Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107.588
Filtrar
1.
J Environ Sci (China) ; 148: 116-125, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095150

RESUMO

Perfluoroalkyl substances (PFASs) are typical persistent organic pollutants, and their removal is urgently required but challenging. Photocatalysis has shown potential in PFASs degradation due to the redox capabilities of photoinduced charge carriers in photocatalysts. Herein, hexagonal ZnIn2S4 (ZIS) nanosheets were synthesized by a one-pot oil bath method and were well characterized by a series of techniques. In the degradation of sodium p-perfluorous nonenoxybenzenesulfonate (OBS), one kind of representative PFASs, the as-synthesized ZIS showed activity superior to P25 TiO2 under both simulated sunlight and visible-light irradiation. The good photocatalytic performance was attributed to the enhanced light absorption and facilitated charge separation. The pH conditions were found crucial in the photocatalytic process by influencing the OBS adsorption on the ZIS surface. Photogenerated e- and h+ were the main active species involved in OBS degradation in the ZIS system. This work confirmed the feasibility and could provide mechanistic insights into the degradation and defluorination of PFASs by visible-light photocatalysis.


Assuntos
Fluorocarbonos , Luz , Fotólise , Fluorocarbonos/química , Nanoestruturas/química , Catálise , Poluentes Químicos da Água/química , Zinco/química , Índio/química , Modelos Químicos
2.
Biomaterials ; 312: 122744, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39106820

RESUMO

Inflammation within the central nervous system (CNS), which may be triggered by surgical trauma, has been implicated as a significant factor contributing to postoperative cognitive dysfunction (POCD). The relationship between mitigating inflammation at peripheral surgical sites and its potential to attenuate the CNS inflammatory response, thereby easing POCD symptoms, remains uncertain. Notably, carbon monoxide (CO), a gasotransmitter, exhibits pronounced anti-inflammatory effects. Herein, we have developed carbon monoxide-releasing micelles (CORMs), a nanoparticle that safely and locally liberates CO upon exposure to 650 nm light irradiation. In a POCD mouse model, treatment with CORMs activated by light (CORMs + hv) markedly reduced the concentrations of interleukin (IL)-6, IL-1ß, and tumor necrosis factor-alpha (TNF-α) in both the peripheral blood and the hippocampus, alongside a decrease in ionized calcium-binding adapter molecule 1 in the hippocampal CA1 region. Furthermore, CORMs + hv treatment diminished Evans blue extravasation, augmented the expression of tight junction proteins zonula occludens-1 and occludin, enhanced neurocognitive functions, and fostered fracture healing. Bioinformatics analysis and experimental validation has identified Htr1b and Trhr as potential key regulators in the neuroactive ligand-receptor interaction signaling pathway implicated in POCD. This work offers new perspectives on the mechanisms driving POCD and avenues for therapeutic intervention.


Assuntos
Monóxido de Carbono , Luz , Complicações Cognitivas Pós-Operatórias , Animais , Complicações Cognitivas Pós-Operatórias/etiologia , Complicações Cognitivas Pós-Operatórias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Micelas , Luz Vermelha
3.
Biomaterials ; 312: 122743, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39111233

RESUMO

Photodynamic therapy (PDT) is an appealing modality for cancer treatments. However, the limited tissue penetration depth of external-excitation light makes PDT impossible in treating deep-seated tumors. Meanwhile, tumor hypoxia and intracellular reductive microenvironment restrain the generation of reactive oxygen species (ROS). To overcome these limitations, a tumor-targeted self-illuminating supramolecular nanoparticle T-NPCe6-L-N is proposed by integrating photosensitizer Ce6 with luminol and nitric oxide (NO) for chemiluminescence resonance energy transfer (CRET)-activated PDT. The high H2O2 level in tumor can trigger chemiluminescence of luminol to realize CRET-activated PDT without exposure of external light. Meanwhile, the released NO significantly relieves tumor hypoxia via vascular normalization and reduces intracellular reductive GSH level, further enhancing ROS abundance. Importantly, due to the different ROS levels between cancer cells and normal cells, T-NPCe6-L-N can selectively trigger PDT in cancer cells while sparing normal cells, which ensured low side effect. The combination of CRET-based photosensitizer-activation and tumor microenvironment modulation overcomes the innate challenges of conventional PDT, demonstrating efficient inhibition of orthotopic and metastatic tumors on mice. It also provoked potent immunogenic cell death to ensure long-term suppression effects. The proof-of-concept research proved as a new strategy to solve the dilemma of PDT in treatment of deep-seated tumors.


Assuntos
Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Microambiente Tumoral , Fotoquimioterapia/métodos , Microambiente Tumoral/efeitos dos fármacos , Animais , Nanopartículas/química , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Humanos , Camundongos , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Transferência de Energia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Camundongos Endogâmicos BALB C , Luz , Camundongos Nus , Óxido Nítrico/metabolismo
4.
Methods Mol Biol ; 2848: 75-84, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39240517

RESUMO

Zebrafish maintain a remarkable ability to regenerate their neural retina following rapid and extensive loss of retinal neurons. This is mediated by Müller glial cells (MG), which re-enter the cell cycle to produce amplifying progenitor cells that eventually differentiate into the lost retinal neurons. For example, exposing adult albino zebrafish to intense light destroys large numbers of rod and cone photoreceptors, which are then restored by MG-mediated regeneration. Here, we describe an updated method for performing these acute phototoxic lesions to adult zebrafish retinas. Next, we contrast this method to a chronic, low light lesion model that results in a more muted and sustained damage to photoreceptors and does not trigger a MG-mediated regeneration response. Thus, these two methods can be used to compare and contrast the genetic and morphological changes associated with acute and chronic methods of photoreceptor degeneration.


Assuntos
Modelos Animais de Doenças , Degeneração Retiniana , Peixe-Zebra , Animais , Degeneração Retiniana/patologia , Degeneração Retiniana/genética , Células Ependimogliais/patologia , Células Ependimogliais/metabolismo , Luz , Células Fotorreceptoras de Vertebrados/patologia , Retina/patologia , Retina/metabolismo
5.
J Environ Sci (China) ; 150: 490-502, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306423

RESUMO

The removal of ammonia nitrogen (NH4+-N) and bacteria from aquaculture wastewater holds paramount ecological and production significance. In this study, Pt/RuO2/g-C3N4 photocatalysts were prepared by depositing Pt and RuO2 particles onto g-C3N4. The physicochemical properties of photocatalysts were explored by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-vis diffuse reflectance spectrometer (UV-vis DRS). The photocatalysts were then applied to the removal of both NH4+-N and bacteria from simulated mariculture wastewater. The results clarified that the removals of both NH4+-N and bacteria were in the sequence of g-C3N4 < RuO2/g-C3N4 < Pt/g-C3N4 < Pt/RuO2/g-C3N4. This magnificent photocatalytic ability of Pt/RuO2/g-C3N4 can be interpreted by the transfer of holes from g-C3N4 to RuO2 to facilitate the in situ generation of HClO from Cl- in wastewater, while Pt extracts photogenerated electrons for H2 formation to enhance the reaction. The removal of NH4+-N and disinfection effect were more pronounced in simulated seawater than in pure water. The removal efficiency of NH4+-N increases with an increase in pH of wastewater, while the bactericidal effect was more significant under a lower pH in a pH range of 6-9. In actual seawater aquaculture wastewater, Pt/RuO2/g-C3N4 still exhibits effective removal efficiency of NH4+-N and bactericidal performance under sunlight. This study provides an alternative avenue for removement of NH4+-N and bacteria from saline waters under sunlight.


Assuntos
Amônia , Bactérias , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Amônia/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Rutênio/química , Luz , Aquicultura/métodos , Platina/química , Catálise , Grafite , Compostos de Nitrogênio
6.
Biol Pharm Bull ; 47(10): 1600-1609, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39358239

RESUMO

Because G protein coupled receptors (GPCRs) represent the largest family of drug targets in clinical trials, GPCR signaling cascades are closely related to various physiological phenomena, attracting significant attention in pharmaceutical science. Opsins (also known as animal rhodopsins) are photoreceptive proteins containing retinal as a chromophore, which function as GPCRs and underlie the molecular basis of photoreception in animals. Recently, opsins have been progressively applied in an innovative technology called optogenetics to regulate biological activities using light. A wide variety of opsins have been identified in metazoans and characterized at the molecular and physiological levels, providing a foundation for their optogenetic applications. In this review, I briefly introduce the diversity of opsins in terms of their molecular functions, including G protein selectivity and photoreaction properties. This diversity provides a significant advantage for optically manipulating a wide variety of GPCR signaling cascades with high temporal resolution. Additionally, I discuss the rich array of opsin-based optogenetic tools used to control various physiological processes and their potential as therapeutic tools for vision restoration. Based on the introduction, I expect that the optogenetic approach will offer powerful tools to provide valuable insights into the molecular mechanisms of various physiological phenomena and next-generation treatment options for diseases beyond the capacity of traditional drugs.


Assuntos
Opsinas , Optogenética , Receptores Acoplados a Proteínas G , Optogenética/métodos , Animais , Humanos , Opsinas/metabolismo , Opsinas/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Luz
7.
Sci Rep ; 14(1): 22897, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358462

RESUMO

Antibiotics are extensively used in human medicine, aquaculture, and animal husbandry, leading to the release of antimicrobial resistance into the environment. This contributes to the rapid spread of antibiotic-resistant genes (ARGs), posing a significant threat to human health and aquatic ecosystems. Conventional wastewater treatment methods often fail to eliminate ARGs, prompting the adoption of advanced oxidation processes (AOPs) to address this growing risk. The study investigates the efficacy of visible light-driven photocatalytic systems utilizing two catalyst types (TiO2-Pd/Cu and g-C3N4-Pd/Cu), with a particular emphasis on their effectiveness in eliminating blaTEM, ermB, qnrS, tetM. intl1, 16 S rDNA and 23 S rDNA through photocatalytic ozonation and peroxone processes. Incorporating O3 into photocatalytic processes significantly enhances target removal efficiency, with the photocatalyst-assisted peroxone process emerging as the most effective AOP. The reemergence of targeted contaminants following treatment highlights the pivotal importance of AOPs and the meticulous selection of catalysts in ensuring sustained treatment efficacy. Furthermore, Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) analysis reveals challenges in eradicating GC-rich bacteria with TiO2 and g-C3N4 processes, while slight differences in Cu/Pd loadings suggest g-C3N4-based ozonation improved antibacterial effectiveness. Terminal Restriction Fragment Length Polymorphism analysis highlights the efficacy of the photocatalyst-assisted peroxone process in treating diverse samples.


Assuntos
Titânio , Titânio/química , Titânio/farmacologia , Catálise , Águas Residuárias/microbiologia , Águas Residuárias/química , Antibacterianos/farmacologia , Antibacterianos/química , Purificação da Água/métodos , Ozônio/química , Ozônio/farmacologia , Resistência Microbiana a Medicamentos/genética , Compostos de Nitrogênio/química , Luz , Nitrilas/química , Nitrilas/farmacologia , Cobre/química , Cobre/farmacologia , Genes Bacterianos , Farmacorresistência Bacteriana/genética , Oxirredução , Grafite
8.
Physiol Plant ; 176(5): e14558, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39360434

RESUMO

In this study, we explore the interplay between the plant hormones gibberellins (GA), brassinosteroids (BR), and Indole-3-Acetic Acid (IAA) in their collective impact on plant shade avoidance elongation under varying light conditions. We focus particularly on low Red:Far-red (R:FR) light conditions achieved by supplementing the background light with FR. We characterized the tomato internode response to low R:FR and, with RNA-seq analysis, we were able to identify some of the potential regulatory hormonal pathways. Through a series of exogenous pharmacological modulations of GA, IAA, and BR, we demonstrate that GA and BR are sufficient but also necessary for inducing stem elongation under low R:FR light conditions. Intriguingly, while IAA alone shows limited effects, its combination with GA yields significant elongation, suggesting a nuanced hormonal balance. Furthermore, we unveil the complex interplay of these hormones under light with low R:FR, where the suppression of one hormone's effect can be compensated by the others. This study provides insights into the hormonal mechanisms governing plant adaptation to light, highlighting the intricate and adaptable nature of plant growth responses. Our findings have far-reaching implications for agricultural practices, offering potential strategies for optimizing plant growth and productivity in various lighting environments.


Assuntos
Brassinosteroides , Giberelinas , Ácidos Indolacéticos , Luz , Reguladores de Crescimento de Plantas , Solanum lycopersicum , Giberelinas/metabolismo , Brassinosteroides/metabolismo , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/efeitos da radiação , Solanum lycopersicum/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Luz Vermelha
9.
J Med Microbiol ; 73(10)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39360708

RESUMO

Introduction. Sepsis rates are increasing, with Gram-negative organisms representing a large proportion of bloodstream infections. Rapid antibiotic administration, alongside diagnostic investigations, is required for the effective management of these patients.Gap statement. Current diagnostics take ~48 h for a final report; therefore, rapid diagnostics are required.Aim. This study investigated a novel antibiotic sensitivity method, the scattered light integrating collector (SLIC), combined with a rapid identification method using matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) technology to determine if an accurate identification and susceptibility result can be provided within 4 h of a positive blood culture report.Methodology. A total of 47 blood cultures containing Gram-negative bacteria from 46 patients were processed using the MALDI-TOF Biotyper Sepsityper for identification directly from the blood and the SLIC instrument for susceptibility testing. All organisms were also tested using the current standard workflow used in the host laboratory. Categorical agreement (CA), major errors (MaEs) and very major errors (VMEs) were determined.Results. SLIC produced susceptibility results with a 71.9% CA, 30.6% MaE and 17.5% VME. The median difference in time to the final result was 44.14 (43 : 05-45 : 15) h earlier compared to the current method.Conclusion. We conclude that SLIC was unable to consistently provide sufficiently accurate antibiotic susceptibility results compared to the current standard method.


Assuntos
Antibacterianos , Hemocultura , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Humanos , Hemocultura/métodos , Testes de Sensibilidade Microbiana/métodos , Testes de Sensibilidade Microbiana/instrumentação , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Antibacterianos/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Bacteriemia/microbiologia , Bacteriemia/diagnóstico , Sepse/diagnóstico , Sepse/microbiologia , Infecções por Bactérias Gram-Negativas/diagnóstico , Infecções por Bactérias Gram-Negativas/microbiologia , Luz
10.
AMA J Ethics ; 26(10): E804-810, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39361394

RESUMO

A star-filled sky has long been a source of awe and inspiration, and its loss adversely affects human, nonhuman, and environmental health. In one generation, this majestic nighttime overstory has been lost due to national and international overuse of light-emitting diodes lighting. This article canvasses ill health effects of excessive light at night. Blue wavelengths of light are damaging to many forms of life, and glare from unshielded light compromises road safety and infiltrates bedrooms, suppressing melatonin production, undermining sleep quality and duration, and exacerbating susceptibility to many kinds of illness.


Assuntos
Iluminação , Humanos , Sono , Melatonina , Luz/efeitos adversos
11.
Nat Commun ; 15(1): 8489, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39353942

RESUMO

Plants growing at high densities can detect competitors through changes in the composition of light reflected by neighbours. In response to this far-red-enriched light, plants elicit adaptive shade avoidance responses for light capture, but these need to be balanced against other input signals, such as nutrient availability. Here, we investigated how Arabidopsis integrates shade and nitrate signalling. We unveiled that nitrate modulates shade avoidance via a previously unknown shade response pathway that involves root-derived trans-zeatin (tZ) signal and the BEE1 transcription factor as an integrator of light and cytokinin signalling. Under nitrate-sufficient conditions, tZ promotes hypocotyl elongation specifically in the presence of supplemental far-red light. This occurs via PIF transcription factors-dependent inhibition of type-A ARRs cytokinin response inhibitors. Our data thus reveal how plants co-regulate responses to shade cues with root-derived information about nutrient availability, and how they restrict responses to this information to specific light conditions in the shoot.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Citocininas , Regulação da Expressão Gênica de Plantas , Luz , Nitratos , Fitocromo , Raízes de Plantas , Transdução de Sinais , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Nitratos/metabolismo , Citocininas/metabolismo , Citocininas/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Fitocromo/metabolismo , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Zeatina/metabolismo , Zeatina/farmacologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
12.
Microb Ecol ; 87(1): 114, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259373

RESUMO

Biofilms are considered a basal resource with high nutritional quality in stream food webs, as periphytic algae are abundant of polyunsaturated fatty acids (PUFAs). PUFAs are essential for growth and reproduction of consumers who cannot or have very limited capacity to biosynthesize. Yet, how the nutritional quality based on PUFA of basal food sources changes with light intensity remains unclear. We conducted a manipulative experiment in mesocosms to explore the response and mechanisms of nutritional quality to shading, simulating riparian restoration. We found a significant increase in PUFA% (including arachidonic acid, ARA) under shading conditions. The increased PUFA is caused by the algal community succession from Cyanobacteria and Chlorophyta to Bacillariophyta which is abundant of PUFA (especially eicosapentaenoic acid, EPA; docosahexaenoic acid, DHA). On the other hand, shading increased PUFA via upregulating enzymes such as Δ12 desaturase (FAD2, EC:1.14.19.6) and 3-ketoacyl-CoA synthase (KCS, EC:2.3.1.199) in the biosynthesis of unsaturated fatty acid elongation pathways. Our findings imply that riparian reforestation by decreasing light intensity increases the nutritional quality of basal resources in streams, which may enhance transfer of good quality carbon to consumers in higher trophic levels through bottom-up effects.


Assuntos
Ácidos Graxos Insaturados , Cadeia Alimentar , Luz , Rios , Rios/microbiologia , Rios/química , Ácidos Graxos Insaturados/análise , Ácidos Graxos Insaturados/metabolismo , Cianobactérias/metabolismo , Cianobactérias/crescimento & desenvolvimento , Clorófitas/metabolismo , Clorófitas/crescimento & desenvolvimento , Diatomáceas/metabolismo , Diatomáceas/crescimento & desenvolvimento , Valor Nutritivo
13.
Sci Rep ; 14(1): 21011, 2024 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251768

RESUMO

Rice is one of the major food crops grown globally. However, during the wet season, rice suffers significant yield loss due to reduced light intensity caused by overcast clouds when the light intensity is only around 450-500 µmol/m2/s, compared to 1400-1800 µmol/m2/s in summer. This reduction in light intensity leads to a decrease in seed yield, mainly by limiting tiller or panicle numbers. Yield and its attributing parameters were recorded in one hundred thirty RILs for four consecutive wet seasons in ambient light (AL) and low light (LL, 35% light-cut using white shade net). QTL analysis was performed using Inclusive Composite Interval Mapping (ICIM) with all the phenotypic data and 927 polymorphic SNPs identified by the 7 K Infinium chip. The study identified a large QTL influencing panicle numbers and yield exclusively in lowlight on chromosome 1 (qPNLL1.1, qGYLL1.1) in four consecutive seasons with LOD > 10 and PVE > 30%. The favourable alleles are from the tolerant parent, Swarnaprabha. Another grain yield improving QTL was identified on chromosome 6 (qGYLL6.1), with LOD > 3 in three consecutive seasons. In a diverse rice panel of one hundred seventeen genotypes with five different models, association analysis identified the associated marker for panicle numbers and grain yield in LL, which is also the left marker of the newly identified QTLs for the traits under LL condition. A shade-responsive gene, monoculm 2 (MOC2, LOC_Os01g64660) inside the QTL on chromosome 1, upregulated in the tolerant parent and its QTL-carrying RILs, whereas repressed in the susceptible one. Therefore, due to its significant additive effect and validation across various genotypes, the yield-improving QTL on chromosome 1 can be directly utilised in marker-assisted selection (MAS) for developing shade-tolerant rice. This can also help reduce the yield gap between wet and dry-season rice.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas , Luz , Oryza , Locos de Características Quantitativas , Oryza/genética , Oryza/crescimento & desenvolvimento , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Fenótipo , Polimorfismo de Nucleotídeo Único
14.
Optom Vis Sci ; 101(8): 508-513, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39259700

RESUMO

SIGNIFICANCE: High-energy visible (HEV) light-filtering spectacle lenses are being widely promoted despite limited evidence to support their use. The spectral transmission properties of commercially available lenses varied, particularly in the HEV light region, and they do not perform in the same way for transmission of ultraviolet (UV)-A and HEV light. PURPOSE: Although HEV light is important for several visual and nonvisual functions, there are concerns over the potential adverse effects of increased HEV light exposure. High-energy visible light-filtering spectacle lenses are being widely marketed to promote ocular health and improve sleep by reducing exposure to HEV light. This study reports on the spectral transmission characteristics of commercially available HEV light-filtering spectacle lenses based on the recommendations of the Spectral Bands Task Force technical report. METHODS: The spectral transmission of light through nine afocal plastic lenses, including eight commercially available HEV light-filtering lenses and one clear uncoated control lens, was evaluated using a Cary 5000 UV-Vis-NIR spectrophotometer (Agilent Technologies, Johannesburg, South Africa) for wavelengths 250 to 780 nm. The percentage transmission values are reported for UV radiation and visible light, with emphasis for HEV light (380 to 500 nm) and the three subbands therein. RESULTS: All lenses blocked UV-C and UV-B radiation (250 to 315 nm). For UV-A radiation (315 to 380 nm), six lenses showed optimal 100% absorption, whereas three lenses allowed ≤12%. The transmission values for the HEV light-filtering lenses ranged from 55 to 90% and 75 to 95% for HEV light of wavelengths 400 to 455 nm and 455 to 500 nm, respectively. In contrast, the control lens showed 92 (400 to 455 nm) and 93% (455 to 500 nm) transmission. CONCLUSIONS: The HEV light-filtering spectacle lenses varied in their transmission properties and do not necessarily perform in the same way for transmission of UV-A and HEV light. Optometric personnel should consider these transmission properties, particularly for HEV light, when making recommendations to patients about HEV light-filtering spectacle lenses.


Assuntos
Desenho de Equipamento , Óculos , Luz , Humanos , Raios Ultravioleta
15.
J Photochem Photobiol B ; 259: 113023, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39241393

RESUMO

Pseudomonas aeruginosa, a notable pathogen frequently associated with hospital-acquired infections, displays diverse intrinsic and acquired antibiotic resistance mechanisms, posing a significant challenge in infection management. Antimicrobial blue light (aBL) has been demonstrated as a potential alternative for treating P. aeruginosa infections. In this study, we investigated the impact of blue light wavelength, bacterial growth stage, and growth medium composition on the efficacy of aBL. First, we compared the efficacy of light wavelengths 405 nm, 415 nm, and 470 nm in killing three multidrug resistant clinical strains of P. aeruginosa. The findings indicated considerably higher antibacterial efficacy for 405 nm and 415 nm wavelength compared to 470 nm. We then evaluated the impact of the bacterial growth stage on the efficacy of 405 nm light in killing P. aeruginosa using a reference strain PAO1 in exponential, transitional, or stationary phase. We found that bacteria in the exponential phase were the most susceptible to aBL, followed by the transitional phase, while those in the stationary phase exhibited the highest tolerance. Additionally, we quantified the production of reactive oxygen species (ROS) in bacteria using the 2',7'-dichlorofluorescein diacetate (DCFH-DA) probe and flow cytometry, and observed a positive correlation between aBL efficacy and ROS production. Finally, we determined the influence of growth medium on aBL efficacy. PAO1 was cultivated in brain heart infusion (BHI), Luria-Bertani (LB) broth or Casamino acids (CAA) medium, before being irradiated with aBL at 405 nm. The CAA-grown bacteria exhibited the highest sensitivity to aBL, followed by those grown in LB broth, and the BHI-grown bacteria demonstrated the lowest sensitivity. By incorporating FeCl3, MnCl2, ZnCl2, or the iron chelator 2,2'-bipyridine (BIP) into specific media, we discovered that aBL efficacy was affected by the iron levels in culture media.


Assuntos
Meios de Cultura , Luz , Pseudomonas aeruginosa , Espécies Reativas de Oxigênio , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Meios de Cultura/química , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Luz Azul
16.
Nat Commun ; 15(1): 8032, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271649

RESUMO

Shade avoidance helps plants maximize their access to light for growth under crowding. It is unknown, however, whether a priming shade avoidance mechanism exists that allows plants to respond more effectively to successive shade conditions. Here, we show that the shade-intolerant plant Arabidopsis can remember a first experienced shade event and respond more efficiently to the next event on hypocotyl elongation. The transcriptional regulator PHYTOCHROME-INTERACTING FACTOR 7 (PIF7) and the histone H3K27-demethylase RELATIVE OF EARLY FLOWERING 6 (REF6) are identified as being required for this shade avoidance memory. RNA-sequencing analysis reveals that shade induction of shade-memory-related genes is impaired in the pif7 and ref6 mutants. Based on the analyses of enrichments of H3K27me3, REF6 and PIF7, we find that priming shade treatment induces PIF7 accumulation, which further recruits REF6 to demethylate H3K27me3 on the chromatin of certain shade-memory-related genes, leading to a state poised for their transcription. Upon a second shade treatment, enhanced shade-mediated inductions of these genes result in stronger hypocotyl growth responses. We conclude that the transcriptional memory mediated by epigenetic modification plays a key role in the ability of primed plants to remember previously experienced shade and acquire enhanced responses to recurring shade conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Ligação a DNA , Regulação da Expressão Gênica de Plantas , Hipocótilo , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Histonas/metabolismo , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/genética , Hipocótilo/metabolismo , Luz , Mutação , Fatores de Transcrição/metabolismo
17.
Sci Rep ; 14(1): 21895, 2024 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300137

RESUMO

Pupillometry is widely used to measure arousal states. The primary functional role of the pupil, however, is to respond to the luminance of visual inputs. We previously demonstrated that cognitive effort-related arousal interacted multiplicatively with luminance, with the strongest pupillary effects of arousal occurring at low-to-mid luminances (< 37 cd/m2), implying a narrow range of conditions ideal for assessing cognitive arousal-driven pupillary differences. Does this generalize to other forms of arousal? To answer this, we assessed luminance-driven pupillary response functions while manipulating emotional arousal, using well-established visual and auditory stimulus sets. At the group level, emotional arousal interacted with the pupillary light response differently from cognitive arousal: the effects occurred primarily at much lower luminances (< 20 cd/m2). Analyses at the individual-participant level revealed qualitatively distinct patterns of modulation, with a sizable number of individuals displaying no arousal response to the visual or auditory stimuli, regardless of luminance. Together, our results suggest that effects of arousal on pupil size are not monolithic: different forms of arousal exert different patterns of effects. More practically, our findings suggest that lower luminances create better conditions for measuring pupil-linked arousal, and when selecting ambient luminance levels, consideration of the arousal manipulation and individual differences is critical.


Assuntos
Nível de Alerta , Emoções , Estimulação Luminosa , Pupila , Humanos , Pupila/fisiologia , Nível de Alerta/fisiologia , Emoções/fisiologia , Masculino , Feminino , Adulto , Adulto Jovem , Luz , Estimulação Acústica
18.
J Chem Phys ; 161(12)2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39311078

RESUMO

Understanding how the structure of molecules affects their permeability across cell membranes is crucial for many topics in biomedical research, including the development of drugs. In this work, we examine the transport rates of structurally similar triphenylmethane dyes, malachite green (MG) and brilliant green (BG), across the membranes of living Escherichia coli (E. coli) cells and biomimetic liposomes. Using the time-resolved second harmonic light scattering technique, we found that BG passively diffuses across the E. coli cytoplasmic membrane (CM) 3.8 times faster than MG. In addition, BG exhibits a diffusion rate 3.1 times higher than MG across the membranes of liposomes made from E. coli polar lipid extracts. Measurements on these two molecules, alongside previously studied crystal violet (CV), another triphenylmethane molecule, are compared against the set of propensity rules developed by Lipinski and co-workers for assessing the permeability of hydrophobic ion-like drug molecules through biomembranes. It indicates that BG's increased diffusion rate is due to its higher lipophilicity, with a distribution coefficient 25 times greater than MG. In contrast, CV, despite having similar lipophilicity to MG, shows negligible permeation through the E. coli CM on the observation scale, attributed to its more hydrogen bonding sites and larger polar surface area. Importantly, cell viability tests revealed that BG's antimicrobial efficacy is ∼2.4 times greater than that of MG, which aligns well with its enhanced diffusion into the E. coli cytosol. These findings offer valuable insights for drug design and development, especially for improving the permeability of poorly permeable drug molecules.


Assuntos
Membrana Celular , Escherichia coli , Compostos de Tritil , Escherichia coli/efeitos dos fármacos , Escherichia coli/química , Difusão , Membrana Celular/química , Membrana Celular/metabolismo , Compostos de Tritil/química , Estrutura Molecular , Lipossomos/química , Permeabilidade da Membrana Celular , Luz , Espalhamento de Radiação
19.
Diabetes Metab J ; 48(5): 847-863, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39313230

RESUMO

The widespread and pervasive use of artificial light at night (ALAN) in our modern 24-hour society has emerged as a substantial disruptor of natural circadian rhythms, potentially leading to a rise in unhealthy lifestyle-related behaviors (e.g., poor sleep; shift work). This phenomenon has been associated with an increased risk of type 2 diabetes mellitus (T2DM), which is a pressing global public health concern. However, to date, reviews summarizing associations between ALAN and T2DM have primarily focused on the limited characteristics of exposure (e.g., intensity) to ALAN. This literature review extends beyond prior reviews by consolidating recent studies from 2000 to 2024 regarding associations between both indoor and outdoor ALAN exposure and the incidence or prevalence of T2DM. We also described potential biological mechanisms through which ALAN modulates glucose metabolism. Furthermore, we outlined knowledge gaps and investigated how various ALAN characteristics beyond only light intensity (including light type, timing, duration, wavelength, and individual sensitivity) influence T2DM risk. Recognizing the detrimental impact of ALAN on sleep health and the behavioral correlates of physical activity and dietary patterns, we additionally summarized studies investigating the potential mediating role of each component in the relationship between ALAN and glucose metabolism. Lastly, we proposed implications of chronotherapies and chrononutrition for diabetes management in the context of ALAN exposure.


Assuntos
Ritmo Circadiano , Diabetes Mellitus Tipo 2 , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/etiologia , Humanos , Ritmo Circadiano/fisiologia , Iluminação/efeitos adversos , Sono/fisiologia , Fatores de Risco , Luz/efeitos adversos , Exercício Físico/fisiologia , Glicemia/metabolismo
20.
Luminescence ; 39(9): e4901, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39315403

RESUMO

In this research, the impact of the different zinc (Zn) concentrations on the physical and optoelectronic properties of Bi2S3 nanorods as self-powered and photodiode applications was investigated. The performance of P-N junction photodiodes has been for decades since they are crucial in energy applications. The structure, degree of crystallinity, and shape of Zn-doped Bi2S3 nanorods of various doping percentages formed onto the indium tin oxide (ITO) substrates by the dip coating technique are investigated using X-ray powder diffraction (XRD) and SEM. With increasing illumination time, the current-voltage (I-V) graphs demonstrate a rise in photocurrent. The diode's idealist factor was estimated using the I-V technique under 30 min of light illumination.


Assuntos
Bismuto , Nanotubos , Sulfetos , Zinco , Bismuto/química , Zinco/química , Nanotubos/química , Sulfetos/química , Compostos de Estanho/química , Tamanho da Partícula , Difração de Raios X , Luz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA