Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 359
Filtrar
1.
J Cancer Res Clin Oncol ; 149(19): 17495-17509, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37902853

RESUMO

PURPOSE: Mitogen-activated protein kinases (MAPK), specifically the c-Jun N-terminal kinase (JNK)-MAPK subfamily, play a crucial role in the development of various cancers, including hepatocellular carcinoma (HCC). However, the specific roles of JNK1/2 and their upstream regulators, MKK4/7, in HCC carcinogenesis remain unclear. METHODS: In this study, we performed differential expression analysis of JNK-MAPK components at both the transcriptome and protein levels using TCGA and HPA databases. We utilized Kaplan-Meier survival plots and receiver operating characteristic (ROC) curve analysis to evaluate the prognostic performance of a risk scoring model based on these components in the TCGA-HCC cohort. Additionally, we conducted immunoblotting, apoptosis analysis with FACS and soft agar assays to investigate the response of JNK-MAPK pathway components to various death stimuli (TRAIL, TNF-α, anisomycin, and etoposide) in HCC cell lines. RESULTS: JNK1/2 and MKK7 levels were significantly upregulated in HCC samples compared to paracarcinoma tissues, whereas MKK4 was downregulated. ROC analyses suggested that JNK2 and MKK7 may serve as suitable diagnostic genes for HCC, and high JNK2 expression correlated with significantly poorer overall survival. Knockdown of JNK1 enhanced TRAIL-induced apoptosis in hepatoma cells, while JNK2 knockdown reduced TNF-α/cycloheximide (CHX)-and anisomycin-induced apoptosis. Neither JNK1 nor JNK2 knockdown affected etoposide-induced apoptosis. Furthermore, MKK7 knockdown augmented TNF-α/CHX- and TRAIL-induced apoptosis and inhibited colony formation in hepatoma cells. CONCLUSION: Targeting MKK7, rather than JNK1/2 or MKK4, may be a promising therapeutic strategy to inhibit the JNK-MAPK pathway in HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Carcinoma Hepatocelular/genética , Fator de Necrose Tumoral alfa , Etoposídeo , Anisomicina , MAP Quinase Quinase 7/genética , MAP Quinase Quinase 7/metabolismo , Neoplasias Hepáticas/genética , Apoptose
2.
J Hazard Mater ; 459: 132226, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37549580

RESUMO

Zearalenone (ZEN) is a widespread and transgenerational toxicant that can cause serious reproductive health risks, which poses a potential threat to global agricultural production and human health; its estrogenic activity can lead to reproductive toxicity through the induction of granulosa cell apoptosis. Herein, comparative transcriptome analysis, single-cell transcriptome analysis, and weighted gene co-expression network analysis (WGCNA) combined with gene knockout in vivo and RNA interference in vitro were used to comprehensively describe the damage caused by ZEN exposure on ovarian granulosa cells. Comparative transcriptome analysis and WGCNA suggested that the tumor necrosis factor (TNF)-α-mediated mitogen-activated protein kinase 7 (MAP2K7)/ AKT serine/threonine kinase 2 (AKT2) axis was disordered after ZEN exposure in porcine granulosa cells (pGCs) and mouse granulosa cells (mGCs). In vivo gene knockout and in vitro RNA interference verified that TNF-α-mediated MAP2K7/AKT2 was the guiding signal in ZEN-induced apoptosis in pGCs and mGCs. Moreover, single-cell transcriptome analysis showed that ZEN exposure could induce changes in the TNF signaling pathway in offspring. Overall, we concluded that the TNF-α-mediated MAP2K7/AKT2 axis was the main signaling pathway of ZEN-induced apoptosis in pGCs and mGCs. This work provides new insights into the mechanism of ZEN toxicity and provides new potential therapeutic targets for the loss of livestock and human reproductive health caused by ZEN.


Assuntos
Zearalenona , Animais , Feminino , Camundongos , Apoptose , MAP Quinase Quinase 7 , Proteína Quinase 7 Ativada por Mitógeno , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais , Suínos , Transcriptoma , Fator de Necrose Tumoral alfa/genética , Zearalenona/toxicidade
3.
Mol Neurobiol ; 60(5): 2367-2378, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36650421

RESUMO

Stress is considered as a major cause of depression. C-Jun N-terminal kinase (JNK) is a member of the stress-induced mitogen activated protein (MAP) kinase family which is often activated through phosphorylation. Clinical studies and animal experiments have found that abnormal phosphorylation/activation of JNK exists in the occurrence of various psychiatric diseases. Recently, several studies linked JNK kinase activity to depression. However, whether excessive activation of JNK activity is directly responsible for the occurrence of depression and the underlying mechanisms remain unclear. Here, we constructed a conditional transgenic mouse which is specifically expressing MKK7-JNK1 (CAJNK1) in the central nervous system. CAJNK1 mice showed activation of JNK and lead to depression-like behavior in mice. Transcriptome analysis indicates reduced expression of synaptic-associated genes in CAJNK1 mice brains. Consistently, we found abnormal dendritic spine development and PSD95 downregulation in CAJNK1 hippocampal neurons. Our studies provide compelling evidence that activation of JNK as an intrinsic factor leading to depression-like behavior in mice provides direct clues for targeting the JNK activity as a potential therapeutic strategy for depression.


Assuntos
Depressão , MAP Quinase Quinase 7 , Camundongos , Animais , MAP Quinase Quinase 7/genética , MAP Quinase Quinase 7/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fosforilação , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Camundongos Transgênicos , MAP Quinase Quinase 4/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo
4.
Cancer Lett ; 544: 215803, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35753528

RESUMO

The importance of methylation in the tumorigenic responses of nonhistone proteins, such as TP53, PTEN, RB1, AKT, and STAT3, has been emphasized in numerous studies. In parallel, the corresponding nonhistone protein methyltransferases have been acknowledged in the pathophysiology of cancer. Thus, this study aimed to explore the pathological role of a nonhistone methyltransferase in gastric cancer (GC), identify nonhistone substrate protein, and understand the underlying mechanism. Interestingly, among the 24 methyltransferases and methyltransferase family 16 (MTF16) proteins, EEF1AKMT3 (METTL21B) expression was prominently lower in GC tissues than in normal adjacent tissues and was associated with a worse prognosis. In addition, EEF1AKMT3-knockdown induced gastric tumor invasiveness and migration. Through gain and loss-of-function studies, mass spectrometry analysis, RNA-seq, and phospho-antibody array, we identified EEF1AKMT3 as a novel tumor-suppressive methyltransferase that catalyzes the monomethylation of MAP2K7 (MKK7) at K296, thereby decreasing the phosphorylation, ubiquitination, and degradation of TP53. Furthermore, EEF1AKMT3, p-MAP2K7, and TP53 protein levels were positively correlated in GC tissues. Collectively, our results delineate the tumor-suppressive function of the EEF1AKMT3/MAP2K7/TP53 signaling axis and suggest the dysregulation of the signaling axis as potential targeted therapy in GC.


Assuntos
Neoplasias Gástricas , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , MAP Quinase Quinase 7/metabolismo , Metiltransferases/metabolismo , Invasividade Neoplásica , Neoplasias Gástricas/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
5.
J Exp Clin Cancer Res ; 41(1): 212, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768842

RESUMO

BACKGROUND: Identifying biomarkers related to the diagnosis and treatment of gastric cancer (GC) has not made significant progress due to the heterogeneity of tumors. Genes involved in histological classification and genetic correlation studies are essential to develop an appropriate treatment for GC. METHODS: In vitro and in vivo lentiviral shRNA library screening was performed. The expression of Synaptotagmin (SYT11) in the tumor tissues of patients with GC was confirmed by performing Immunohistochemistry, and the correlation between the expression level and the patient's survival rate was analyzed. Phospho-kinase array was performed to detect Jun N-terminal kinase (JNK) phosphorylation. SYT11, JNK, and MKK7 complex formation was confirmed by western blot and immunoprecipitation assays. We studied the effects of SYT11 on GC proliferation and metastasis, real-time cell image analysis, adhesion assay, invasion assay, spheroid formation, mouse xenograft assay, and liver metastasis. RESULTS: SYT11 is highly expressed in the stem-like molecular subtype of GC in transcriptome analysis of 527 patients with GC. Moreover, SYT11 is a potential prognostic biomarker for histologically classified diffuse-type GC. SYT11 functions as a scaffold protein, binding both MKK7 and JNK1 signaling molecules that play a role in JNK1 phosphorylation. In turn, JNK activation leads to a signaling cascade resulting in cJun activation and expression of downstream genes angiopoietin-like 2 (ANGPTL2), thrombospondin 4 (THBS4), Vimentin, and junctional adhesion molecule 3 (JAM3), which play a role in epithelial-mesenchymal transition (EMT). SNU484 cells infected with SYT11 shRNA (shSYT11) exhibited reduced spheroid formation, mouse tumor formation, and liver metastasis, suggesting a pro-oncogenic role of SYT11. Furthermore, SYT11-antisense oligonucleotide (ASO) displayed antitumor activity in our mouse xenograft model and was conferred an anti-proliferative effect in SNU484 and MKN1 cells. CONCLUSION: SYT11 could be a potential therapeutic target as well as a prognostic biomarker in patients with diffuse-type GC, and SYT11-ASO could be used in therapeutic agent development for stem-like molecular subtype diffuse GC.


Assuntos
Proteína 2 Semelhante a Angiopoietina , MAP Quinase Quinase 7 , Sistema de Sinalização das MAP Quinases , Neoplasias Gástricas , Sinaptotagminas , Proteína 2 Semelhante a Angiopoietina/metabolismo , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Xenoenxertos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , MAP Quinase Quinase 7/metabolismo , Camundongos , RNA Interferente Pequeno/farmacologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Sinaptotagminas/biossíntese , Sinaptotagminas/genética , Sinaptotagminas/metabolismo
6.
Dis Model Mech ; 15(3)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35275161

RESUMO

In schizophrenia, subjects show reduced ability to evaluate and update risk/reward contingencies, showing correspondingly suboptimal performance in the Iowa gambling task. JNK signalling gene variants are associated with schizophrenia risk, and JNK modulates aspects of cognition. We therefore studied the performance of mice hemizygous for genetic deletion of the JNK activator MKK7 (Map2k7+/- mice) in a touchscreen version of the Iowa gambling task, additionally incorporating a novel contingency-switching stage. Map2k7+/- mice performed slightly better than wild-type (WT) littermates in acquisition and performance of the task. Although Map2k7+/- mice adapted well to subtle changes in risk/reward contingencies, they were profoundly impaired when the positions of 'best' and 'worst' choice selections were switched, and still avoided the previous 'worst' choice location weeks after the switch. This demonstrates a precise role for MKK7-JNK signalling in flexibility of risk/reward assessment and suggests that genetic variants affecting this molecular pathway may underlie impairment in this cognitive domain in schizophrenia. Importantly, this new contingency shift adaptation of the rodent touchscreen gambling task has translational utility for characterising these cognitive subprocesses in models of neuropsychiatric disorders.


Assuntos
Jogo de Azar , Esquizofrenia , Animais , Cognição , Jogo de Azar/genética , Jogo de Azar/psicologia , MAP Quinase Quinase 7/genética , Camundongos , Recompensa , Roedores , Esquizofrenia/genética
7.
Int J Mol Sci ; 22(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34639041

RESUMO

The three members (GADD45α, GADD45ß, and GADD45γ) of the growth arrest and DNA damage-inducible 45 (GADD45) protein family are involved in a myriad of diversified cellular functions. With the aim of unravelling analogies and differences, we performed comparative biochemical and biophysical analyses on the three proteins. The characterization and quantification of their binding to the MKK7 kinase, a validated functional partner of GADD45ß, indicate that GADD45α and GADD45γ are strong interactors of the kinase. Despite their remarkable sequence similarity, the three proteins present rather distinct biophysical properties. Indeed, while GADD45ß and GADD45γ are marginally stable at physiological temperatures, GADD45α presents the Tm value expected for a protein isolated from a mesophilic organism. Surprisingly, GADD45α and GADD45ß, when heated, form high-molecular weight species that exhibit features (ThT binding and intrinsic label-free UV/visible fluorescence) proper of amyloid-like aggregates. Cell viability studies demonstrate that they are endowed with a remarkable toxicity against SHSY-5Y and HepG2 cells. The very uncommon property of GADD45ß to form cytotoxic species in near-physiological conditions represents a puzzling finding with potential functional implications. Finally, the low stability and/or the propensity to form toxic species of GADD45 proteins constitute important features that should be considered in interpreting their many functions.


Assuntos
Amiloide/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Agregados Proteicos , Amiloide/química , Sobrevivência Celular , Células Cultivadas , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , MAP Quinase Quinase 7/metabolismo , Agregação Patológica de Proteínas/metabolismo , Ligação Proteica , Conformação Proteica em Folha beta , Estabilidade Proteica , Proteínas Recombinantes , Termodinâmica , Proteínas GADD45
8.
Int J Mol Sci ; 22(17)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34502275

RESUMO

Mitogen kinase kinase 4 (MKK4) and mitogen kinase kinase 7 (MKK7) are members of the MAP2K family that can activate downstream mitogen-activated protein kinases (MAPKs). MKK4 has been implicated in the activation of both c-Jun N-terminal kinase (JNK) and p38 MAPK, while MKK7 has been reported to activate only JNK in response to different stimuli. The stimuli, as well as the cell type determine which MAP2K member will mediate a given response. In various cell types, MKK7 contributes to the activation of downstream MAPKs, JNK, which is known to regulate essential cellular processes, such as cell death, differentiation, stress response, and cytokine secretion. Previous studies have also implicated the role of MKK7 in stress signaling pathways and cytokine production. However, little is known about the degree to which MKK4 and MKK7 contribute to innate immune responses in macrophages or during inflammation in vivo. To address this question and to elucidate the role of MKK4 and MKK7 in macrophage and in vivo, we developed MKK4- and MKK7-deficient mouse models with tamoxifen-inducible Rosa26 CreERT. This study reports that MKK7 is required for JNK activation both in vitro and in vivo. Additionally, we demonstrated that MKK7 in macrophages is necessary for lipopolysaccharide (LPS)-induced cytokine production, M1 polarization, and migration, which appear to be a major contributor to the inflammatory response in vivo. Conversely, MKK4 plays a significant, but minor role in cytokine production in vivo.


Assuntos
Citocinas/metabolismo , MAP Quinase Quinase 7/metabolismo , Animais , Movimento Celular , Células Cultivadas , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase 7/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
9.
Int J Mol Sci ; 22(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34502457

RESUMO

(1) Background: The c-Jun-NH2-terminal protein kinase (JNK) is a mitogen-activated protein kinase involved in regulating physiological processes in the central nervous system. However, the dual genetic deletion of Mkk4 and Mkk7 (upstream activators of JNK) in adult mice is not reported. The aim of this study was to induce the genetic deletion of Mkk4/Mkk7 in adult mice and analyze their effect in hippocampal neurogenesis. (2) Methods: To achieve this goal, Actin-CreERT2 (Cre+/-), Mkk4flox/flox, Mkk7flox/flox mice were created. The administration of tamoxifen in these 2-month-old mice induced the gene deletion (Actin-CreERT2 (Cre+/-), Mkk4∆/∆, Mkk7∆/∆ genotype), which was verified by PCR, Western blot, and immunohistochemistry techniques. (3) Results: The levels of MKK4/MKK7 at 7 and 14 days after tamoxifen administration were not eliminated totally in CNS, unlike what happens in the liver and heart. These data could be correlated with the high levels of these proteins in CNS. In the hippocampus, the deletion of Mkk4/Mkk7 induced a misalignment position of immature hippocampal neurons together with alterations in their dendritic architecture pattern and maturation process jointly to the diminution of JNK phosphorylation. (4) Conclusion: All these data supported that the MKK4/MKK7-JNK pathway has a role in adult neurogenic activity.


Assuntos
Hipocampo/fisiologia , MAP Quinase Quinase 4/fisiologia , MAP Quinase Quinase 7/fisiologia , Sistema de Sinalização das MAP Quinases , Neurogênese , Animais , Proteína Duplacortina , Deleção de Genes , Camundongos Transgênicos
10.
JCI Insight ; 6(13)2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34236045

RESUMO

The AP-1 transcription factor c-Jun is required for Ras-driven tumorigenesis in many tissues and is considered as a classical proto-oncogene. To determine the requirement for c-Jun in a mouse model of K-RasG12D-induced lung adenocarcinoma, we inducibly deleted c-Jun in the adult lung. Surprisingly, we found that inactivation of c-Jun, or mutation of its JNK phosphorylation sites, actually increased lung tumor burden. Mechanistically, we found that protein levels of the Jun family member JunD were increased in the absence of c-Jun. In c-Jun-deficient cells, JunD phosphorylation was increased, and expression of a dominant-active JNKK2-JNK1 transgene further increased lung tumor formation. Strikingly, deletion of JunD completely abolished Ras-driven lung tumorigenesis. This work identifies JunD, not c-Jun, as the crucial substrate of JNK signaling and oncogene required for Ras-induced lung cancer.


Assuntos
Adenocarcinoma de Pulmão , Carcinogênese , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas ras/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica , Genes jun/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MAP Quinase Quinase 7/genética , MAP Quinase Quinase 7/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-jun/genética , Fator de Transcrição AP-1/metabolismo
11.
J Immunol Res ; 2021: 9944880, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124273

RESUMO

BACKGROUND: Sodium-glucose cotransporter 2 (SGLT2) and dipeptidyl peptidase-4 (DPP-4) inhibitors are glucose-lowering drugs whose anti-inflammatory properties have recently become useful in tackling metabolic syndromes in chronic inflammatory diseases, including diabetes and obesity. We investigated whether empagliflozin (SGLT2 inhibitor) and gemigliptin (DPP-4 inhibitor) improve inflammatory responses in macrophages, identified signalling pathways responsible for these effects, and studied whether the effects can be augmented with dual empagliflozin and gemigliptin therapy. METHODS: RAW 264.7 macrophages were first stimulated with lipopolysaccharide (LPS), then cotreated with empagliflozin, gemigliptin, or empagliflozin plus gemigliptin. We conducted quantitative RT-PCR (qRT-PCR) to determine the most effective anti-inflammatory doses without cytotoxicity. We performed ELISA and qRT-PCR for inflammatory cytokines and chemokines and flow cytometry for CD80, the M1 macrophage surface marker, to evaluate the anti-inflammatory effects of empagliflozin and gemigliptin. NF-κB, MAPK, and JAK2/STAT signalling pathways were examined via Western blotting to elucidate the molecular mechanisms of anti-inflammation. RESULTS: LPS-stimulated CD80+ M1 macrophages were suppressed by coincubation with empagliflozin, gemigliptin, and empagliflozin plus gemigliptin, respectively. Empagliflozin and gemigliptin (individually and combined) inhibited prostaglandin E2 (PGE2) release and COX-2, iNOS gene expression in LPS-stimulated RAW 264.7 macrophages. These three treatments also attenuated the secretion and mRNA expression of proinflammatory cytokines, such as TNF-α, IL-1ß, IL-6, and IFN-γ, and proinflammatory chemokines, such as CCL3, CCL4, CCL5, and CXCL10. All of them blocked NF-κB, JNK, and STAT1/3 phosphorylation through IKKα/ß, MKK4/7, and JAK2 signalling. CONCLUSIONS: Our study demonstrated the anti-inflammatory effects of empagliflozin and gemigliptin via IKK/NF-κB, MKK7/JNK, and JAK2/STAT1 pathway downregulation in macrophages. In all cases, combined empagliflozin and gemigliptin treatment showed greater anti-inflammatory properties.


Assuntos
Anti-Inflamatórios/farmacologia , Compostos Benzidrílicos/farmacologia , Inibidores da Dipeptidil Peptidase IV/farmacologia , Glucosídeos/farmacologia , Macrófagos/imunologia , Piperidonas/farmacologia , Pirimidinas/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Animais , Quinase I-kappa B/metabolismo , Janus Quinase 2/metabolismo , Lipopolissacarídeos/imunologia , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase 7/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Camundongos , NF-kappa B/metabolismo , Células RAW 264.7 , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais
12.
J Cell Physiol ; 236(7): 4954-4965, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33305380

RESUMO

Integrin α2ß1 plays an important role in cellular migration and metastasis processes associated with prostate cancer. The aim of this study was to assess whether selective inhibition of integrin α2ß1 is an effective strategy to target metastatic prostate cancer cells. In this regard, we examined the effects of the inhibitor BTT-3033, which selectively interferes with the connection between integrin a2b1 and its ligand, on migration, epithelial-mesenchymal transition (EMT), cell cycle arrest, apoptosis, and specific intracellular signaling pathways using LNcap-FGC and DU-145 prostate cancer cell lines. Western blot analysis and immunocytochemistry assays showed that inhibition of integrin a2b1 inhibits EMT, through the increased expression of E-cadherin and decreased expression of N-cadherin and vimentin. Scratch wound healing assays revealed a direct effect on integrin α2ß1 in the migration capacity of cells. In addition, treatment with BTT-3033 induced a reduction in cell viability and proliferation, as assessed by MTT and BrdU assays. In addition, the results show that BTT-3033 inhibits cell proliferation by inducing G1 cell cycle arrest. Moreover, inhibition of integrin α2ß1 induces apoptosis through the activation of ROS, Bax protein upregulation, caspase-3 activation, and depletion of ΔΨm.  Molecular signaling studies showed that integrin α2ß1 was a positive regulator of MKK7 phosphorylation. In conclusion, our results reveal a critical role for integrin a2b1 in the proliferation of prostate cancer cells, as demonstrated by EMT inhibition, cell cycle arrest, and apoptosis induction in response to treatment with its specific inhibitor BT-3033.


Assuntos
Apoptose/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Integrina alfa2beta1/antagonistas & inibidores , Neoplasias da Próstata/patologia , Antígenos CD/biossíntese , Caderinas/biossíntese , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células , Humanos , Integrina alfa2beta1/metabolismo , MAP Quinase Quinase 7/metabolismo , Masculino , Invasividade Neoplásica/patologia , Metástase Neoplásica/patologia , Fosforilação , Próstata/patologia , Vimentina/biossíntese
13.
Hepatology ; 73(6): 2510-2526, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32969030

RESUMO

BACKGROUND AND AIMS: Mitogen-activated protein kinase kinase (MKK) 7 and MKK4 are upstream activators of c-Jun NH2 -terminal kinases (JNKs) and have been shown to be required for the early development of the liver. Although it has been suggested that MKK7 might be involved in the regulation of hepatocyte proliferation, the functional role of MKK7 in the liver has remained unclear. APPROACH AND RESULTS: Here, we examined phenotypic alterations in liver-specific or hepatocyte/hematopoietic cell-specific MKK7 knockout (KO) mice, which were generated by crossing MKK7LoxP/LoxP with albumin-cyclization recombination (Alb-Cre) or myxovirus resistance protein 1-Cre mice, respectively. The livers of Alb-Cre-/+ MKK7LoxP/LoxP mice developed without discernible tissue disorganization. MKK7 KO mice responded normally to liver injuries incurred by partial hepatectomy or injection of CCl4 . However, tissue repair following CCl4 -induced injury was delayed in MKK7 KO mice compared with that of control mice. Furthermore, after repeated injections of CCl4 for 8 weeks, the liver in MKK7 KO mice showed intense fibrosis with increased protractive hepatocyte proliferation, suggesting that MKK7 deficiency might affect regenerative responses of hepatocytes in the altered tissue microenvironment. MKK7 KO hepatocytes demonstrated normal proliferative activity when cultured in monolayers. However, MKK7 KO significantly suppressed branching morphogenesis of hepatocyte aggregates within a collagen gel matrix. Microarray analyses revealed that suppression of branching morphogenesis in MKK7 KO hepatocytes was associated with a reduction in mRNA expression of transgelin, glioma pathogenesis related 2, and plasminogen activator urokinase-type (Plau); and forced expression of these genes in MKK7 KO hepatocytes partially recovered the attenuated morphogenesis. Furthermore, hepatocyte-specific overexpression of Plau rescued the impaired tissue repair of MKK7 KO mice following CCl4 -induced injury. CONCLUSIONS: MKK7 is dispensable for the regenerative proliferation of hepatocytes but plays important roles in repair processes following parenchymal destruction, possibly through modulation of hepatocyte-extracellular matrix interactions.


Assuntos
Matriz Extracelular/metabolismo , Hepatócitos/metabolismo , Regeneração Hepática/fisiologia , Fígado , MAP Quinase Quinase 7/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Hepatectomia/métodos , Fígado/crescimento & desenvolvimento , Fígado/lesões , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Knockout , Morfogênese/fisiologia
14.
Genes Cells ; 26(1): 5-17, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33098150

RESUMO

c-Jun N-terminal kinases (JNKs) are constitutively activated in mammalian brains and are indispensable for their development and neural functions. MKK7 is an upstream activator of all JNKs. However, whether the common JNK signaling pathway regulates the brain's control of social behavior remains unclear. Here, we show that female mice in which Mkk7 is deleted specifically in mature neurons (Mkk7flox/flox Syn-Cre mice) give birth to a normal number of pups but fail to raise them due to a defect in pup retrieval. To explore the mechanism underlying this abnormality, we performed comprehensive behavioral tests. Mkk7flox/flox Syn-Cre mice showed normal locomotor functions and cognitive ability but exhibited depression-like behavior. cDNA microarray analysis of mutant brain revealed an altered gene expression pattern. Quantitative RT-PCR analysis demonstrated that mRNA expression levels of genes related to neural signaling pathways and a calcium channel were significantly different from controls. In addition, loss of neural MKK7 had unexpected regulatory effects on gene expression patterns in oligodendrocytes. These findings indicate that MKK7 has an important role in regulating the gene expression patterns responsible for promoting normal social behavior and staving off depression.


Assuntos
MAP Quinase Quinase 7/metabolismo , Comportamento Materno , Neurônios/metabolismo , Animais , Comportamento Animal , Feminino , MAP Quinase Quinase 7/deficiência , MAP Quinase Quinase 7/genética , Camundongos , Camundongos Endogâmicos C57BL , Oligodendroglia/metabolismo
15.
Cell Chem Biol ; 27(12): 1553-1560.e8, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-32916088

RESUMO

MKK4/7 are kinases that phosphorylate JNKs and regulate the MAPK signaling pathway. Their overexpression has been associated with tumorigenesis and aggressiveness in cancers such as breast, prostate, non-small cell lung, and pediatric leukemia, making them a potential target for inhibitor development. Here, we report the discovery, development, and validation of a dual MKK4/7 inhibitor, BSJ-04-122, that covalently targets a conserved cysteine located before the DFG motif and displays excellent kinome selectivity. BSJ-04-122 exhibits potent cellular target engagement and induces robust target-specific downstream effects. The combination of the dual MKK4/7 inhibitor with a selective, covalent JNK inhibitor demonstrated an enhanced antiproliferative activity against triple-negative breast cancer cells. Taken together, the results show that BSJ-04-122 represents a pharmacological probe for MKK4/7 and credential covalent targeting as a way to explore the therapeutic potential of these kinases.


Assuntos
Desenho de Fármacos , MAP Quinase Quinase 4/antagonistas & inibidores , MAP Quinase Quinase 7/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Motivos de Aminoácidos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , MAP Quinase Quinase 4/química , MAP Quinase Quinase 7/química , Modelos Moleculares
16.
Bioorg Med Chem Lett ; 30(22): 127546, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32931911

RESUMO

Mitogen-activated protein kinase kinase 7 (MAP2K7) in the c-Jun N-terminal kinase signal cascade is an attractive drug target for a variety of diseases. The selectivity of MAP2K7 inhibitors against off-target kinases is a major barrier in drug development. We report a crystal structure of MAP2K7 complexed with a potent covalent inhibitor bearing an acrylamide moiety as an electrophile, which discloses a structural basis for producing selective and potent MAP2K7 inhibitors.


Assuntos
Acrilamida/farmacologia , MAP Quinase Quinase 7/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Acrilamida/síntese química , Acrilamida/química , Relação Dose-Resposta a Droga , Humanos , MAP Quinase Quinase 7/metabolismo , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
17.
Medicine (Baltimore) ; 99(30): e21163, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32791689

RESUMO

Autophagy, a major cause of cancer-related death, is correlated with the pathogenesis of various diseases including cancers. Our study aimed to develop an autophagy-related model for predicting prognosis of patients with laryngeal cancer.We analyzed the correlation between expression profiles of autophagy-related genes (ARGs) and clinical outcomes in 111 laryngeal cancer patients from The Cancer Genome Atlas (TCGA). Afterward, gene functional enrichment analyses of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to find the major biological attributes. Univariate Cox regression analyses and multivariate Cox regression analyses were performed to screen ARGs whose expression profiles were significantly associated with laryngeal cancer patients overall survival (OS). Furthermore, to provide the doctors and patients with a quantitative method to perform an individualized survival prediction, we constructed a prognostic nomogram.Thirty eight differentially expressed ARGs were screened out in laryngeal cancer patients through the TCGA database. Related functional enrichments may act as tumor-suppressive roles in the tumorigenesis of laryngeal cancer. Subsequently, 4 key prognostic ARGs (IKBKB, ST13, TSC2, and MAP2K7) were identified from all ARGs by the Cox regression model, which significantly correlated with OS in laryngeal cancer. Furthermore, the risk score was constructed, which significantly divided laryngeal cancer patients into high- and low-risk groups. Integrated with clinical characteristics, gender, N and the risk score are very likely associated with patients OS. A prognostic nomogram of ARGs was constructed using the Cox regression model.Our study could provide a valuable prognostic model for predicting the prognosis of laryngeal cancer patients and a new understanding of autophagy in laryngeal cancer.


Assuntos
Autofagia/genética , Neoplasias Laríngeas/genética , Nomogramas , Fatores Etários , Proteínas de Transporte/genética , Perfilação da Expressão Gênica , Humanos , Quinase I-kappa B/genética , Neoplasias Laríngeas/patologia , MAP Quinase Quinase 7/genética , Modelos Biológicos , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Fatores de Risco , Fatores Sexuais , Taxa de Sobrevida , Transcriptoma , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteínas Supressoras de Tumor/genética
18.
Cell Chem Biol ; 27(10): 1285-1295.e4, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32783966

RESUMO

MKK7 (MEK7) is a key regulator of the JNK stress signaling pathway and targeting MKK7 has been proposed as a chemotherapeutic strategy. Detailed understanding of the MKK7 structure and factors that affect its activity is therefore of critical importance. Here, we present a comprehensive set of MKK7 crystal structures revealing insights into catalytic domain plasticity and the role of the N-terminal regulatory helix, conserved in all MAP2Ks, mediating kinase activation. Crystal structures harboring this regulatory helix revealed typical structural features of active kinase, providing exclusively a first model of the MAP2K active state. A small-molecule screening campaign yielded multiple scaffolds, including type II irreversible inhibitors a binding mode that has not been reported previously. We also observed an unprecedented allosteric pocket located in the N-terminal lobe for the approved drug ibrutinib. Collectively, our structural and functional data expand and provide alternative targeting strategies for this important MAP2K kinase.


Assuntos
MAP Quinase Quinase 7/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Regulação Alostérica/efeitos dos fármacos , Domínio Catalítico/efeitos dos fármacos , Cristalografia por Raios X , Humanos , MAP Quinase Quinase 7/química , MAP Quinase Quinase 7/metabolismo , Masculino , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Células THP-1
19.
Proc Natl Acad Sci U S A ; 117(28): 16391-16400, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601196

RESUMO

Master splicing regulator MBNL1 shapes large transcriptomic changes that drive cellular differentiation during development. Here we demonstrate that MBNL1 is a suppressor of tumor dedifferentiation. We surveyed MBNL1 expression in matched tumor/normal pairs across The Cancer Genome Atlas and found that MBNL1 was down-regulated in several common cancers. Down-regulation of MBNL1 predicted poor overall survival in breast, lung, and stomach adenocarcinomas and increased relapse and distant metastasis in triple-negative breast cancer. Down-regulation of MBNL1 led to increased tumorigenic and stem/progenitor-like properties in vitro and in vivo. A discrete set of alternative splicing events (ASEs) are shared between MBNL1-low cancers and embryonic stem cells including a MAP2K7∆exon2 splice variant that leads to increased stem/progenitor-like properties via JNK activation. Accordingly, JNK inhibition is capable of reversing MAP2K7∆exon2-driven tumor dedifferentiation in MBNL1-low cancer cells. Our work elucidates an alternative-splicing mechanism that drives tumor dedifferentiation and identifies biomarkers that predict enhanced susceptibility to JNK inhibition.


Assuntos
MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase 7/genética , MAP Quinase Quinase 7/metabolismo , Neoplasias/metabolismo , Proteínas de Ligação a RNA/metabolismo , Diferenciação Celular , Humanos , MAP Quinase Quinase 4/genética , Neoplasias/genética , Neoplasias/fisiopatologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA/genética
20.
Anal Chem ; 92(14): 9516-9522, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32571022

RESUMO

The first small-molecule fluorescent turn-on probes for detecting PDEδ protein were rationally designed, showing reasonable fluorescent properties and the fluorescent ability has been applied for visualization of the PDEδ protein in living cells and at tissue levels. The qPCR results showed that the mRNA expression of KRAS, PDEδ, AKT1, MAPK1, MEK7, RAF1, and mTOR were downregulated by probes 1-3 through PI3K/AKT/mTOR and MAPK signal pathways. The probes also can downregulate the protein level of pErk and tErk. Therefore, these small-molecule fluorescent probes are expected to be used in the screening of antipancreatic cancer drugs targeting the PDEδ protein, as well as in obtaining a better understanding of the pathological and physiological roles of PDEδ protein.


Assuntos
Corantes Fluorescentes/química , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias/enzimologia , Diester Fosfórico Hidrolases/metabolismo , Animais , Biomarcadores/metabolismo , Domínio Catalítico , Sobrevivência Celular/efeitos dos fármacos , Humanos , MAP Quinase Quinase 7/genética , MAP Quinase Quinase 7/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Estrutura Molecular , Diester Fosfórico Hidrolases/química , Conformação Proteica , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Pele/enzimologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...