, accompanied, among others, by decreased adiponectin serum levels and perturbed lipoprotein metabolism. The associations between the serum levels of adiponectin and lipoproteins have been extensively studied in the past under healthy conditions, yet it remains unexplored whether the observed associations also exist in patients with MS. Therefore, in the present study, we analyzed the serum levels of lipoprotein subclasses using nuclear magnetic resonance spectroscopy and examined their associations with the serum levels of adiponectin in patients with MS in comparison with healthy volunteers (HVs). In the HVs, the serum levels of adiponectin were significantly negatively correlated with the serum levels of large buoyant-, very-low-density lipoprotein, and intermediate-density lipoprotein, as well as small dense low-density lipoprotein (LDL) and significantly positively correlated with large buoyant high-density lipoprotein (HDL). In patients with MS, however, adiponectin was only significantly correlated with the serum levels of phospholipids in total HDL and large buoyant LDL. As revealed through logistic regression and orthogonal partial least-squares discriminant analyses, high adiponectin serum levels were associated with low levels of small dense LDL and high levels of large buoyant HDL in the HVs as well as high levels of large buoyant LDL and total HDL in patients with MS. We conclude that the presence of MS weakens or abolishes the strong associations between adiponectin and the lipoprotein parameters observed in HVs and disturbs the complex interplay between adiponectin and lipoprotein metabolism.


Assuntos
Adiponectina , Lipoproteínas , Síndrome Metabólica , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adiponectina/sangue , Estudos de Casos e Controles , Voluntários Saudáveis , Lipoproteínas/sangue , Lipoproteínas HDL/sangue , Lipoproteínas LDL/sangue , Espectroscopia de Ressonância Magnética , Síndrome Metabólica/sangue
9.
Int J Mol Sci ; 25(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38791598

RESUMO

CIGB-258, a 3 kDa peptide from heat shock protein 60, exhibits synergistic anti-inflammatory activity with apolipoprotein A-I (apoA-I) in reconstituted high-density lipoproteins (rHDLs) via stabilization of the rHDL structure. This study explored the interactions between CIGB-258 and apoA-I in the lipid-free state to assess their synergistic effects in the structural and functional enhancement of apoA-I and HDL. A co-treatment of lipid-free apoA-I and CIGB-258 inhibited the cupric ion-mediated oxidation of low-density lipoprotein (LDL) and a lowering of oxidized species in the dose-responsive manner of CIGB-258. The co-presence of CIGB-258 caused a blue shift in the wavelength of maximum fluorescence (WMF) of apoA-I with protection from proteolytic degradation. The addition of apoA-I:CIGB-258, with a molar ratio of 1:0.1, 1:0.5, and 1:1, to HDL2 and HDL3 remarkably enhanced the antioxidant ability against LDL oxidation up to two-fold higher than HDL alone. HDL-associated paraoxonase activities were elevated up to 28% by the co-addition of apoA-I and CIGB-258, which is linked to the suppression of Cu2+-mediated HDL oxidation with the slowest electromobility. Isothermal denaturation by a urea treatment showed that the co-presence of CIGB-258 attenuated the exposure of intrinsic tryptophan (Trp) and increased the mid-points of denaturation from 2.33 M for apoA-I alone to 2.57 M for an apoA-I:CIGB-258 mixture with a molar ratio of 1:0.5. The addition of CIGB-258 to apoA-I protected the carboxymethyllysine (CML)-facilitated glycation of apoA-I with the prevention of Trp exposure. A co-treatment of apoA-I and CIGB-258 synergistically safeguarded zebrafish embryos from acute death by CML-toxicity, suppressing oxidative stress and apoptosis. In adult zebrafish, the co-treatment of apoA-I+CIGB-258 exerted the highest anti-inflammatory activity with a higher recovery of swimming ability and survivability than apoA-I alone or CIGB-258 alone. A co-injection of apoA-I and CIGB-258 led to the lowest infiltration of neutrophils and interleukin (IL)-6 generation in hepatic tissue, with the lowest serum triglyceride, aspartate transaminase, and alanine transaminase levels in plasma. In conclusion, the co-presence of CIGB-258 ameliorated the beneficial functionalities of apoA-I, such as antioxidant and anti-glycation activities, by enhancing the structural stabilization and protection of apoA-I. The combination of apoA-I and CIGB-258 synergistically enforced the anti-inflammatory effect against CML toxicity in embryos and adult zebrafish.


Assuntos
Anti-Inflamatórios , Antioxidantes , Apolipoproteína A-I , Lipoproteínas HDL , Peixe-Zebra , Apolipoproteína A-I/metabolismo , Apolipoproteína A-I/química , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL/química , Lipoproteínas LDL/metabolismo , Oxirredução/efeitos dos fármacos , Sinergismo Farmacológico
10.
Nutrients ; 16(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732567

RESUMO

Imbalances in lipid uptake and efflux and inflammation are major contributors to foam cell formation, which is considered a therapeutic target to protect against atherosclerosis. Naringin, a citrus flavonoid abundant in citrus fruits, has been reported to exert an antiatherogenic function, but its pharmacological mechanism is unclear. Naringin treatment effectively inhibits foam cell formation in THP-1 and RAW264.7 macrophages. In this study, mechanically, naringin maintained lipid homeostasis within macrophages through downregulation of the key genes for lipid uptake (MSR1 and CD36) and the upregulation of ABCA1, ABCG1 and SR-B1, which are responsible for cholesterol efflux. Meanwhile, naringin significantly decreased the cholesterol synthesis-related genes and increased the genes involved in cholesterol metabolism. Subsequently, the results showed that ox-LDL-induced macrophage inflammatory responses were inhibited by naringin by reducing the proinflammatory cytokines IL-1ß, IL-6 and TNF-α, and increasing the anti- inflammatory cytokine IL-10, which was further verified by the downregulation of pro-inflammatory and chemokine-related genes. Additionally, we found that naringin reprogrammed the metabolic phenotypes of macrophages by suppressing glycolysis and promoting lipid oxidation metabolism to restore macrophage phenotypes and functions. These results suggest that naringin is a potential drug for the treatment of AS as it inhibits macrophage foam cell formation by regulating metabolic phenotypes and inflammation.


Assuntos
Flavanonas , Células Espumosas , Homeostase , Metabolismo dos Lipídeos , Fenótipo , Células Espumosas/efeitos dos fármacos , Células Espumosas/metabolismo , Flavanonas/farmacologia , Camundongos , Metabolismo dos Lipídeos/efeitos dos fármacos , Animais , Humanos , Homeostase/efeitos dos fármacos , Células RAW 264.7 , Citocinas/metabolismo , Colesterol/metabolismo , Células THP-1 , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Lipoproteínas LDL/metabolismo , Inflamação/metabolismo , Inflamação/tratamento farmacológico
11.
Medicina (Kaunas) ; 60(5)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38792880

RESUMO

Background and Objectives: Peripheral arterial stiffness (PAS), assessed by brachial-ankle pulse wave velocity (baPWV), is an independent biomarker of cardiovascular diseases (CVD) in patients on maintenance hemodialysis (HD). Malondialdehyde-modified low-density lipoprotein (MDA-LDL), an oxidative stress marker, has been linked to atherosclerosis and CVD. However, the association between serum MDA-LDL and PAS among HD patients has not been fully elucidated. This study aimed to examine the association of serum MDA-LDL with PAS in HD patients and to identify the optimal cutoff value of serum MDA-LDL for predicting PAS. Materials and Methods: A cross-sectional study was conducted in 100 HD patients. Serum MDA-LDL was quantified using an enzyme-linked immunosorbent assay (ELISA), and baPWV was measured using a volume plethysmographic device. Patients were divided into the PAS group (baPWV > 18.0 m/s) and the non-PAS group (baPWV ≤ 18.0 m/s). The associations of baPWV and other clinical and biochemical parameters with serum MDA-LDL were assessed by multivariable logistic regression analyses. A receiver operating characteristic (ROC) curve analysis was performed to determine the optimal cutoff value of serum MDA-LDL for predicting PAS. Results: In multivariable logistic regression analysis, higher serum MDA-LDL, older age, and higher serum C-reactive protein [odds ratios (ORs) and 95% confidence intervals: 1.014 (1.004-1.025), 1.044 (1.004-1.085) and 3.697 (1.149-11.893)] were significantly associated with PAS. In the ROC curve analysis, the optimal cutoff value of MDA-LDL for predicting PAS was 80.91 mg/dL, with a sensitivity of 79.25% and a specificity of 59.57%. Conclusions: Greater serum MDA-LDL levels, particularly ≥80.91 mg/dL, were independently associated with PAS in HD patients. The findings suggest that oxidative stress plays a crucial role in the pathogenesis of PAS, and targeting MDA-LDL may be a potential therapeutic strategy for reducing cardiovascular risk in HD patients.


