Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.382
Filtrar
1.
J Environ Sci (China) ; 149: 535-550, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181665

RESUMO

Li6ZnO4 was chemically modified by nickel addition, in order to develop different compositions of the solid solution Li6Zn1-xNixO4. These materials were evaluated bifunctionally; analyzing their CO2 capture performances, as well as on their catalytic properties for H2 production via dry reforming of methane (DRM). The crystal structures of Li6Zn1-xNixO4 solid solution samples were determined through X-ray diffraction, which confirmed the integration of nickel ions up to a concentration around 20 mol%, meanwhile beyond this value, a secondary phase was detected. These results were supported by XPS and TEM analyses. Then, dynamic and isothermal thermogravimetric analyses of CO2 capture revealed that Li6Zn1-xNixO4 solid solution samples exhibited good CO2 chemisorption efficiencies, similarly to the pristine Li6ZnO4 chemisorption trends observed. Moreover, a kinetic analysis of CO2 isothermal chemisorptions, using the Avrami-Erofeev model, evidenced an increment of the constant rates as a function of the Ni content. Since Ni2+ ions incorporation did not reduce the CO2 capture efficiency and kinetics, the catalytic properties of these materials were evaluated in the DRM process. Results demonstrated that nickel ions favored hydrogen (H2) production over the pristine Li6ZnO4 phase, despite a second H2 production reaction was determined, methane decomposition. Thereby, Li6Zn1-xNixO4 ceramics can be employed as bifunctional materials.


Assuntos
Dióxido de Carbono , Hidrogênio , Metano , Hidrogênio/química , Metano/química , Dióxido de Carbono/química , Níquel/química , Catálise , Modelos Químicos
2.
J Environ Sci (China) ; 147: 36-49, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003054

RESUMO

Anaerobic digestion (AD) is widely employed for sludge stabilization and waste reduction. However, the slow hydrolysis process hinders methane production and leads to prolonged sludge issues. In this study, an efficient and eco-friendly lysozyme pre-treatment method was utilized to address these challenges. By optimizing lysozyme dosage, hydrolysis and cell lysis were maximized. Furthermore, lysozyme combined with hydrothermal pretreatment enhanced overall efficiency. Results indicate that: (1) When lysozyme dosage reached 90 mg/g TS after 240 min of pretreatment, SCOD, soluble polysaccharides, and protein content reached their maxima at 855.00, 44.09, and 204.86 mg/L, respectively. This represented an increase of 85.87%, 365.58%, and 259.21% compared to the untreated sludge. Three-dimensional fluorescence spectroscopy revealed the highest fluorescence intensity in the IV region (soluble microbial product), promoting microbial metabolic activity. (2) Lysozyme combined with hydrothermal pretreatment significantly increased SCOD, soluble proteins, and polysaccharide release from sludge, reducing SCOD release time. Orthogonal experiments identified Group 3 as the most effective for SCOD and soluble polysaccharide release, while Group 9 released the most soluble proteins. The significance order of factors influencing SCOD, soluble proteins, and polysaccharide release is hydrothermal temperature > hydrothermal time > enzymatic digestion time.(3) The lysozyme-assisted hydrothermal pretreatment group exhibited the fastest release and the highest SCOD concentration of 8,135.00 mg/L during anaerobic digestion. Maximum SCOD consumption and cumulative gas production increased by 95.89% and 130.58%, respectively, compared to the control group, allowing gas production to conclude 3 days earlier.


Assuntos
Muramidase , Esgotos , Eliminação de Resíduos Líquidos , Muramidase/metabolismo , Esgotos/química , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Metano , Hidrólise
3.
J Environ Sci (China) ; 148: 274-282, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095164

RESUMO

Developing cost-effective and high-performance catalyst systems for dry reforming of methane (DRM) is crucial for producing hydrogen (H2) sustainably. Herein, we investigate using iron (Fe) as a promoter and major alumina support in Ni-based catalysts to improve their DRM performance. The addition of iron as a promotor was found to add reducible iron species along with reducible NiO species, enhance the basicity and induce the deposition of oxidizable carbon. By incorporating 1 wt.% Fe into a 5Ni/10ZrAl catalyst, a higher CO2 interaction and formation of reducible "NiO-species having strong interaction with support" was observed, which led to an ∼80% H2 yield in 420 min of Time on Stream (TOS). Further increasing the Fe content to 2wt% led to the formation of additional reducible iron oxide species and a noticeable rise in H2 yield up to 84%. Despite the severe weight loss on Fe-promoted catalysts, high H2 yield was maintained due to the proper balance between the rate of CH4 decomposition and the rate of carbon deposit diffusion. Finally, incorporating 3 wt.% Fe into the 5Ni/10ZrAl catalyst resulted in the highest CO2 interaction, wide presence of reducible NiO-species, minimum graphitic deposit and an 87% H2 yield. Our findings suggest that iron-promoted zirconia-alumina-supported Ni catalysts can be a cheap and excellent catalytic system for H2 production via DRM.


Assuntos
Óxido de Alumínio , Hidrogênio , Ferro , Metano , Níquel , Zircônio , Metano/química , Zircônio/química , Catálise , Ferro/química , Hidrogênio/química , Óxido de Alumínio/química , Níquel/química
4.
J Environ Sci (China) ; 148: 321-335, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095168

RESUMO

Sewage sludge in cities of Yangzi River Belt, China, generally exhibits a lower organic content and higher silt contentdue to leakage of drainage system, which caused low bioenergy recovery and carbon emission benefits in conventional anaerobic digestion (CAD). Therefore, this paper is on a pilot scale, a bio-thermophilic pretreatment anaerobic digestion (BTPAD) for low organic sludge (volatile solids (VS) of 4%) was operated with a long-term continuous flow of 200 days. The VS degradation rate and CH4 yield of BTPAD increased by 19.93% and 53.33%, respectively, compared to those of CAD. The analysis of organic compositions in sludge revealed that BTPAD mainly improved the hydrolysis of proteins in sludge. Further analysis of microbial community proportions by high-throughput sequencing revealed that the short-term bio-thermophilic pretreatment was enriched in Clostridiales, Coprothermobacter and Gelria, was capable of hydrolyzing acidified proteins, and provided more volatile fatty acid (VFA) for the subsequent reaction. Biome combined with fluorescence quantitative polymerase chain reaction (PCR) analysis showed that the number of bacteria with high methanogenic capacity in BTPAD was much higher than that in CAD during the medium temperature digestion stage, indicating that short-term bio-thermophilic pretreatment could provide better methanogenic conditions for BTPAD. Furthermore, the greenhouse gas emission footprint analysis showed that short-term bio-thermophilic pretreatment could reduce the carbon emission of sludge anaerobic digestion system by 19.18%.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/microbiologia , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Projetos Piloto , Reatores Biológicos/microbiologia , Metano/metabolismo , Metano/análise , Carbono/metabolismo , Carbono/análise , China , Biocombustíveis
5.
Environ Monit Assess ; 196(10): 882, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223393

RESUMO

The study characterized the temporal and spatial variability in greenhouse gas (GHG) fluxes (CO2, CH4, and N2O) between December 2020 and November 2021 and their regulating drivers in the subtropical wetland of the Indian Himalayan foothill. Five distinct habitats (M1-sloppy surface at swamp forest, M2-plain surface at swamp forest, M3-swamp surface with small grasses, M4-marshy land with dense macrophytes, and M5-marshy land with sparse macrophytes) were studied. We conducted in situ measurements of GHG fluxes, microclimate (AT, ST, and SMC(v/v)), and soil properties (pH, EC, N, P, K, and SOC) in triplicates in all the habitat types. Across the habitats, CO2, CH4, and N2O fluxes ranged from 125 to 536 mg m-2 h-1, 0.32 to 28.4 mg m-2 h-1, and 0.16 to 3.14 mg m-2 h-1, respectively. The habitats (M3 and M5) exhibited higher GHG fluxes than the others. The CH4 flux followed the summer > autumn > spring > winter hierarchy. However, CO2 and N2O fluxes followed the summer > spring > autumn > winter. CO2 fluxes were primarily governed by ST and SOC. However, CH4 and N2O fluxes were mainly regulated by ST and SMC(v/v) across the habitats. In the case of N2O fluxes, soil P and EC also played a crucial role across the habitats. AT was a universal driver controlling all GHG fluxes across the habitats. The results emphasize that long-term GHG flux monitoring in sub-tropical Himalayan Wetlands has become imperative to accurately predict the near-future GHG fluxes and their changing nature with the ongoing climate change.


Assuntos
Poluentes Atmosféricos , Dióxido de Carbono , Monitoramento Ambiental , Gases de Efeito Estufa , Metano , Áreas Alagadas , Gases de Efeito Estufa/análise , Metano/análise , Índia , Poluentes Atmosféricos/análise , Dióxido de Carbono/análise , Óxido Nitroso/análise , Ecossistema , Solo/química
6.
Microbiome ; 12(1): 166, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39244624

RESUMO

BACKGROUND: Microbial anaerobic metabolism is a key driver of biogeochemical cycles, influencing ecosystem function and health of both natural and engineered environments. However, the temporal dynamics of the intricate interactions between microorganisms and the organic metabolites are still poorly understood. Leveraging metagenomic and metabolomic approaches, we unveiled the principles governing microbial metabolism during a 96-day anaerobic bioreactor experiment. RESULTS: During the turnover and assembly of metabolites, homogeneous selection was predominant, peaking at 84.05% on day 12. Consistent dynamic coordination between microbes and metabolites was observed regarding their composition and assembly processes. Our findings suggested that microbes drove deterministic metabolite turnover, leading to consistent molecular conversions across parallel reactors. Moreover, due to the more favorable thermodynamics of N-containing organic biotransformations, microbes preferentially carried out sequential degradations from N-containing to S-containing compounds. Similarly, the metabolic strategy of C18 lipid-like molecules could switch from synthesis to degradation due to nutrient exhaustion and thermodynamical disadvantage. This indicated that community biotransformation thermodynamics emerged as a key regulator of both catabolic and synthetic metabolisms, shaping metabolic strategy shifts at the community level. Furthermore, the co-occurrence network of microbes-metabolites was structured around microbial metabolic functions centered on methanogenesis, with CH4 as a network hub, connecting with 62.15% of total nodes as 1st and 2nd neighbors. Microbes aggregate molecules with different molecular traits and are modularized depending on their metabolic abilities. They established increasingly positive relationships with high-molecular-weight molecules, facilitating resource acquisition and energy utilization. This metabolic complementarity and substance exchange further underscored the cooperative nature of microbial interactions. CONCLUSIONS: All results revealed three key rules governing microbial anaerobic degradation. These rules indicate that microbes adapt to environmental conditions according to their community-level metabolic trade-offs and synergistic metabolic functions, further driving the deterministic dynamics of molecular composition. This research offers valuable insights for enhancing the prediction and regulation of microbial activities and carbon flow in anaerobic environments. Video Abstract.


Assuntos
Biodegradação Ambiental , Reatores Biológicos , Metabolômica , Microbiota , Anaerobiose , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Metagenômica , Metano/metabolismo , Termodinâmica , Multiômica
7.
Environ Microbiol Rep ; 16(5): e70002, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232853

RESUMO

The potential positive feedback between global aquatic deoxygenation and methane (CH4) emission emphasizes the importance of understanding CH4 cycling under O2-limited conditions. Increasing observations for aerobic CH4-oxidizing bacteria (MOB) under anoxia have updated the prevailing paradigm that MOB are O2-dependent; thus, clarification on the metabolic mechanisms of MOB under anoxia is critical and timely. Here, we mapped the global distribution of MOB under anoxic aquatic zones and summarized four underlying metabolic strategies for MOB under anoxia: (a) forming a consortium with oxygenic microorganisms; (b) self-generation/storage of O2 by MOB; (c) forming a consortium with non-oxygenic heterotrophic bacteria that use other electron acceptors; and (d) utilizing alternative electron acceptors other than O2. Finally, we proposed directions for future research. This study calls for improved understanding of MOB under anoxia, and underscores the importance of this overlooked CH4 sink amidst global aquatic deoxygenation.


