Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.416
Filtrar
1.
Lipids Health Dis ; 23(1): 205, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951804

RESUMO

BACKGROUND: Glycerophospholipids (GPLs) are essential for cell membrane structure and function. Sphingomyelin and its metabolites regulate cell growth, apoptosis, and stress responses. This study aimed to investigate lipid metabolism in patients experiencing sudden sensorineural hearing loss across all frequencies (AF-SSNHL). METHODS: The study included 60 patients diagnosed with unilateral AF-SSNHL, among whom 30 patients had a level of hearing improvement ≥ 15 dB after 6 months of follow-up. A propensity score-matched (2:1) control group was used. Liquid chromatography‒mass spectrometry based untargeted lipidomics analysis combined with multivariate statistics was performed to investigate the lipids change. The "lipidome" R package and weighted gene co-expression network analysis (WGCNA) were utilised to assess the lipids' structural features and the association between lipids and hearing. RESULTS: Lipidomics successfully differentiated the AF-SSNHL group from the control group, identifying 17 risk factors, mainly including phosphatidylcholine (PC), phosphatidylethanolamine (PE), and related metabolites. The ratios of lysophosphatidylcholine/PC, lysophosphatidylethanolamine/PE, and lysodimethylphosphatidylethanolamine/PE were upregulated, while some glycerophospholipid (GPL)-plasmalogens were downregulated in the AF-SSNHL group, indicating abnormal metabolism of GPLs. Trihexosylceramide (d34:1), PE (18:1e_22:5), and sphingomyelin (d40:3) were significantly different between responders and nonresponders, and positively correlated with hearing improvement. Additionally, the results of the WGCNA also suggested that partial GPL-plasmalogens were positively associated with hearing improvement. CONCLUSION: AF-SSNHL patients exhibited abnormally high blood lipids and pronounced GPLs metabolic abnormalities. Sphingolipids and GPL-plasmalogens had an association with the level of hearing improvement. By understanding the lipid changes, clinicians may be able to predict the prognosis of hearing recovery and personalize treatment approaches.


Assuntos
Biomarcadores , Perda Auditiva Neurossensorial , Metabolismo dos Lipídeos , Lipidômica , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Biomarcadores/sangue , Perda Auditiva Neurossensorial/sangue , Adulto , Perda Auditiva Súbita/sangue , Glicerofosfolipídeos/sangue , Idoso , Fosfatidiletanolaminas/sangue , Fosfatidiletanolaminas/metabolismo , Fosfatidilcolinas/sangue , Fosfatidilcolinas/metabolismo , Lisofosfatidilcolinas/sangue , Esfingomielinas/sangue , Esfingomielinas/metabolismo , Lisofosfolipídeos
2.
Sci Rep ; 14(1): 13655, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871974

RESUMO

Barth syndrome (BTHS) is a lethal rare genetic disorder, which results in cardiac dysfunction, severe skeletal muscle weakness, immune issues and growth delay. Mutations in the TAFAZZIN gene, which is responsible for the remodeling of the phospholipid cardiolipin (CL), lead to abnormalities in mitochondrial membrane, including alteration of mature CL acyl composition and the presence of monolysocardiolipin (MLCL). The dramatic increase in the MLCL/CL ratio is the hallmark of patients with BTHS, which is associated with mitochondrial bioenergetics dysfunction and altered membrane ultrastructure. There are currently no specific therapies for BTHS. Here, we showed that cardiac mitochondria isolated from TAFAZZIN knockdown (TazKD) mice presented abnormal ultrastructural membrane morphology, accumulation of vacuoles, pro-fission conditions and defective mitophagy. Interestingly, we found that in vivo treatment of TazKD mice with a CL-targeted small peptide (named SS-31) was able to restore mitochondrial morphology in tafazzin-deficient heart by affecting specific proteins involved in dynamic process and mitophagy. This agrees with our previous data showing an improvement in mitochondrial respiratory efficiency associated with increased supercomplex organization in TazKD mice under the same pharmacological treatment. Taken together our findings confirm the beneficial effect of SS-31 in the amelioration of tafazzin-deficient dysfunctional mitochondria in a BTHS animal model.


Assuntos
Aciltransferases , Síndrome de Barth , Cardiolipinas , Modelos Animais de Doenças , Mitocôndrias Cardíacas , Mitofagia , Animais , Síndrome de Barth/metabolismo , Síndrome de Barth/genética , Síndrome de Barth/patologia , Síndrome de Barth/tratamento farmacológico , Mitofagia/efeitos dos fármacos , Camundongos , Aciltransferases/metabolismo , Aciltransferases/genética , Cardiolipinas/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Lisofosfolipídeos/metabolismo , Camundongos Knockout , Oligopeptídeos
3.
Lipids Health Dis ; 23(1): 204, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943207

RESUMO

Malignant bone tumors, including primary bone cancer and metastatic bone tumors, are a significant clinical challenge due to their high frequency of presentation, poor prognosis and lack of effective treatments and therapies. Bone tumors are often accompanied by skeletal complications such as bone destruction and cancer-induced bone pain. However, the mechanisms involved in bone cancer progression, bone metastasis and skeletal complications remain unclear. Lysophosphatidic acid (LPA), an intercellular lipid signaling molecule that exerts a wide range of biological effects mainly through specifically binding to LPA receptors (LPARs), has been found to be present at high levels in the ascites of bone tumor patients. Numerous studies have suggested that LPA plays a role in primary malignant bone tumors, bone metastasis, and skeletal complications. In this review, we summarize the role of LPA signaling in primary bone cancer, bone metastasis and skeletal complications. Modulating LPA signaling may represent a novel avenue for future therapeutic treatments for bone cancer, potentially improving patient prognosis and quality of life.