Assuntos
Biomarcadores , Lipoproteínas LDL , Malondialdeído , Diálise Renal , Rigidez Vascular , Humanos , Masculino , Feminino , Diálise Renal/efeitos adversos , Diálise Renal/métodos , Rigidez Vascular/fisiologia , Pessoa de Meia-Idade , Estudos Transversais , Malondialdeído/sangue , Biomarcadores/sangue , Lipoproteínas LDL/sangue , Idoso , Análise de Onda de Pulso/métodos , Índice Tornozelo-Braço/métodos , Curva ROC , Fatores de Risco , Modelos Logísticos , Adulto , Estresse Oxidativo/fisiologia
12.
FASEB J ; 38(10): e23678, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38780199

RESUMO

Melatonin (MLT), a conserved small indole compound, exhibits anti-inflammatory and antioxidant properties, contributing to its cardioprotective effects. Lipoprotein-associated phospholipase A2 (Lp-PLA2) is associated with atherosclerosis disease risk, and is known as an atherosclerosis risk biomarker. This study aimed to investigate the impact of MLT on Lp-PLA2 expression in the atherosclerotic process and explore the underlying mechanisms involved. In vivo, ApoE-/- mice were fed a high-fat diet, with or without MLT administration, after which the plaque area and collagen content were assessed. Macrophages were pretreated with MLT combined with ox-LDL, and the levels of ferroptosis-related proteins, NRF2 activation, mitochondrial function, and oxidative stress were measured. MLT administration significantly attenuated atherosclerotic plaque progression, as evidenced by decreased plaque area and increased collagen. Compared with those in the high-fat diet (HD) group, the levels of glutathione peroxidase 4 (GPX4) and SLC7A11 (xCT, a cystine/glutamate transporter) in atherosclerotic root macrophages were significantly increased in the MLT group. In vitro, MLT activated the nuclear factor-E2-related Factor 2 (NRF2)/SLC7A11/GPX4 signaling pathway, enhancing antioxidant capacity while reducing lipid peroxidation and suppressing Lp-PLA2 expression in macrophages. Moreover, MLT reversed ox-LDL-induced ferroptosis, through the use of ferrostatin-1 (a ferroptosis inhibitor) and/or erastin (a ferroptosis activator). Furthermore, the protective effects of MLT on Lp-PLA2 expression, antioxidant capacity, lipid peroxidation, and ferroptosis were decreased in ML385 (a specific NRF2 inhibitor)-treated macrophages and in AAV-sh-NRF2 treated ApoE-/- mice. MLT suppresses Lp-PLA2 expression and atherosclerosis processes by inhibiting macrophage ferroptosis and partially activating the NRF2 pathway.


Assuntos
Aterosclerose , Ferroptose , Melatonina , Fator 2 Relacionado a NF-E2 , Animais , Ferroptose/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Melatonina/farmacologia , Camundongos , Aterosclerose/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Aterosclerose/patologia , Masculino , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Dieta Hiperlipídica/efeitos adversos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Lipoproteínas LDL/metabolismo , Antioxidantes/farmacologia
13.
Int J Mol Sci ; 25(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38791315

RESUMO

LOX-1, ORL-1, or lectin-like oxidized low-density lipoprotein receptor 1 is a transmembrane glycoprotein that binds and internalizes ox-LDL in foam cells. LOX-1 is the main receptor for oxidized low-density lipoproteins (ox-LDL). The LDL comes from food intake and circulates through the bloodstream. LOX-1 belongs to scavenger receptors (SR), which are associated with various cardiovascular diseases. The most important and severe of these is the formation of atherosclerotic plaques in the intimal layer of the endothelium. These plaques can evolve into complicated thrombi with the participation of fibroblasts, activated platelets, apoptotic muscle cells, and macrophages transformed into foam cells. This process causes changes in vascular endothelial homeostasis, leading to partial or total obstruction in the lumen of blood vessels. This obstruction can result in oxygen deprivation to the heart. Recently, LOX-1 has been involved in other pathologies, such as obesity and diabetes mellitus. However, the development of atherosclerosis has been the most relevant due to its relationship with cerebrovascular accidents and heart attacks. In this review, we will summarize findings related to the physiologic and pathophysiological processes of LOX-1 to support the detection, diagnosis, and prevention of those diseases.