Assuntos
Ecossistema , Metano , Oxirredução , Oxigênio , Metano/metabolismo , Oxigênio/metabolismo , Anaerobiose , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Aerobiose , Consórcios Microbianos
8.
Microbes Environ ; 39(3)2024.
Artigo em Inglês | MEDLINE | ID: mdl-39261060

RESUMO

Paddy fields are a major emission source of the greenhouse gas methane. In the present study, the addition of ferrihydrite to xylan-amended paddy soil microcosms suppressed methane emissions. PCR-based and metatranscriptomic ana-lyses revealed that the addition of ferrihydrite suppressed methanogenesis by heterogeneous methanogens and simultaneously activated Geobacteraceae, the most abundant iron-reducing diazotrophs. Geobacteraceae may preferentially metabolize xylan and/or xylan-derived carbon compounds that are utilized by methanogens. Geomonas terrae R111 utilized xylan as a growth substrate under liquid culture conditions. This may constitute a novel mechanism for the mitigation of methane emissions previously observed in ferric iron oxide-applied paddy field soils.


Assuntos
Compostos Férricos , Metano , Microbiologia do Solo , Xilanos , Metano/metabolismo , Compostos Férricos/metabolismo , Xilanos/metabolismo , Solo/química , Oxirredução , Ferro/metabolismo
9.
PeerJ ; 12: e17920, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247542

RESUMO

This study was performed to evaluate the effects of rye silage treated with sodium formate (Na-Fa) and lactic acid bacteria (LAB) inoculants on the ruminal fermentation characteristics, methane yield and energy balance in Hanwoo steers. Forage rye was harvested in May 2019 and ensiled without additives (control) or with either a LAB inoculant or Na-Fa. The LAB (Lactobacillus plantarum) were inoculated at 1.5 × 1010 CFU/g fresh matter, and the inoculant was sprayed onto the forage rye during wrapping at a rate of 4 L/ton of fresh rye forage. Sixteen percent of the Na-Fa solution was sprayed at a rate of approximately 6.6 L/ton. Hanwoo steers (body weight 275 ± 8.4 kg (n = 3, group 1); average body weight 360 ± 32.1 kg (n = 3, group 2)) were allocated into two pens equipped with individual feeding gates and used in duplicated 3 × 3 Latin square design. The experimental diet was fed twice daily (09:00 and 18:00) during the experimental period. Each period comprised 10 days for adaptation to the pen and 9 days for measurements in a direct respiratory chamber. The body weights of the steers were measured at the beginning and at the end of the experiment. Feces and urine were collected for 5 days after 1 day of adaptation to the chamber, methane production was measured for 2 days, and ruminal fluid was collected on the final day. In the LAB group, the ratio of acetic acid in the rumen fluid was significantly lower (p = 0.044) and the ratio of propionic acid in the rumen fluid was significantly higher (p = 0.017). Methane production per DDMI of the Na-FA treatment group was lower than that of the other groups (p = 0.052), and methane production per DNDFI of the LAB treatment group was higher than that of the other groups (p = 0.056). The use of an acid-based additive in silage production has a positive effect on net energy and has the potential to reduce enteric methane emissions in ruminants.


Assuntos
Metabolismo Energético , Fermentação , Formiatos , Metano , Rúmen , Secale , Silagem , Animais , Bovinos , Metano/biossíntese , Metano/metabolismo , Silagem/análise , Silagem/microbiologia , Formiatos/farmacologia , Formiatos/metabolismo , Rúmen/microbiologia , Rúmen/metabolismo , Masculino , Fermentação/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Lactobacillus plantarum/metabolismo , Ração Animal/análise
10.
Molecules ; 29(17)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39275023