Assuntos
Neoplasias Ósseas , Lisofosfolipídeos , Receptores de Ácidos Lisofosfatídicos , Transdução de Sinais , Humanos , Lisofosfolipídeos/metabolismo , Neoplasias Ósseas/secundário , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Transdução de Sinais/efeitos dos fármacos , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Animais
4.
Lipids Health Dis ; 23(1): 200, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937745

RESUMO

BACKGROUND: Traumatic brain injury (TBI) causes neuroinflammation and can lead to long-term neurological dysfunction, even in cases of mild TBI (mTBI). Despite the substantial burden of this disease, the management of TBI is precluded by an incomplete understanding of its cellular mechanisms. Sphingolipids (SPL) and their metabolites have emerged as key orchestrators of biological processes related to tissue injury, neuroinflammation, and inflammation resolution. No study so far has investigated comprehensive sphingolipid profile changes immediately following TBI in animal models or human cases. In this study, sphingolipid metabolite composition was examined during the acute phases in brain tissue and plasma of mice following mTBI. METHODS: Wildtype mice were exposed to air-blast-mediated mTBI, with blast exposure set at 50-psi on the left cranium and 0-psi designated as Sham. Sphingolipid profile was analyzed in brain tissue and plasma during the acute phases of 1, 3, and 7 days post-TBI via liquid-chromatography-mass spectrometry. Simultaneously, gene expression of sphingolipid metabolic markers within brain tissue was analyzed using quantitative reverse transcription-polymerase chain reaction. Significance (P-values) was determined by non-parametric t-test (Mann-Whitney test) and by Tukey's correction for multiple comparisons. RESULTS: In post-TBI brain tissue, there was a significant elevation of 1) acid sphingomyelinase (aSMase) at 1- and 3-days, 2) neutral sphingomyelinase (nSMase) at 7-days, 3) ceramide-1-phosphate levels at 1 day, and 4) monohexosylceramide (MHC) and sphingosine at 7-days. Among individual species, the study found an increase in C18:0 and a decrease in C24:1 ceramides (Cer) at 1 day; an increase in C20:0 MHC at 3 days; decrease in MHC C18:0 and increase in MHC C24:1, sphingomyelins (SM) C18:0, and C24:0 at 7 days. Moreover, many sphingolipid metabolic genes were elevated at 1 day, followed by a reduction at 3 days and an absence at 7-days post-TBI. In post-TBI plasma, there was 1) a significant reduction in Cer and MHC C22:0, and an increase in MHC C16:0 at 1 day; 2) a very significant increase in long-chain Cer C24:1 accompanied by significant decreases in Cer C24:0 and C22:0 in MHC and SM at 3 days; and 3) a significant increase of C22:0 in all classes of SPL (Cer, MHC and SM) as well as a decrease in Cer C24:1, MHC C24:1 and MHC C24:0 at 7 days. CONCLUSIONS: Alterations in sphingolipid metabolite composition, particularly sphingomyelinases and short-chain ceramides, may contribute to the induction and regulation of neuroinflammatory events in the early stages of TBI, suggesting potential targets for novel diagnostic, prognostic, and therapeutic strategies in the future.


Assuntos
Encéfalo , Ceramidas , Esfingolipídeos , Esfingomielina Fosfodiesterase , Esfingosina , Animais , Camundongos , Esfingolipídeos/sangue , Esfingolipídeos/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Ceramidas/sangue , Ceramidas/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielina Fosfodiesterase/sangue , Esfingomielina Fosfodiesterase/genética , Esfingosina/análogos & derivados , Esfingosina/sangue , Esfingosina/metabolismo , Modelos Animais de Doenças , Masculino , Esfingomielinas/sangue , Esfingomielinas/metabolismo , Concussão Encefálica/sangue , Concussão Encefálica/metabolismo , Camundongos Endogâmicos C57BL , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/patologia , Lisofosfolipídeos/sangue , Lisofosfolipídeos/metabolismo
5.
Biomolecules ; 14(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38927035

RESUMO

Lysophosphatidic acid (LPA) is a well-documented pro-oncogenic factor in different cancers, but relatively little is known on its biological activity in neuroblastoma. The LPA effects and the participation of the tyrosine kinase receptor anaplastic lymphoma kinase (ALK) in LPA mitogenic signaling were studied in human neuroblastoma cell lines. We used light microscopy and [3H]-thymidine incorporation to determine cell proliferation, Western blot to study intracellular signaling, and pharmacological and molecular tools to examine the role of ALK. We found that LPA stimulated the growth of human neuroblastoma cells, as indicated by the enhanced cell number, clonogenic activity, and DNA synthesis. These effects were curtailed by the selective ALK inhibitors NPV-TAE684 and alectinib. In a panel of human neuroblastoma cell lines harboring different ALK genomic status, the ALK inhibitors suppressed LPA-induced phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), which are major regulators of cell proliferation. ALK depletion by siRNA treatment attenuated LPA-induced ERK1/2 activation. LPA enhanced ALK phosphorylation and potentiated ALK activation by the ALK ligand FAM150B. LPA enhanced the inhibitory phosphorylation of the tumor suppressor FoxO3a, and this response was impaired by the ALK inhibitors. These results indicate that LPA stimulates mitogenesis of human neuroblastoma cells through a crosstalk with ALK.


Assuntos
Quinase do Linfoma Anaplásico , Proliferação de Células , Lisofosfolipídeos , Neuroblastoma , Transdução de Sinais , Humanos , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Quinase do Linfoma Anaplásico/metabolismo , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/antagonistas & inibidores , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Piperidinas/farmacologia , Carbazóis/farmacologia , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
6.
J Bioenerg Biomembr ; 56(4): 475-482, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38886303

RESUMO

Lysophosphatidic acid (LPA) is a simple lipid which is endogenously synthesized from lysophosphatidylcholine (LPC) by autotaxin (ATX). LPA mediates a variety of cellular responses through the binding of G protein-coupled LPA receptors (LPA1 to LPA6). It is considered that LPA receptor-mediated signaling plays an important role in the pathogenesis of human malignancy. Genetic alterations and epigenetic changes of LPA receptors have been detected in some cancer cells as well as LPA per se. Moreover, LPA receptors contribute to the promotion of tumor progression, including cell proliferation, invasion, metastasis, tumorigenicity, and angiogenesis. In recent studies, the activation of LPA receptor-mediated signaling regulates chemoresistance and radiosensitivity in cancer cells. This review provides an updated overview on the roles of LPA receptor-mediated signaling in the regulation of cancer cell functions and its potential utility as a molecular target for novel therapies in clinical cancer approaches.


Assuntos
Neoplasias , Receptores de Ácidos Lisofosfatídicos , Transdução de Sinais , Humanos , Receptores de Ácidos Lisofosfatídicos/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Lisofosfolipídeos/metabolismo , Animais
7.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928196

RESUMO

LPA3 receptors were expressed in TREx HEK 293 cells, and their signaling and phosphorylation were studied. The agonist, lysophosphatidic acid (LPA), increased intracellular calcium and ERK phosphorylation through pertussis toxin-insensitive processes. Phorbol myristate acetate, but not LPA, desensitizes LPA3-mediated calcium signaling, the agonists, and the phorbol ester-induced LPA3 internalization. Pitstop 2 (clathrin heavy chain inhibitor) markedly reduced LPA-induced receptor internalization; in contrast, phorbol ester-induced internalization was only delayed. LPA induced rapid ß-arrestin-LPA3 receptor association. The agonist and the phorbol ester-induced marked LPA3 receptor phosphorylation, and phosphorylation sites were detected using mass spectrometry. Phosphorylated residues were detected in the intracellular loop 3 (S221, T224, S225, and S229) and in the carboxyl terminus (S321, S325, S331, T333, S335, Y337, and S343). Interestingly, phosphorylation sites are within sequences predicted to constitute ß-arrestin binding sites. These data provide insight into LPA3 receptor signaling and regulation.


Assuntos
Lisofosfolipídeos , Receptores de Ácidos Lisofosfatídicos , Transdução de Sinais , Humanos , Receptores de Ácidos Lisofosfatídicos/metabolismo , Fosforilação , Células HEK293 , Lisofosfolipídeos/metabolismo , beta-Arrestinas/metabolismo , Sítios de Ligação , Sinalização do Cálcio
8.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928268