Assuntos
Doenças Cardiovasculares , Receptores Depuradores Classe E , Humanos , Receptores Depuradores Classe E/metabolismo , Receptores Depuradores Classe E/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/etiologia , Animais , Lipoproteínas LDL/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia
14.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791535

RESUMO

Hypercholesterolemia-associated oxidative stress increases the formation of oxidized low-density lipoprotein (oxLDL), which can affect endothelial cell function and potentially contribute to renal dysfunction, as reflected by changes in urinary protein excretion. This study aimed to investigate the impact of exogenous oxLDL on urinary excretion of albumin and nephrin. LDL was isolated from a patient with familial hypercholesterolemia (FH) undergoing lipoprotein apheresis (LA) and was oxidized in vitro with Cu (II) ions. Biochemical markers of LDL oxidation, such as TBARS, conjugated dienes, and free ε-amino groups, were measured. Wistar rats were treated with a single intraperitoneal injection of PBS, LDL, or oxLDL (4 mg of protein/kg b.w.). Urine was collected one day before and two days after the injection. We measured blood lipid profiles, urinary protein excretion (specifically albumin and nephrin), and markers of systemic oxidative stress (8-OHdG and 8-iso-PGF2α). The results showed that injection of oxLDL increased urinary albumin excretion by approximately 28% (310 ± 27 µg/24 h vs. 396 ± 26 µg/24 h, p = 0.0003) but had no effect on nephrin excretion. Neither PBS nor LDL had any effect on urinary albumin or nephrin excretion. Additionally, oxLDL did not affect systemic oxidative stress. In conclusion, hypercholesterolemia may adversely affect renal function through oxidatively modified LDL, which interferes with the renal handling of albumin and leads to the development of albuminuria.


Assuntos
Albuminúria , Lipoproteínas LDL , Estresse Oxidativo , Ratos Wistar , Lipoproteínas LDL/sangue , Lipoproteínas LDL/metabolismo , Animais , Humanos , Ratos , Albuminúria/urina , Masculino , Oxirredução , Proteínas de Membrana/metabolismo , Hiperlipoproteinemia Tipo II/metabolismo , Hiperlipoproteinemia Tipo II/urina
15.
BMC Cardiovasc Disord ; 24(1): 289, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822281

RESUMO

LY86, also known as MD1, has been implicated in various pathophysiological processes including inflammation, obesity, insulin resistance, and immunoregulation. However, the role of LY86 in cholesterol metabolism remains incompletely understood. Several studies have reported significant up-regulation of LY86 mRNA in atherosclerosis; nevertheless, the regulatory mechanism by which LY86 is involved in this disease remains unclear. In this study, we aimed to investigate whether LY86 affects ox-LDL-induced lipid accumulation in macrophages. Firstly, we confirmed that LY86 is indeed involved in the process of atherosclerosis and found high expression levels of LY86 in human atherosclerotic plaque tissue. Furthermore, our findings suggest that LY86 may mediate intracellular lipid accumulation induced by ox-LDL through the SREBP2/HMGCR pathway. This mechanism could be associated with increased cholesterol synthesis resulting from enhanced endoplasmic reticulum stress response.


Assuntos
Aterosclerose , Estresse do Retículo Endoplasmático , Hidroximetilglutaril-CoA Redutases , Lipoproteínas LDL , Macrófagos , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 2 , Regulação para Cima , Humanos , Lipoproteínas LDL/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Hidroximetilglutaril-CoA Redutases/metabolismo , Hidroximetilglutaril-CoA Redutases/genética , Placa Aterosclerótica , Células THP-1 , Masculino , Animais , Metabolismo dos Lipídeos/efeitos dos fármacos , Colesterol/metabolismo
16.
Math Biosci ; 373: 109208, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759951

RESUMO

Atherosclerosis is a chronic disease of the arteries characterised by the accumulation of lipids and lipid-engorged cells in the artery wall. Early plaque growth is aggravated by the deposition of low density lipoproteins (LDL) in the wall and the subsequent immune response. High density lipoproteins (HDL) counterbalance the effects of LDL by accepting cholesterol from macrophages and removing it from the plaque. In this paper, we develop a free boundary multiphase model to investigate the effects of LDL and HDL on early plaque development. We examine how the rates of LDL and HDL deposition affect cholesterol accumulation in macrophages, and how this impacts cell death rates and emigration. We identify a region of LDL-HDL parameter space where plaque growth stabilises for low LDL and high HDL influxes, due to macrophage emigration and HDL clearance that counterbalances the influx of new cells and cholesterol. We explore how the efferocytic uptake of dead cells and the recruitment of new macrophages affect plaque development for a range of LDL and HDL influxes. Finally, we consider how changes in the LDL-HDL profile can change the course of plaque development. We show that changes towards lower LDL and higher HDL can slow plaque growth and even induce regression. We find that these changes have less effect on larger, more established plaques, and that temporary changes will only slow plaque growth in the short term.


Assuntos
Aterosclerose , Lipoproteínas HDL , Placa Aterosclerótica , Humanos , Aterosclerose/metabolismo , Aterosclerose/sangue , Aterosclerose/patologia , Lipoproteínas HDL/sangue , Lipoproteínas HDL/metabolismo , Macrófagos/metabolismo , Modelos Cardiovasculares , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/sangue
17.
PLoS One ; 19(5): e0304551, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38814895

RESUMO

Coronary microvascular dysfunction (CMD) is a critical pathogenesis of cardiovascular diseases. Lower endothelial nitric oxide synthase (eNOS) phosphorylation leads to reduced endothelium-derived relaxing factor nitric oxide (NO) generation, causing and accelerating CMD. Endoplasmic reticulum stress (ER stress) has been shown to reduce NO production in umbilical vein endothelial cells. Oxidized low-density lipoprotein (ox-LDL) damages endothelial cell function. However, the relationship between ox-LDL and coronary microcirculation has yet to be assessed. Short-chain fatty acid (SCFA), a fermentation product of the gut microbiome, could improve endothelial-dependent vasodilation in human adipose arterioles, but the effect of SCFA on coronary microcirculation is unclear. In this study, we found ox-LDL stimulated expression of ER chaperone GRP78. Further, we activated downstream PERK/eIF2a, IRE1/JNK, and ATF6 signaling pathways, decreasing eNOS phosphorylation and NO production in human cardiac microvascular endothelial. Furthermore, SCFA-propionate can inhibit ox-LDL-induced eNOS phosphorylation reduction and raise NO production; the mechanism is related to the inhibition of ER stress and downstream signaling pathways PERK/eIF2a, IRE1/JNK, and ATF6. In summary, we demonstrate that ox-LDL induced CMD by activating ER stress, propionate can effectively counteract the adverse effects of ox-LDL and protect coronary microcirculation function via inhibiting ER stress.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Lipoproteínas LDL , Óxido Nítrico Sintase Tipo III , Óxido Nítrico , Propionatos , Transdução de Sinais , Humanos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Lipoproteínas LDL/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Propionatos/farmacologia , Óxido Nítrico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/farmacologia , eIF-2 Quinase/metabolismo , Fator 6 Ativador da Transcrição/metabolismo , Microcirculação/efeitos dos fármacos , Proteínas de Choque Térmico/metabolismo
18.
Int Heart J ; 65(3): 466-474, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38749754

RESUMO

Endothelial cell dysfunction is the main pathology of atherosclerosis (AS). Sirtuin 6 (SIRT6), a deacetylase, is involved in AS progression. This study aimed to investigate the impacts of SIRT6 on the pyroptosis of endothelial cells and its underlying mechanisms. ApoE-/- mice were fed a high-fat diet (HFD) to establish the AS mouse model, atherosclerotic lesions were evaluated using oil red O staining, and blood lipids and inflammatory factors were measured using corresponding kits. Human umbilical vein endothelial cells (HUVECs) were treated with oxidized low-density lipoprotein (ox-LDL) to establish the cell model, and pyroptosis was evaluated by flow cytometry, ELISA, and western blot. Immunoprecipitation (IP), co-IP, western blot, and immunofluorescence were used to detect the molecular mechanisms. The results showed that SIRT6 expression was downregulated in the blood of HFD-induced mice and ox-LDL-induced HUVECs. Overexpression of SIRT6 reduced atherosclerotic lesions, blood lipids, and inflammation in vivo and suppressed pyroptosis of HUVECs in vitro. Moreover, SIRT6 interacted with ASC to inhibit the acetylation of ASC, thus, reducing the interaction between ASC and NLRP3. Moreover, SIRT6 inhibits endothelial cell pyroptosis in the aortic roots of mice by deacetylating ASC. In conclusion, SIRT6 deacetylated ASC to inhibit its interaction with NLRP3 and then suppressed pyroptosis of endothelial cells, thus, decelerating the progression of AS. The findings provide new insights into the function of SIRT6 in AS.


Assuntos
Aterosclerose , Células Endoteliais da Veia Umbilical Humana , Lipoproteínas LDL , Piroptose , Sirtuínas , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Sirtuínas/metabolismo , Camundongos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Modelos Animais de Doenças , Dieta Hiperlipídica , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Camundongos Endogâmicos C57BL
19.
J Intern Med ; 296(1): 39-52, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38704820

RESUMO

Platelet hyperreactivity and hyperlipidaemia contribute significantly to atherosclerosis. Thus, it is desirable to review the platelet-hyperlipidaemia interplay and its impact on atherogenesis. Native low-density lipoprotein (nLDL) and oxidized LDL (oxLDL) are the key proatherosclerotic components of hyperlipidaemia. nLDL binds to the platelet-specific LDL receptor (LDLR) ApoE-R2', whereas oxLDL binds to the platelet-expressed scavenger receptor CD36, lectin-type oxidized LDLR 1 and scavenger receptor class A 1. Ligation of nLDL/oxLDL induces mild platelet activation and may prime platelets for other platelet agonists. Platelets, in turn, can modulate lipoprotein metabolisms. Platelets contribute to LDL oxidation by enhancing the production of reactive oxygen species and LDLR degradation via proprotein convertase subtilisin/kexin type 9 release. Platelet-released platelet factor 4 and transforming growth factor ß modulate LDL uptake and foam cell formation. Thus, platelet dysfunction and hyperlipidaemia work in concert to aggravate atherogenesis. Hypolipidemic drugs modulate platelet function, whereas antiplatelet drugs influence lipid metabolism. The research prospects of the platelet-hyperlipidaemia interplay in atherosclerosis are also discussed.


Assuntos
Aterosclerose , Plaquetas , Hiperlipidemias , Lipoproteínas LDL , Humanos , Aterosclerose/etiologia , Plaquetas/metabolismo , Lipoproteínas LDL/metabolismo , Ativação Plaquetária/fisiologia , Receptores de LDL/metabolismo , Hipolipemiantes/uso terapêutico
20.
BMC Cardiovasc Disord ; 24(1): 275, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807081

RESUMO

BACKGROUND: Autophagy, as a regulator of cell survival, plays an important role in atherosclerosis (AS). Sperm associated antigen 5 (SPAG5) is closely associated with the classical autophagy pathway, PI3K/Akt/mTOR signaling pathway. This work attempted to investigate whether SPAG5 can affect AS development by regulating autophagy. METHODS: Human umbilical vein endothelial cells (HUVECs) were treated with oxidized-low density lipoprotein (ox-LDL) to induce cell damage. ApoE-/- mice were fed a Western diet to establish an AS mouse model. Haematoxylin and eosin (H&E) staining and Oil Red O staining evaluated the pathological changes and in lipid deposition in aortic tissues. CCK-8 and flow cytometry detected cell proliferation and apoptosis. Immunohistochemistry, Enzyme linked immunosorbent assay, qRT-PCR and western blotting assessed the levels of mRNA and proteins. RESULTS: Ox-LDL treatment elevated SPAG5 expression and the expression of autophagy-related proteins, LC3-I, LC3-II, Beclin-1, and p62, in HUVECs. GFP-LC3 dots were increased in ox-LDL-treated HUVECs and LPS-treated HUVECs. SPAG5 knockdown reversed both ox-LDL and LPS treatment-mediated inhibition of cell proliferation and promotion of apoptosis in HUVECs. SPAG5 silencing further elevated autophagy and repressed the expression of PI3K, p-Akt/Akt, and p-mTOR/mTOR in ox-LDL-treated HUVECs. 3-MA (autophagy inhibitor) treatment reversed SPAG5 silencing-mediated increase of cell proliferation and decrease of apoptosis in ox-LDL-treated HUVECs. In vivo, SPAG5 knockdown reduced atherosclerotic plaques in AS mice through activating autophagy and inhibiting PI3K/Akt/mTOR signaling pathway. CONCLUSION: This work demonstrated that SPAG5 knockdown alleviated AS development through activating autophagy. Thus, SPAG5 may be a potential target for AS therapy.


Assuntos
Apoptose , Aterosclerose , Autofagia , Proliferação de Células , Modelos Animais de Doenças , Células Endoteliais da Veia Umbilical Humana , Camundongos Knockout para ApoE , Placa Aterosclerótica , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Autofagia/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Aterosclerose/patologia , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/prevenção & controle , Serina-Treonina Quinases TOR/metabolismo , Apoptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proliferação de Células/efeitos dos fármacos , Doenças da Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/prevenção & controle , Doenças da Aorta/metabolismo , Camundongos Endogâmicos C57BL , Lipoproteínas LDL/metabolismo , Masculino , Células Cultivadas , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Aorta/patologia , Aorta/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Camundongos , Apolipoproteínas E
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...