RESUMO

The reaction between glycine-type aminonaphthol derivatives substituted with 2- or 1-naphthol and indole or 7-azaindole has been tested. Starting from 2-naphthol as a precursor, the reaction led to the formation of ring-closed products, while in the case of a 1-naphthol-type precursor, the desired biaryl ester was isolated. The synthesis of a bifunctional precursor starting from 5-chloro-8-hydroxyquinoline, morpholine, and ethyl glyoxylate via modified Mannich reaction is reported. The formed Mannich base 10 was subjected to give bioconjugates with indole and 7-azaindole. The effect of the aldehyde component and the amine part of the Mannich base on the synthetic pathway was also investigated. In favor of having a preliminary overview of the structure-activity relationships, the derivatives have been tested on cancer and normal cell lines. In the case of bioconjugate 16, as the most powerful scaffold in the series bearing indole and a 5-chloro-8-hydroxyquinoline skeleton, a potent toxic activity against the resistant Colo320 colon adenocarcinoma cell line was observed. Furthermore, this derivative was selective towards cancer cell lines showing no toxicity on non-tumor fibroblast cells.


Assuntos
Antineoplásicos , Indóis , Humanos , Indóis/química , Indóis/farmacologia , Indóis/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Oxiquinolina/química , Oxiquinolina/farmacologia , Metano/química , Metano/análogos & derivados , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais
11.
Bioresour Technol ; 412: 131384, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39218362

RESUMO

Insect-based protein production has gained traction in recent years. This has led to the increasing production of frass, the residual substrate from insect farming. As a relatively new substrate with characteristics that are not widely known, its energetic potential still needs to be investigated. In this context, this literature review aims to evaluate the potential of frass as a feedstock for bioenergy production through anaerobic digestion. From the literature search, 11 studies were selected, and showed a wide range of biogas (44 m3/ton VS to 668 m3/ton VS) and methane (26 m3/ton VS to 502 m3/ton VS) production potentials from insect frass, mostly comparable with traditional biomasses of liquid and solid slurry. Results are influenced by factors such as substrate type, digestion conditions and presence of co-digestion substrates. The need of further investigation on the economic viability has been highlighted, with a focus on the possibility of upgrading biogas to vehicle-grade biomethane.


Assuntos
Biocombustíveis , Insetos , Metano , Metano/metabolismo , Animais , Anaerobiose , Biomassa
12.
Bioresour Technol ; 412: 131410, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39226940

RESUMO

Temperature is the critical factor affecting the efficiency and cost of anaerobic digestion (AD). The current work develops a shift-temperature AD (STAD) between 35 °C and 55 °C, intending to optimise microbial community and promote substrate conversion. The experimental results showed that severe inhibition of biogas production occurred when the temperature was firstly increased stepwise from 35 °C to 50 °C, whereas no inhibition was observed at the second warming cycle. When the organic load rate was increased to 6.37 g VS/L/d, the biogas yield of the STAD reached about 400 mL/g VS, nearly double that of the constant-temperature AD (CTAD). STAD promoted the proliferation of Methanosarcina (up to 57.32 %), while severely suppressed hydrogenophilic methanogens. However, when the temperature was shifted to 35 °C, most suppressed species recovered quickly and the excess propionic acid was quickly consumed. Metagenomic analysis showed that STAD also promoted gene enrichment related to pathways metabolism, membrane functions, and methyl-based methanogenesis.


Assuntos
Biocombustíveis , Temperatura , Anaerobiose , Biocombustíveis/microbiologia , Reatores Biológicos/microbiologia , Metano/metabolismo , Methanosarcina/metabolismo , Microbiota/fisiologia
13.
Bioresour Technol ; 412: 131414, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39226941

RESUMO

Anaerobic electrochemical digestion (AED) is an effective system for recovering biogas from organic wastes. However, the effects of different anode potentials on anaerobic activated sludge remain unclear. This study confirmed that biofilms exhibited the best electroactivity at -0.2 V (vs. Ag/AgCl) compared to -0.4 V and 0 V. Gas was further regulated, with the highest hydrogen content (47 ± 7 %) observed at -0.2 V. The 0 V system produced the largest amount of methane (70 ± 8 %) and exhibited the greatest presence of hydrogen-utilizing microorganisms. The gas yield at -0.4 V was the lowest, with no hydrogen detected. Excess bioelectrohydrogen at -0.2 V and 0 V caused the co-enrichment of Methanobacterium and Acetoanaerobium, establishing a thermodynamically feasible current-acetate-hydrogen electron cycle to improve electrogenesis. These results provide insights into the regulatory strategies of MEC technology during anaerobic digestion, which play a decisive role in determining the composition of biogas.