RESUMO

Human corneal fibrosis can lead to opacity and ultimately partial or complete vision loss. Currently, corneal transplantation is the only treatment for severe corneal fibrosis and comes with the risk of rejection and donor shortages. Sphingolipids (SPLs) are known to modulate fibrosis in various tissues and organs, including the cornea. We previously reported that SPLs are tightly related to both, transforming growth factor beta (TGF-ß) signaling and corneal fibrogenesis. The aim of this study was to investigate the effects of sphingosine-1-phosphate (S1P) and S1P inhibition on specific TGF-ß and SPL family members in corneal fibrosis. Healthy human corneal fibroblasts (HCFs) were isolated and cultured in EMEM + FBS + VitC (construct medium) on 3D transwells for 4 weeks. The following treatments were prepared in a construct medium: 0.1 ng/mL TGF-ß1 (ß1), 1 µM sphingosine-1-phosphate (S1P), and 5 µM Sphingosine kinase inhibitor 2 (I2). Five groups were tested: (1) control (no treatment); rescue groups; (2) ß1/S1P; (3) ß1/I2; prevention groups; (4) S1P/ß1; and (5) I2/ß1. Each treatment was administered for 2 weeks with one treatment and switched to another for 2 weeks. Using Western blot analysis, the 3D constructs were examined for the expression of fibrotic markers, SPL, and TGF-ß signaling pathway members. Scratch assays from 2D cultures were also utilized to evaluate cell migration We observed reduced fibrotic expression and inactivation of latent TGF-ß binding proteins (LTBPs), TGF-ß receptors, Suppressor of Mothers Against Decapentaplegic homologs (SMADs), and SPL signaling following treatment with I2 prevention and rescue compared to S1P prevention and rescue, respectively. Furthermore, we observed increased cell migration following stimulation with I2 prevention and rescue groups, with decreased cell migration following stimulation with S1P prevention and rescue groups after 12 h and 18 h post-scratch. We have demonstrated that I2 treatment reduced fibrosis and modulated the inactivation of LTBPs, TGF-ß receptors, SPLs, and the canonical downstream SMAD pathway. Further investigations are warranted in order to fully uncover the potential of utilizing SphK I2 as a novel therapy for corneal fibrosis.


Assuntos
Córnea , Fibrose , Lisofosfolipídeos , Transdução de Sinais , Esfingosina , Fator de Crescimento Transformador beta , Humanos , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Esfingosina/farmacologia , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Córnea/metabolismo , Córnea/patologia , Córnea/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Células Cultivadas , Esfingolipídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Doenças da Córnea/metabolismo , Doenças da Córnea/patologia , Doenças da Córnea/tratamento farmacológico
9.
BMC Pulm Med ; 24(1): 266, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835000

RESUMO

BACKGROUND: sphingosine-1-phosphate (S1P), a naturally occurring sphingolipid, has been involved in pulmonary interstitial remodeling signaling. However, no study has examined its clinical merits for interstitial lung disease (ILD). This study aimed to investigate the serum level of S1P in ILD patients and its clinical correlation with the severity of disease in the two main types of ILDs: the IPF and the CTD-ILD patients. METHODS: This retrospective observational pilot study included 67 ILD patients and 26 healthy controls. These patients were stratified into the IPF group (35) and the CTD-ILD group (32). The severity of ILD was evaluated through pulmonary function indicators and the length of hospital stay. RESULTS: Serum S1P level was statistically higher in ILD patients than in health control (p = 0.002), while the Serum S1P levels in CTD-ILD and IPF patients were comparable. Serum S1P level further showed statistically negative correlation with pulmonary function indexes (TLC% pred, FVC% pred and FEV1% pred) and positive correlation with length of hospital stay (r = -0.38, p = 0.04; r = -0.41, p = 0.02, r = -0.37, p = 0.04; r = 0.42, p = 0.02, respectively) in CTD-ILD patients, although serum S1P level was not significantly correlated with inflammatory indexes. The IPF patients failed to exhibit a significant correlation of serum S1P level with pulmonary function and length of hospital stay. CONCLUSIONS: Serum S1P level might be a clinically useful biomarker in evaluating the severity of CTD-ILD patients rather than IPF patients.


Assuntos
Biomarcadores , Doenças Pulmonares Intersticiais , Lisofosfolipídeos , Índice de Gravidade de Doença , Esfingosina , Humanos , Masculino , Feminino , Doenças Pulmonares Intersticiais/sangue , Doenças Pulmonares Intersticiais/fisiopatologia , Doenças Pulmonares Intersticiais/diagnóstico , Esfingosina/análogos & derivados , Esfingosina/sangue , Biomarcadores/sangue , Lisofosfolipídeos/sangue , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Projetos Piloto , Testes de Função Respiratória , Pulmão/fisiopatologia , Estudos de Casos e Controles , Tempo de Internação/estatística & dados numéricos
10.
JCI Insight ; 9(11)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38855867

RESUMO

In rheumatoid arthritis, inflammatory mediators extravasate from blood into joints via gaps between endothelial cells (ECs), but the contribution of ECs is not known. Sphingosine 1-phosphate receptor 1 (S1PR1), widely expressed on ECs, maintains the vascular barrier. Here, we assessed the contribution of vascular integrity and EC S1PR1 signaling to joint damage in mice exposed to serum-induced arthritis (SIA). EC-specific deletion of S1PR1 or pharmacological blockade of S1PR1 promoted vascular leak and amplified SIA, whereas overexpression of EC S1PR1 or treatment with an S1PR1 agonist delayed SIA. Blockade of EC S1PR1 induced membrane metalloproteinase-dependent cleavage of vascular endothelial cadherin (VE-cadherin), a principal adhesion molecule that maintains EC junctional integrity. We identified a disintegrin and a metalloproteinase domain 10 (ADAM10) as the principal VE-cadherin "sheddase." Mice expressing a stabilized VE-cadherin construct had decreased extravascular VE-cadherin and vascular leakage in response to S1PR1 blockade, and they were protected from SIA. Importantly, patients with active rheumatoid arthritis had decreased circulating S1P and microvascular expression of S1PR1, suggesting a dysregulated S1P/S1PR1 axis favoring vascular permeability and vulnerability. We present a model in which EC S1PR1 signaling maintains homeostatic vascular barrier function by limiting VE-cadherin shedding mediated by ADAM10 and suggest this signaling axis as a therapeutic target in inflammatory arthritis.


Assuntos
Proteína ADAM10 , Antígenos CD , Artrite Experimental , Artrite Reumatoide , Caderinas , Células Endoteliais , Receptores de Esfingosina-1-Fosfato , Animais , Caderinas/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/genética , Camundongos , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Antígenos CD/metabolismo , Antígenos CD/genética , Células Endoteliais/metabolismo , Humanos , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/genética , Proteína ADAM10/metabolismo , Proteína ADAM10/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Transdução de Sinais , Camundongos Knockout , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Masculino , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Lisofosfolipídeos/metabolismo , Permeabilidade Capilar , Feminino
11.
Biosensors (Basel) ; 14(6)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38920591

RESUMO

The overall 5-year survival rate of ovarian cancer (OC) is generally low as the disease is often diagnosed at an advanced stage of progression. To save lives, OC must be identified in its early stages when treatment is most effective. Early-stage OC causes the upregulation of lysophosphatidic acid (LPA), making the molecule a promising biomarker for early-stage detection. An LPA assay can additionally stage the disease since LPA levels increase with OC progression. This work presents two methods that demonstrate the prospective application for detecting LPA: the electromagnetic piezoelectric acoustic sensor (EMPAS) and a chemiluminescence-based iron oxide nanoparticle (IONP) approach. Both methods incorporate the protein complex gelsolin-actin, which enables testing for detection of the biomarker as the binding of LPA to the complex results in the separation of gelsolin from actin. The EMPAS was characterized with contact angle goniometry and atomic force microscopy, while gelsolin-actin-functionalized IONPs were characterized with transmission electron microscopy and Fourier transform infrared spectroscopy. In addition to characterization, LPA detection was demonstrated as a proof-of-concept in Milli-Q water, buffer, or human serum, highlighting various LPA assays that can be developed for the early-stage detection of OC.


Assuntos
Biomarcadores Tumorais , Lisofosfolipídeos , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/diagnóstico , Técnicas Biossensoriais , Gelsolina , Actinas , Detecção Precoce de Câncer
12.
J Gene Med ; 26(6): e3708, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837511

RESUMO

BACKGROUND: Lysophosphatidic acid (LPA) is a small bioactive lipid which acts as a potent regulator in various tumor progressions through six G-protein-coupled receptors (LPA1-LPA6). Our previous study demonstrated that the LPA-producing enzyme, autotaxin (ATX), was upregulated in esophageal squamous cell carcinoma (ESCC) and ATX high expression levels indicated a poor prognosis. Esophageal squamous cell carcinoma is a type of malignant tumor which originates from epithelial cells. Its progression can be affected by the interaction between cancer cells and normal cells. However, the impact of LPA on the interaction between esophageal epithelial cells and cancer cells in the development of ESCC remains uncertain. METHODS: MTS and Edu assays were performed to determine ESCC cell proliferation in culture medium (CM) derived from LPA-stimulated esophageal epithelial cells (Het-1a). A wound healing assay, transwell migration and an invasion assay were performed to assess the metastatic ability of ESCC cells. Cytokine array analysis was conducted to detect the differentially secreted cytokines in CM. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were utilized to uncover the pathways and cytokines that are influenced by LPA in ESCC. Immunohistochemical staining was employed to measure the expression of ATX and CCL2 in early-stage ESCC. Quantitative real-time PCR, western blot, enzyme-linked immunosorbent assay and an antibody neutralization assay were employed to measure the mechanism of LPA-mediated communication between epithelial cells and cancer cells. RESULTS: Functional experiments showed that exposing ESCC cancer cells to CM from LPA-treated Het-1a results in promoting proliferation, migration, invasion and epithelial-mesenchymal transition processes. Using cytokine array analysis, we discovered that LPA triggers the release of multiple cytokines from epithelial cells. After screening of the TCGA and GEO databases, CCL2 was identified and found to be correlated with ATX expression in ESCC. Furthermore, CCL2 levels in both mRNA expression and secretion were observed to be upregulated in epithelial cells upon stimulation with LPA. Blocking CCL2 effectively reduced the pro-migration influence of CM derived from LPA-treated Het-1a. Mechanism studies have demonstrated that LPA activated the NF-κB signaling pathway through LPA1/3, ultimately causing an increase in CCL2 expression and secretion in Het-1a. CONCLUSIONS: Our findings, taken together, demonstrate that CM from LPA-treated esophageal epithelial cells plays a significant role in promoting the progression of ESCC, with CCL2 acting as the primary regulator.


Assuntos
Movimento Celular , Proliferação de Células , Quimiocina CCL2 , Células Epiteliais , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Regulação Neoplásica da Expressão Gênica , Lisofosfolipídeos , Humanos , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Progressão da Doença , Transdução de Sinais/efeitos dos fármacos , Esôfago/metabolismo , Esôfago/patologia , Esôfago/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos
13.
Lipids Health Dis ; 23(1): 154, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796445

RESUMO

Cancer prognosis remains a critical clinical challenge. Lipidomic analysis via mass spectrometry (MS) offers the potential for objective prognostic prediction, leveraging the distinct lipid profiles of cancer patient-derived specimens. This review aims to systematically summarize the application of MS-based lipidomic analysis in prognostic prediction for cancer patients. Our systematic review summarized 38 studies from the past decade that attempted prognostic prediction of cancer patients through lipidomics. Commonly analyzed cancers included colorectal, prostate, and breast cancers. Liquid (serum and urine) and tissue samples were equally used, with liquid chromatography-tandem MS being the most common analytical platform. The most frequently evaluated prognostic outcomes were overall survival, stage, and recurrence. Thirty-eight lipid markers (including phosphatidylcholine, ceramide, triglyceride, lysophosphatidylcholine, sphingomyelin, phosphatidylethanolamine, diacylglycerol, phosphatidic acid, phosphatidylserine, lysophosphatidylethanolamine, lysophosphatidic acid, dihydroceramide, prostaglandin, sphingosine-1-phosphate, phosphatidylinosito, fatty acid, glucosylceramide and lactosylceramide) were identified as prognostic factors, demonstrating potential for clinical application. In conclusion, the potential for developing lipidomics in cancer prognostic prediction was demonstrated. However, the field is still nascent, necessitating future studies for validating and establishing lipid markers as reliable prognostic tools in clinical practice.


Assuntos
Lipidômica , Neoplasias , Humanos , Prognóstico , Neoplasias/metabolismo , Neoplasias/diagnóstico , Neoplasias/mortalidade , Lipidômica/métodos , Biomarcadores Tumorais/metabolismo , Espectrometria de Massas/métodos , Feminino , Lipídeos/sangue , Lipídeos/análise , Masculino , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Neoplasias da Mama/diagnóstico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/diagnóstico , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/análise , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade
14.
Int J Mol Sci ; 25(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38791156

RESUMO

The deterioration of osteoblast-led bone formation and the upregulation of osteoclast-regulated bone resorption are the primary causes of bone diseases, including osteoporosis. Numerous circulating factors play a role in bone homeostasis by regulating osteoblast and osteoclast activity, including the sphingolipid-sphingosine-1-phosphate (S1P). However, to date no comprehensive studies have investigated the impact of S1P activity on human and murine osteoblasts and osteoclasts. We observed species-specific responses to S1P in both osteoblasts and osteoclasts, where S1P stimulated human osteoblast mineralisation and reduced human pre-osteoclast differentiation and mineral resorption, thereby favouring bone formation. The opposite was true for murine osteoblasts and osteoclasts, resulting in more mineral resorption and less mineral deposition. Species-specific differences in osteoblast responses to S1P were potentially explained by differential expression of S1P receptor 1. By contrast, human and murine osteoclasts expressed comparable levels of S1P receptors but showed differential expression patterns of the two sphingosine kinase enzymes responsible for S1P production. Ultimately, we reveal that murine models may not accurately represent how human bone cells will respond to S1P, and thus are not a suitable model for exploring S1P physiology or potential therapeutic agents.


Assuntos
Diferenciação Celular , Lisofosfolipídeos , Osteoblastos , Osteoclastos , Especificidade da Espécie , Esfingosina , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Lisofosfolipídeos/metabolismo , Humanos , Animais , Camundongos , Osteoclastos/metabolismo , Osteoclastos/citologia , Osteoblastos/metabolismo , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Receptores de Esfingosina-1-Fosfato/metabolismo , Osso e Ossos/metabolismo , Reabsorção Óssea/metabolismo , Células Cultivadas
15.
PLoS One ; 19(5): e0303296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753743

RESUMO

AIM: Metabolic dysfunction-associated steatohepatitis (MASH) is one of the most prevalent liver diseases and is characterized by steatosis and the accumulation of bioactive lipids. This study aims to understand the specific lipid species responsible for the progression of liver fibrosis in MASH. METHODS: Changes in bioactive lipid levels were examined in the livers of MASH mice fed a choline-deficient diet (CDD). Additionally, sphingosine kinase (SphK)1 mRNA, which generates sphingosine 1 phosphate (S1P), was examined in the livers of patients with MASH. RESULTS: CDD induced MASH and liver fibrosis were accompanied by elevated levels of S1P and increased expression of SphK1 in capillarized liver sinusoidal endothelial cells (LSECs) in mice. SphK1 mRNA also increased in the livers of patients with MASH. Treatment of primary cultured mouse hepatic stellate cells (HSCs) with S1P stimulated their activation, which was mitigated by the S1P receptor (S1PR)2 inhibitor, JTE013. The inhibition of S1PR2 or its knockout in mice suppressed liver fibrosis without reducing steatosis or hepatocellular damage. CONCLUSION: S1P level is increased in MASH livers and contributes to liver fibrosis via S1PR2.


Assuntos
Fígado Gorduroso , Células Estreladas do Fígado , Cirrose Hepática , Lisofosfolipídeos , Fosfotransferases (Aceptor do Grupo Álcool) , Receptores de Esfingosina-1-Fosfato , Esfingosina , Animais , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Lisofosfolipídeos/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/genética , Cirrose Hepática/etiologia , Camundongos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Humanos , Receptores de Esfingosina-1-Fosfato/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Masculino , Camundongos Knockout , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Fígado/patologia , Deficiência de Colina/complicações , Deficiência de Colina/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Receptores de Lisoesfingolipídeo/metabolismo , Receptores de Lisoesfingolipídeo/genética , Pirazóis , Piridinas
16.
Int J Mol Sci ; 25(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791223

RESUMO

Amyloid beta peptides (Aß) have been identified as the main pathogenic agents in Alzheimer's disease (AD). Soluble Aß oligomers, rather than monomer or insoluble amyloid fibrils, show red blood cell (RBC) membrane-binding capacity and trigger several morphological and functional alterations in RBCs that can result in impaired oxygen transport and delivery. Since bioactive lipids have been recently proposed as potent protective agents against Aß toxicity, we investigated the role of sphingosine-1-phosphate (S1P) in signaling pathways involved in the mechanism underlying ATP release in Ab-treated RBCs. In RBCs following different treatments, the ATP, 2,3 DPG and cAMP levels and caspase 3 activity were determined by spectrophotometric and immunoassay. S1P rescued the inhibition of ATP release from RBCs triggered by Ab, through a mechanism involving caspase-3 and restoring 2,3 DPG and cAMP levels within the cell. These findings reveal the molecular basis of S1P protection against Aß in RBCs and suggest new therapeutic avenues in AD.


Assuntos
Trifosfato de Adenosina , Peptídeos beta-Amiloides , Caspase 3 , AMP Cíclico , Eritrócitos , Lisofosfolipídeos , Esfingosina , Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Peptídeos beta-Amiloides/metabolismo , Eritrócitos/metabolismo , Eritrócitos/efeitos dos fármacos , Humanos , AMP Cíclico/metabolismo , Trifosfato de Adenosina/metabolismo , Caspase 3/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , 2,3-Difosfoglicerato/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Int J Mol Sci ; 25(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38791546

RESUMO

Lysophosphatidic acid (LPA) type 3 (LPA3) receptor mutants were generated in which the sites detected phosphorylated were substituted by non-phosphorylatable amino acids. Substitutions were made in the intracellular loop 3 (IL3 mutant), the carboxyl terminus (Ctail), and both domains (IL3/Ctail). The wild-type (WT) receptor and the mutants were expressed in T-REx HEK293 cells, and the consequences of the substitutions were analyzed employing different functional parameters. Agonist- and LPA-mediated receptor phosphorylation was diminished in the IL3 and Ctail mutants and essentially abolished in the IL3/Ctail mutant, confirming that the main phosphorylation sites are present in both domains and their role in receptor phosphorylation eliminated by substitution and distributed in both domains. The WT and mutant receptors increased intracellular calcium and ERK 1/2 phosphorylation in response to LPA and PMA. The agonist, Ki16425, diminished baseline intracellular calcium, which suggests some receptor endogenous activity. Similarly, baseline ERK1/2 phosphorylation was diminished by Ki16425. An increase in baseline ERK phosphorylation was detected in the IL3/Ctail mutant. LPA and PMA-induced receptor interaction with ß-arrestin 2 and LPA3 internalization were severely diminished in cells expressing the mutants. Mutant-expressing cells also exhibit increased baseline proliferation and response to different stimuli, which were inhibited by the antagonist Ki16425, suggesting a role of LPA receptors in this process. Migration in response to different attractants was markedly increased in the Ctail mutant, which the Ki16425 antagonist also attenuated. Our data experimentally show that receptor phosphorylation in the distinct domains is relevant for LPA3 receptor function.


Assuntos
Lisofosfolipídeos , Receptores de Ácidos Lisofosfatídicos , Transdução de Sinais , Humanos , Fosforilação , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Células HEK293 , Lisofosfolipídeos/metabolismo , Cálcio/metabolismo , Endocitose , Mutação
18.
Matrix Biol ; 130: 36-46, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723870

RESUMO

Cellular Communication Network Factor 2, CCN2, is a profibrotic cytokine implicated in physiological and pathological processes in mammals. The expression of CCN2 is markedly increased in dystrophic muscles. Interestingly, diminishing CCN2 genetically or inhibiting its function improves the phenotypes of chronic muscular fibrosis in rodent models. Elucidating the cell-specific mechanisms behind the induction of CCN2 is a fundamental step in understanding its relevance in muscular dystrophies. Here, we show that the small lipids LPA and 2S-OMPT induce CCN2 expression in fibro/adipogenic progenitors (FAPs) through the activation of the LPA1 receptor and, to a lower extent, by also the LPA6 receptor. These cells show a stronger induction than myoblasts or myotubes. We show that the LPA/LPARs axis requires ROCK kinase activity and organized actin cytoskeleton upstream of YAP/TAZ signaling effectors to upregulate CCN2 levels, suggesting that mechanical signals are part of the mechanism behind this process. In conclusion, we explored the role of the LPA/LPAR axis on CCN2 expression, showing a strong cytoskeletal-dependent response in muscular FAPs.


Assuntos
Adipogenia , Fator de Crescimento do Tecido Conjuntivo , Lisofosfolipídeos , Animais , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Camundongos , Lisofosfolipídeos/metabolismo , Comunicação Celular , Transdução de Sinais , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Regulação da Expressão Gênica , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/genética , Diferenciação Celular , Músculo Esquelético/metabolismo , Músculo Esquelético/citologia , Humanos , Citoesqueleto de Actina/metabolismo
19.
Mol Cell Biol ; 44(5): 178-193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38767243

RESUMO

Transcription factor 12 (TCF12) is a known oncogene in many cancers. However, whether TCF12 can regulate malignant phenotypes and angiogenesis in osteosarcoma is not elucidated. In this study, we demonstrated increased expression of TCF12 in osteosarcoma tissues and cell lines. High TCF12 expression was associated with metastasis and poor survival rate of osteosarcoma patients. Knockdown of TCF12 reduced the proliferation, migration, and invasion of osteosarcoma cells. TCF12 was found to bind to the promoter region of sphingosine kinase 1 (SPHK1) to induce transcriptional activation of SPHK1 expression and enhance the secretion of sphingosine-1-phosphate (S1P), which eventually resulted in the malignant phenotypes of osteosarcoma cells. In addition, S1P secreted by osteosarcoma cells promoted the angiogenesis of HUVECs by targeting S1PR4 on the cell membrane to activate the STAT3 signaling pathway. These findings suggest that TCF12 may induce transcriptional activation of SPHK1 to promote the synthesis and secretion of S1P. This process likely enhances the malignant phenotypes of osteosarcoma cells and induces angiogenesis via the S1PR4/STAT3 signaling pathway.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Lisofosfolipídeos , Neovascularização Patológica , Osteossarcoma , Fosfotransferases (Aceptor do Grupo Álcool) , Fator de Transcrição STAT3 , Transdução de Sinais , Esfingosina , Humanos , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Lisofosfolipídeos/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Patológica/genética , Linhagem Celular Tumoral , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Ativação Transcricional/genética , Receptores de Esfingosina-1-Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/genética , Receptores de Lisoesfingolipídeo/metabolismo , Receptores de Lisoesfingolipídeo/genética , Movimento Celular/genética , Masculino , Animais , Feminino , Angiogênese
20.
Cells ; 13(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38786034

RESUMO

Lysophosphatidic acid (LPA) species, prevalent in the tumor microenvironment (TME), adversely impact various cancers. In ovarian cancer, the 18:0 and 20:4 LPA species are selectively associated with shorter relapse-free survival, indicating distinct effects on cellular signaling networks. Macrophages represent a cell type of high relevance in the TME, but the impact of LPA on these cells remains obscure. Here, we uncovered distinct LPA-species-specific responses in human monocyte-derived macrophages through unbiased phosphoproteomics, with 87 and 161 phosphosites upregulated by 20:4 and 18:0 LPA, respectively, and only 24 shared sites. Specificity was even more pronounced for downregulated phosphosites (163 versus 5 sites). Considering the high levels 20:4 LPA in the TME and its selective association with poor survival, this finding may hold significant implications. Pathway analysis pinpointed RHO/RAC1 GTPase signaling as the predominantly impacted target, including AHRGEF and DOCK guanine exchange factors, ARHGAP GTPase activating proteins, and regulatory protein kinases. Consistent with these findings, exposure to 20:4 resulted in strong alterations to the actin filament network and a consequent enhancement of macrophage migration. Moreover, 20:4 LPA induced p38 phosphorylation, a response not mirrored by 18:0 LPA, whereas the pattern for AKT was reversed. Furthermore, RNA profiling identified genes involved in cholesterol/lipid metabolism as selective targets of 20:4 LPA. These findings imply that the two LPA species cooperatively regulate different pathways to support functions essential for pro-tumorigenic macrophages within the TME. These include cellular survival via AKT activation and migration through RHO/RAC1 and p38 signaling.


Assuntos
Lisofosfolipídeos , Macrófagos , Proteômica , Transdução de Sinais , Humanos , Lisofosfolipídeos/metabolismo , Macrófagos/metabolismo , Proteômica/métodos , Fosforilação/efeitos dos fármacos , Fosfoproteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...