Assuntos
Eletrodos , Hidrogênio , Metano , Microbiota , Anaerobiose , Hidrogênio/metabolismo , Metano/metabolismo , Microbiota/fisiologia , Gases , Esgotos/microbiologia , Biocombustíveis , Técnicas Eletroquímicas/métodos , Biofilmes
14.
Bioresour Technol ; 412: 131415, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39233184

RESUMO

Bacterioruberin is widely used in medicine, food, and cosmetics owing to its prominent characteristics of antioxidants and bioactivities. Bioconversion of methane into bacterioruberin is a promising way to address biomanufacturing substrate costs and greenhouse gas emissions but has not been achieved yet. Herein, this study aimed to upcycle methane to bacterioruberin by microbial consortia. The microbial consortia consist of Methylomonas and Methylophilus capable of synthesizing carotenoids from methane was firstly enriched from paddy soil. Through this microbial community, methane was successfully converted into C50 bacterioruberin for the first time. The bioconversion process was then optimized by the response surface methodology. Finally, the methane-derived bacterioruberin reached a record yield of 280.88 ± 2.94 µg/g dry cell weight. This study presents a cost-effective and eco-friendly approach for producing long-chain carotenoids from methane, offering a significant advancement in the direct conversion of greenhouse gases into value-added products.


Assuntos
Carotenoides , Metano , Consórcios Microbianos , Microbiologia do Solo , Metano/metabolismo , Carotenoides/metabolismo , Consórcios Microbianos/fisiologia , Solo/química
15.
Inorg Chem ; 63(37): 16949-16963, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39226133

RESUMO

A series of new gold(I) and silver(I) N-heterocyclic carbenes bearing a 1-thio-ß-d-glucose tetraacetate moiety was synthesized and chemically characterized. The compounds' stability and solubility in physiological conditions were investigated employing a multitechnique approach. Interaction studies with biologically relevant proteins, such as superoxide dismutase (SOD) and human serum albumin (HSA), were conducted via UV-vis absorption spectroscopy and high-resolution ESI mass spectrometry. The biological activity of the compounds was evaluated in the A2780 and A2780R (cisplatin-resistant) ovarian cancer cell lines and the HSkMC (human skeletal muscle) healthy cell line. Inhibition studies of the selenoenzyme thioredoxin reductase (TrxR) were also carried out. The results highlighted that the gold complexes are more stable in aqueous environment and capable of interaction with SOD and HSA. Moreover, these carbenes strongly inhibited the TrxR activity. In contrast, the silver ones underwent structural alterations in the aqueous medium and showed greater antiproliferative activity.


Assuntos
Antineoplásicos , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Ouro , Compostos Heterocíclicos , Metano , Prata , Tiorredoxina Dissulfeto Redutase , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Prata/química , Prata/farmacologia , Ouro/química , Ouro/farmacologia , Metano/análogos & derivados , Metano/química , Metano/farmacologia , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/síntese química , Proliferação de Células/efeitos dos fármacos , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Tiorredoxina Dissulfeto Redutase/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Superóxido Dismutase/metabolismo , Superóxido Dismutase/antagonistas & inibidores
16.
J Environ Manage ; 369: 122347, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39236606

RESUMO

Landfill is a significant source of atmospheric CH4 and CO2 emissions. In this study, four landfill reactor systems were constructed to investigate the effects of different ventilation methods, including continuous aeration (20 h d-1) and intermittent aeration (continuous aeration for 4 h d-1 and 2 h of aeration every 12 h, twice a day), on properties of landfilled waste and emissions of CH4 and CO2, in comparison to a traditional landfill. Compared with continuous aeration, intermittent aeration could reduce the potential global warming effect of the CH4 and CO2 emissions, especially multiple intermittent aeration. The CH4 and CO2 emissions could be predicted by the multiple linear regression model based on the contents of carbon, sulfur and/or pH during landfill stabilization. Both intermittent and continuous aeration could enhance the methane oxidation activity of landfilled waste. The aerobic methane oxidation activity of landfilled waste reached the maximums of 50.77-73.78 µg g-1 h-1 after aeration for 5 or 15 d, which was higher than the anaerobic methane oxidation activity (0.45-1.27 µg g-1 h-1). CO2 was the predominant form of organic carbon loss in the bioreactor landfills. Candidatus Methylomirabilis, Methylobacter, Methylomonas and Crenothrix were the main methane-oxidating microorganisms (MOM) in the landfills. Total, NO2--N, pH and Fe3+ were the main environmental variables influencing the MOM community, among which NO2--N and pH had the significant impact on the MOM community. Partial least squares path modelling indicated that aeration modes mainly influenced the emissions of CH4 and CO2 by affecting the degradation of landfilled waste, environmental variables and microbial activities. The results would be helpful for designing aeration systems to reduce the emissions of CH4 and CO2, and the cost during landfill stabilization.


Assuntos
Carbono , Metano , Instalações de Eliminação de Resíduos , Metano/metabolismo , Carbono/química , Dióxido de Carbono , Eliminação de Resíduos/métodos , Poluentes Atmosféricos/análise , Reatores Biológicos
17.
J Environ Manage ; 369: 122412, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39236608

RESUMO

Perfluorooctanoic acid (PFOA) as emerging pollutants was largely produced and stable in nature environment. Its fate and effect to the wasted sludge digestion process and corresponding microbial mechanism was rarely reported. This study investigated the different dose of PFOA to the wasted sludge digestion process, where the methane yield and microbial mechanism was illustrated. The PFOA added before digestion were 0-10000 µg/L, no significant variation in daily and accumulated methane production between each group. The 9th day methane yield was significantly higher than other days (p < 0.05). The soluble protein was significantly decreased after 76 days digestion (p < 0.001). The total PFOA in sludge (R2 = 0.8817) and liquid (R2 = 0.9083) phase after digestion was exponentially correlated with PFOA dosed. The PFOA in liquid phase was occupied 54.10 ± 18.38% of the total PFOA in all reactors. The dewatering rate was keep decreasing with the increase of PFOA added (R2 = 0.7748, p < 0.001). The mcrA abundance was significantly correlated with the pH value and organic matter concentration in the reactors. Chloroflexi was the predominant phyla, Aminicenantales, Bellilinea and Candidatus_Cloacimonas were predominant genera in all reactors. Candidatus_Methanofastidiosum and Methanolinea were predominant archaea in all reactors. The function prediction by FAPROTAX and Tax4fun implied that various PFOA dosage resulted in significant function variation. The fermentation and anaerobic chemoheterotrophy function were improved with the PFOA dose. Co-occurrence network implied the potent cooperation among the organic matter degradation and methanogenic microbe in the digestion system. PFOA has little impact to the methane generation while affect the microbe function significantly, its remaining in the digested sludge should be concerned to reduce its potential environmental risks.


Assuntos
Caprilatos , Fluorocarbonos , Metano , Esgotos , Metano/metabolismo , Fluorocarbonos/metabolismo , Anaerobiose , Esgotos/microbiologia , Caprilatos/metabolismo , Reatores Biológicos
18.
J Environ Manage ; 369: 122389, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39241602

RESUMO

Nitrate-dependent anaerobic methane oxidation (Nitrate-DAMO) is a novel and sustainable process that removes both nitrogen and methane. Previously, the metabolic pathway of Nitrate-DAMO has been intensively studied with some results. However, the production and consumption of nitrous oxide (N2O) in the Nitrate-DAMO system were widely disregarded. In this study, a Nitrate-DAMO system was used to investigate the effect of operational parameters (C/N ratio, pH, and temperature) on N2O accumulation, and the optimal operating conditions were determined (C/N = 3, pH = 6.5, and temperature = 20 °C). In this study, an enzyme kinetic model was used to fit the nitrate nitrogen degradation and the nitrous oxide production and elimination under different operating conditions. The thermodynamic model of N2O production and elimination in the system also has been constructed. Multiple linear regression analysis found that pH was the most important factor influencing N2O accumulation. The Metagenomics sequencing results showed that alkaline pH promoted the abundance of Nor genes and denitrifying bacteria, which were significantly and positively correlated with N2O emissions. And alkaline pH also promoted the production of Mdo genes related to the N2O-driven AOM reaction, indicating that part of the N2O was consumed by denitrifying bacteria and the other part was consumed by the N2O-driven AOM reaction. These findings reveal the mechanism of N2O production and consumption in DAMO systems and provide a theoretical basis for reducing N2O production and greenhouse gas emissions in actual operation.


Assuntos
Metano , Nitratos , Óxido Nitroso , Óxido Nitroso/metabolismo , Nitratos/metabolismo , Cinética , Metano/metabolismo , Oxirredução , Anaerobiose , Nitrogênio/metabolismo , Desnitrificação , Bactérias/metabolismo
19.
J Environ Manage ; 369: 122376, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39241597

RESUMO

This study evaluated anaerobic co-digestion as a promising strategy for managing organic-contaminated waste streams generated from nanomaterial synthesis. The novel approach enabled precise quantification of organic content, efficient biomethane recovery, and a sustainable redirection of ethanol-contaminated graphene oxide (GO) dispersions. The proposed method achieved high accuracy (93-97%) in detecting organic content in ethanol-contaminated GO dispersions, significantly outperforming the conventional total chemical oxygen demand (tCOD) method, which only reached 75-77% accuracy. Additionally, co-digestion of trace ethanol content in GO dispersions with municipal sludge substantially enhanced methane production kinetics, resulting in a 17.6% increase in specific methane yield (per tCOD added) and a 284% increase in total methane production. Parallel anaerobic digestion (AD) experiments using conductive GO nanosheets (without ethanol) revealed the synergistic impact of GO nanosheets and trace ethanol content as a key mechanism driving these improvements. Furthermore, the study provided evidence of the biological reduction of GO and its magnetite-decorated counterpart, magnetic GO, as indicated by a shift in the ID/IG ratio from 1.06 to 0.77 and a G-band shift from 1606 cm⁻1-1565 cm⁻1. This reduction decreased the stability of nanosheets in the AD liquid phase, promoting their partitioning into the solid phase. This process facilitates the adsorption of the GO phase within the digestate and allows for the slow release of micronutrients when used as soil amendments.


Assuntos
Grafite , Esgotos , Grafite/química , Anaerobiose , Metano , Análise da Demanda Biológica de Oxigênio , Óxidos/química
20.
Waste Manag ; 189: 265-275, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39217801

RESUMO

High-solid digestion (HSD) for biogas production is a resource-efficient and sustainable method to treat organic wastes with high total solids content and obtain renewable energy and an organic fertiliser, using a lower dilution rate than in the more common wet digestion process. This study examined the effect of reactor type on the performance of an HSD process, comparing plug-flow (PFR) type reactors developed for continuous HSD processes, and completely stirred-tank reactors (CSTRs) commonly used for wet digestion. The HSD process was operated in thermophilic conditions (52 °C), with a mixture of household waste, garden waste and agricultural residues (total solids content 27-28 %). The PFRs showed slightly better performance, with higher specific methane production and nitrogen mineralisation than the CSTRs, while the reduction of volatile solids was the same in both reactor types. Results from 16S rRNA gene sequencing showed a significant difference in the microbial population, potentially related to large differences in stirring speed between the reactor types (1 rpm in PFRs and 70-150 rpm in CSTRs, respectively). The bacterial community was dominated by the genus Defluviitoga in the PFRs and order MBA03 in the CSTRs. For the archaeal community, there was a predominance of the genus Methanoculleus in the PFRs, and of the genera Methanosarcina and Methanothermobacter in the CSTRs. Despite these shifts in microbiology, the results showed that stable digestion of substrates with high total solids content can be achieved in both reactor types, indicating flexibility in the choice of technique for HSD processes.


Assuntos
Reatores Biológicos , Reatores Biológicos/microbiologia , Eliminação de Resíduos/métodos , Resíduos Sólidos/análise , Biocombustíveis/análise , Metano/análise , Metano/metabolismo , RNA Ribossômico 16S , Bactérias/metabolismo , Bactérias/genética , Archaea/metabolismo , Archaea/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA