Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.420
Filtrar
1.
Front Immunol ; 15: 1372584, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745665

RESUMO

Among Plasmodium spp. responsible for human malaria, Plasmodium vivax ranks as the second most prevalent and has the widest geographical range; however, vaccine development has lagged behind that of Plasmodium falciparum, the deadliest Plasmodium species. Recently, we developed a multistage vaccine for P. falciparum based on a heterologous prime-boost immunization regimen utilizing the attenuated vaccinia virus strain LC16m8Δ (m8Δ)-prime and adeno-associated virus type 1 (AAV1)-boost, and demonstrated 100% protection and more than 95% transmission-blocking (TB) activity in the mouse model. In this study, we report the feasibility and versatility of this vaccine platform as a P. vivax multistage vaccine, which can provide 100% sterile protection against sporozoite challenge and >95% TB efficacy in the mouse model. Our vaccine comprises m8Δ and AAV1 viral vectors, both harboring the gene encoding two P. vivax circumsporozoite (PvCSP) protein alleles (VK210; PvCSP-Sal and VK247; -PNG) and P25 (Pvs25) expressed as a Pvs25-PvCSP fusion protein. For protective efficacy, the heterologous m8Δ-prime/AAV1-boost immunization regimen showed 100% (short-term; Day 28) and 60% (long-term; Day 242) protection against PvCSP VK210 transgenic Plasmodium berghei sporozoites. For TB efficacy, mouse sera immunized with the vaccine formulation showed >75% TB activity and >95% transmission reduction activity by a direct membrane feeding assay using P. vivax isolates in blood from an infected patient from the Brazilian Amazon region. These findings provide proof-of-concept that the m8Δ/AAV1 vaccine platform is sufficiently versatile for P. vivax vaccine development. Future studies are needed to evaluate the safety, immunogenicity, vaccine efficacy, and synergistic effects on protection and transmission blockade in a non-human primate model for Phase I trials.


Assuntos
Dependovirus , Vetores Genéticos , Vacinas Antimaláricas , Malária Vivax , Plasmodium vivax , Animais , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Plasmodium vivax/imunologia , Plasmodium vivax/genética , Malária Vivax/prevenção & controle , Malária Vivax/transmissão , Malária Vivax/imunologia , Camundongos , Dependovirus/genética , Dependovirus/imunologia , Feminino , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/genética , Anticorpos Antiprotozoários/imunologia , Anticorpos Antiprotozoários/sangue , Modelos Animais de Doenças , Vaccinia virus/genética , Vaccinia virus/imunologia , Humanos , Camundongos Endogâmicos BALB C , Imunização Secundária , Eficácia de Vacinas
2.
Vaccine ; 42(16): 3621-3629, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38704253

RESUMO

Recent data indicate increasing disease burden and importance of Plasmodium vivax (Pv) malaria. A robust assay will be essential for blood-stage Pv vaccine development. Results of the in vitro growth inhibition assay (GIA) with transgenic P. knowlesi (Pk) parasites expressing the Pv Duffy-binding protein region II (PvDBPII) correlate with in vivo protection in the first PvDBPII controlled human malaria infection (CHMI) trials, making the PkGIA an ideal selection tool once the precision of the assay is defined. To determine the precision in percentage of inhibition in GIA (%GIA) and in GIA50 (antibody concentration that gave 50 %GIA), ten GIAs with transgenic Pk parasites were conducted with four different anti-PvDBPII human monoclonal antibodies (mAbs) at concentrations of 0.016 to 2 mg/mL, and three GIAs with eighty anti-PvDBPII human polyclonal antibodies (pAbs) at 10 mg/mL. A significant assay-to-assay variation was observed, and the analysis revealed a standard deviation (SD) of 13.1 in the mAb and 5.94 in the pAb dataset for %GIA, with a LogGIA50 SD of 0.299 (for mAbs). Moreover, the ninety-five percent confidence interval (95 %CI) for %GIA or GIA50 in repeat assays was calculated in this investigation. The error range determined in this study will help researchers to compare PkGIA results from different assays and studies appropriately, thus supporting the development of future blood-stage malaria vaccine candidates, specifically second-generation PvDBPII-based formulations.


Assuntos
Anticorpos Antiprotozoários , Antígenos de Protozoários , Vacinas Antimaláricas , Plasmodium knowlesi , Plasmodium vivax , Proteínas de Protozoários , Receptores de Superfície Celular , Vacinas Antimaláricas/imunologia , Plasmodium knowlesi/imunologia , Plasmodium knowlesi/genética , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/genética , Plasmodium vivax/imunologia , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/genética , Humanos , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/genética , Anticorpos Antiprotozoários/imunologia , Anticorpos Antiprotozoários/sangue , Malária Vivax/prevenção & controle , Malária Vivax/imunologia , Anticorpos Monoclonais/imunologia , Desenvolvimento de Vacinas/métodos , Animais
3.
Malar J ; 23(1): 142, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38734664

RESUMO

BACKGROUND: The newly developed malaria vaccine called "R21/Matrix-M malaria vaccine" showed a high safety and efficacy level, and Ghana is the first country to approve this new vaccine. The present study aimed to evaluate the rate of vaccine hesitancy (VH) towards the newly developed malaria vaccine among parents who currently have children who are not eligible for the vaccine but may be eligible in the near future. Additionally, the study aimed to identify the factors that could potentially influence VH. METHODS: A cross-sectional survey using both online-based questionnaires and face-to-face interviews was conducted in Ghana from June to August 2023. The survey specifically targeted parents of ineligible children for vaccination, including those aged less than 5 months or between 3 and 12 years. The Parent Attitudes about Childhood Vaccination (PACV) scale was used to assess parental VH. RESULTS: A total of 765 people participated in this study. Their median age was 36.0 years with an interquartile range of 31.0-41.0 years, 67.7% were females, 41.8% completed their tertiary education, 63.3% were married, 81.6% worked in non-healthcare sectors, and 59.7% reported that their monthly income was insufficient. About one-third (34.5%) of the parents were hesitant to give their children the R21/Matrix-M malaria vaccine. The following predictors were associated with VH: working in the healthcare sector (adjusted odds ratio (AOR) = 0.50; 95% confidence interval (CI) 0.30-0.80; p = 0.005), having the other parent working in the healthcare sector (AOR = 0.54; 95% CI 0.30-0.94; p = 0.034), and not taking scheduled routine vaccinations (AOR = 1.90; 95% CI 1.27-2.84; p = 0.002). CONCLUSIONS: Addressing VH is crucial for optimizing R21/Matrix-M vaccine coverage in Ghana's malaria control strategy. By tackling VH issues, Ghana can effectively safeguard children's health in malaria-prone areas.


Assuntos
Vacinas Antimaláricas , Pais , Humanos , Gana , Estudos Transversais , Feminino , Masculino , Vacinas Antimaláricas/administração & dosagem , Adulto , Pais/psicologia , Pré-Escolar , Criança , Hesitação Vacinal/estatística & dados numéricos , Hesitação Vacinal/psicologia , Lactente , Inquéritos e Questionários , Vacinação/estatística & dados numéricos , Vacinação/psicologia , Malária/prevenção & controle , Pessoa de Meia-Idade
4.
Vaccine ; 42(15): 3379-3383, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38704250

RESUMO

The Immunization and Vaccine-related Implementation Research Advisory Committee (IVIR-AC) is the World Health Organization's key standing advisory body to conduct an independent review of research, particularly of transmission and economic modeling analyses that estimate the impact and value of vaccines. From 26th February-1st March 2024, at its first of two semi-annual meetings, IVIR-AC provided feedback and recommendations across four sessions; this report summarizes the proceedings and recommendations from that meeting. Session topics included modeling of the impact and cost-effectiveness of the R21/Matrix-M malaria vaccine, meta-analysis of economic evaluations of vaccines, a global analysis estimating the impact of vaccination over the last 50 years, and modeling the impact of different RTS,S malaria vaccine dose schedules in seasonal settings.


Assuntos
Comitês Consultivos , Vacinas Antimaláricas , Organização Mundial da Saúde , Humanos , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Análise Custo-Benefício , Vacinação/métodos , Malária/prevenção & controle , Imunização/métodos
8.
Rev Med Suisse ; 20(872): 872-875, 2024 May 01.
Artigo em Francês | MEDLINE | ID: mdl-38693799

RESUMO

A malaria vaccine represents an essential complementary tool to curb the stagnation, or even increase, in malaria cases observed over the last decade due to the emergence of resistance to insecticides impregnated on mosquito nets, wars and internal conflicts, as well as global warming. In October 2021, WHO recommended the use of the RTS,S/ASO1 vaccine for children aged 5-17 months in areas of moderate to high transmission. In October 2023, a second vaccine received WHO approval for deployment in the same population, following demonstration of around 70 % efficacy in protecting young children against malaria for one year. Given their partial efficacy, however, these vaccines are not generally recommended for travelers to endemic countries.


Un vaccin contre le paludisme représente une mesure complémentaire essentielle pour juguler la stagnation, voire l'augmentation des cas de paludisme observée durant cette dernière décade en raison de l'émergence de la résistance aux insecticides imprégnés sur les moustiquaires, des guerres et conflits internes ainsi que du réchauffement climatique. En octobre 2021, l'OMS a recommandé l'emploi du vaccin RTS,S/ASO1 pour les enfants de 5 à 17 mois dans les zones de transmission modérée à forte. En octobre 2023, un second vaccin a reçu l'aval de l'OMS pour son déploiement dans la même population, suite à la démonstration d'une efficacité d'environ 70 % pour protéger les jeunes enfants contre le paludisme pendant une année. Vu leur efficacité partielle, ces vaccins ne sont cependant généralement pas recommandés pour les voyageurs se rendant dans les pays d'endémie.


Assuntos
Vacinas Antimaláricas , Malária , Humanos , Vacinas Antimaláricas/administração & dosagem , Malária/prevenção & controle , Organização Mundial da Saúde , Lactente , Erradicação de Doenças/métodos , Erradicação de Doenças/organização & administração
9.
JCI Insight ; 9(9)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716733

RESUMO

Vaccination of malaria-naive volunteers with a high dose of Plasmodium falciparum sporozoites chemoattenuated by chloroquine (CQ) (PfSPZ-CVac [CQ]) has previously demonstrated full protection against controlled human malaria infection (CHMI). However, lower doses of PfSPZ-CVac [CQ] resulted in incomplete protection. This provides the opportunity to understand the immune mechanisms needed for better vaccine-induced protection by comparing individuals who were protected with those not protected. Using mass cytometry, we characterized immune cell composition and responses of malaria-naive European volunteers who received either lower doses of PfSPZ-CVac [CQ], resulting in 50% protection irrespective of the dose, or a placebo vaccination, with everyone becoming infected following CHMI. Clusters of CD4+ and γδ T cells associated with protection were identified, consistent with their known role in malaria immunity. Additionally, EMRA CD8+ T cells and CD56+CD8+ T cell clusters were associated with protection. In a cohort from a malaria-endemic area in Gabon, these CD8+ T cell clusters were also associated with parasitemia control in individuals with lifelong exposure to malaria. Upon stimulation with P. falciparum-infected erythrocytes, CD4+, γδ, and EMRA CD8+ T cells produced IFN-γ and/or TNF, indicating their ability to mediate responses that eliminate malaria parasites.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Vacinas Antimaláricas , Malária Falciparum , Plasmodium falciparum , Esporozoítos , Humanos , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Linfócitos T CD8-Positivos/imunologia , Adulto , Esporozoítos/imunologia , Masculino , Linfócitos T CD4-Positivos/imunologia , Cloroquina/uso terapêutico , Cloroquina/farmacologia , Feminino , Adulto Jovem , Gabão , Vacinação/métodos , Antimaláricos/uso terapêutico , Antimaláricos/administração & dosagem , Europa (Continente) , Parasitemia/imunologia , Adolescente , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem , População Europeia
10.
Malar J ; 23(1): 136, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711053

RESUMO

Malaria vaccine introduction in endemic countries is a game-changing milestone in the fight against the disease. This article examines the inequity in the global pharmaceutical research, development, manufacturing, and trade landscape. The role of inequity in hindering progress towards malaria elimination is explored. The analysis finds that transformational changes are required to create an equity-enabling environment. Addressing the inequity is critical to maximizing the public health impact of vaccines and attaining sustainability. Avenues to catalyze progress by leveraging malaria vaccines and messenger ribonucleic acid (mRNA) technology are discussed.


Assuntos
Vacinas Antimaláricas , Malária , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/genética , Humanos , Malária/prevenção & controle , Erradicação de Doenças/métodos , RNA Mensageiro/genética , Saúde Global , Pesquisa Farmacêutica
11.
Acta Trop ; 255: 107231, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38685340

RESUMO

Malaria remains a public health challenge. Since many control strategies have proven ineffective in eradicating this disease, new strategies are required, among which the design of a multivalent vaccine stands out. However, the effectiveness of this strategy has been hindered, among other reasons, by the genetic diversity observed in parasite antigens. In Plasmodium vivax, the Erythrocyte Binding Protein (PvEBP, also known as DBP2) is an alternate ligand to Duffy Binding Protein (DBP); given its structural resemblance to DBP, EBP/DBP2 is proposed as a promising antigen for inclusion in vaccine design. However, the extent of genetic diversity within the locus encoding this protein has not been comprehensively assessed. Thus, this study aimed to characterize the genetic diversity of the locus encoding the P. vivax EBP/DBP2 protein and to determine the evolutionary mechanisms modulating this diversity. Several intrapopulation genetic variation parameters were estimated using 36 gene sequences of PvEBP/DBP2 from Colombian P. vivax clinical isolates and 186 sequences available in databases. The study then evaluated the worldwide genetic structure and the evolutionary forces that may influence the observed patterns of genetic variation. It was found that the PvEBP/DBP2 gene exhibits one of the lowest levels of genetic diversity compared to other vaccine-candidate antigens. Four major haplotypes were shared worldwide. Analysis of the protein's 3D structure and epitope prediction identified five regions with potential antigenic properties. The results suggest that the PvEBP/DBP2 protein possesses ideal characteristics to be considered when designing a multivalent effective antimalarial vaccine against P. vivax.


Assuntos
Antígenos de Protozoários , Variação Genética , Vacinas Antimaláricas , Malária Vivax , Plasmodium vivax , Proteínas de Protozoários , Plasmodium vivax/genética , Plasmodium vivax/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Humanos , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/genética , Malária Vivax/prevenção & controle , Malária Vivax/parasitologia , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Colômbia , Filogenia , Receptores de Superfície Celular
12.
BMJ Glob Health ; 9(4)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688566

RESUMO

In October 2021, the WHO recommended the world's first malaria vaccine-RTS,S/AS01-to prevent malaria in children living in areas with moderate-to-high transmission in sub-Saharan Africa (SSA). A second malaria vaccine, R21/Matrix-M, was recommended for use in October 2023 and added to the WHO list of prequalified vaccines in December 2023. This study analysis assessed the country status of implementation and delivery strategies for RTS,S/AS01 by searching websites for national malaria policies, guidelines and related documents. Direct contact with individuals working in malaria programmes was made to obtain documents not publicly available. 10 countries had documents with information relating to malaria vaccine implementation, 7 referencing RTS,S/AS01 and 3 (Burkina Faso, Kenya and Nigeria) referencing RTS,S/AS01 and R21/Matrix-M. Five other countries reported plans for malaria vaccine roll-out without specifying which vaccine. Ghana, Kenya and Malawi, which piloted RTS,S/AS01, have now integrated the vaccine into routine immunisation services. Cameroon and Burkina Faso are the first countries outside the pilot countries to incorporate the vaccine into national immunisation services. Uganda plans a phased RTS,S/AS01 introduction, while Guinea plans to first pilot RTS,S/AS01 in five districts. The RTS,S/AS01 schedule varied by country, with the first dose administered at 5 or 6 months in all countries but the fourth dose at either 18, 22 or 24 months. SSA countries have shown widespread interest in rolling out the malaria vaccine, the Global Alliance for Vaccines and Immunization having approved financial support for 20 of 30 countries which applied as of March 2024. Limited availability of RTS,S/AS01 means that some approved countries will not receive the required doses. Vaccine availability and equity must be addressed even as R21/Matrix-M becomes available.


Assuntos
Vacinas Antimaláricas , Organização Mundial da Saúde , Humanos , Vacinas Antimaláricas/administração & dosagem , África Subsaariana , Malária/prevenção & controle , Programas de Imunização , Política de Saúde
14.
Malar J ; 23(1): 106, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632607

RESUMO

BACKGROUND: To gain a deeper understanding of protective immunity against relapsing malaria, this study examined sporozoite-specific T cell responses induced by a chemoprophylaxis with sporozoite (CPS) immunization in a relapsing Plasmodium cynomolgi rhesus macaque model. METHODS: The animals received three CPS immunizations with P. cynomolgi sporozoites, administered by mosquito bite, while under two anti-malarial drug regimens. Group 1 (n = 6) received artesunate/chloroquine (AS/CQ) followed by a radical cure with CQ plus primaquine (PQ). Group 2 (n = 6) received atovaquone-proguanil (AP) followed by PQ. After the final immunization, the animals were challenged with intravenous injection of 104 P. cynomolgi sporozoites, the dose that induced reliable infection and relapse rate. These animals, along with control animals (n = 6), were monitored for primary infection and subsequent relapses. Immunogenicity blood draws were done after each of the three CPS session, before and after the challenge, with liver, spleen and bone marrow sampling and analysis done after the challenge. RESULTS: Group 2 animals demonstrated superior protection, with two achieving protection and two experiencing partial protection, while only one animal in group 1 had partial protection. These animals displayed high sporozoite-specific IFN-γ T cell responses in the liver, spleen, and bone marrow after the challenge with one protected animal having the highest frequency of IFN-γ+ CD8+, IFN-γ+ CD4+, and IFN-γ+ γδ T cells in the liver. Partially protected animals also demonstrated a relatively high frequency of IFN-γ+ CD8+, IFN-γ+ CD4+, and IFN-γ+ γδ T cells in the liver. It is important to highlight that the second animal in group 2, which experienced protection, exhibited deficient sporozoite-specific T cell responses in the liver while displaying average to high T cell responses in the spleen and bone marrow. CONCLUSIONS: This research supports the notion that local liver T cell immunity plays a crucial role in defending against liver-stage infection. Nevertheless, there is an instance where protection occurs independently of T cell responses in the liver, suggesting the involvement of the liver's innate immunity. The relapsing P. cynomolgi rhesus macaque model holds promise for informing the development of vaccines against relapsing P. vivax.


Assuntos
Atovaquona , Vacinas Antimaláricas , Plasmodium cynomolgi , Proguanil , Animais , Primaquina/uso terapêutico , Esporozoítos , Macaca mulatta , Imunização , Quimioprevenção , Linfócitos T CD8-Positivos , Combinação de Medicamentos
15.
Parasite Immunol ; 46(4): e13027, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587985

RESUMO

Malaria in pregnancy has severe consequences for the mother and foetus. Antibody response to specific malaria vaccine candidates (MVC) has been associated with a decreased risk of clinical malaria and its outcomes. We studied Plasmodium falciparum (Pf) and Schistosoma haematobium (Sh) infections and factors that could influence antibody responses to MVC in pregnant women. A total of 337 pregnant women receiving antenatal care (ANC) and 139 for delivery participated in this study. Pf infection was detected by qPCR and Sh infection using urine filtration method. Antibody levels against CSP, AMA-1, GLURP-R0, VAR2CSA and Pfs48/45 MVC were quantified by ELISA. Multivariable linear regression models identified factors associated with the modulation of antibody responses. The prevalence of Pf and Sh infections was 27% and 4% at ANC and 7% and 4% at delivery. Pf infection, residing in Adidome and multigravidae were positively associated with specific IgG response to CSP, AMA-1, GLURP-R0 and VAR2CSA. ITN use and IPTp were negatively associated with specific IgG response to GLURP-R0 and Pfs48/45. There was no association between Sh infection and antibody response to MVC at ANC or delivery. Pf infections in pregnant women were positively associated with antibody response to CSP, GLURP-R0 and AMA-1. Antibody response to GLURP-R0 and Pfs48/45 was low for IPTp and ITN users. This could indicate a lower exposure to Pf infection and low malaria prevalence observed at delivery.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Esquistossomose Urinária , Animais , Humanos , Feminino , Gravidez , Plasmodium falciparum , Schistosoma haematobium , Formação de Anticorpos , Gestantes , Antígenos de Protozoários , Anticorpos Antiprotozoários , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Malária Falciparum/complicações , Esquistossomose Urinária/epidemiologia , Esquistossomose Urinária/prevenção & controle , Esquistossomose Urinária/complicações , Imunoglobulina G
16.
Malar J ; 23(1): 105, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38627704

RESUMO

BACKGROUND: Malaria remains a significant global health burden affecting millions of people, children under 5 years and pregnant women being most vulnerable. In 2019, the World Health Organization (WHO) endorsed the introduction of RTS,S/AS01 malaria vaccine as Phase IV implementation evaluation in three countries: Malawi, Kenya and Ghana. Acceptability and factors influencing vaccination coverage in implementing areas is relatively unknown. In Malawi, only 60% of children were fully immunized with malaria vaccine in Nsanje district in 2021, which is below 80% WHO target. This study aimed at exploring factors influencing uptake of malaria vaccine and identify approaches to increase vaccination. METHODS: In a cross-sectional study conducted in April-May, 2023, 410 mothers/caregivers with children aged 24-36 months were selected by stratified random sampling and interviewed using a structured questionnaire. Vaccination data was collected from health passports, for those without health passports, data was collected using recall history. Regression analyses were used to test association between independent variables and full uptake of malaria vaccine. RESULTS: Uptake of malaria vaccine was 90.5% for dose 1, but reduced to 87.6%, 69.5% and 41.2% for dose 2, 3, and 4 respectively. Children of caregivers with secondary or upper education and those who attended antenatal clinic four times or more had increased odds of full uptake of malaria vaccine [OR: 2.43, 95%CI 1.08-6.51 and OR: 1.89, 95%CI 1.18-3.02], respectively. Children who ever suffered side-effects following immunization and those who travelled long distances to reach the vaccination centre had reduced odds of full uptake of malaria vaccine [OR: 0.35, 95%CI 0.06-0.25 and OR: 0.30, 95%CI 0.03-0.39] respectively. Only 17% (n = 65) of mothers/caregivers knew the correct schedule for vaccination and 38.5% (n = 158) knew the correct number of doses a child was to receive. CONCLUSION: Only RTS,S dose 1 and 2 uptake met WHO coverage targets. Mothers/caregivers had low level of information regarding malaria vaccine, especially on numbers of doses to be received and dosing schedule. The primary modifiable factor influencing vaccine uptake was mother/caregiver knowledge about the vaccine. Thus, to increase the uptake Nsanje District Health Directorate should strengthen communities' education about malaria vaccine. Programmes to strengthen mother/caregiver knowledge should be included in scale-up of the vaccine in Malawi and across sub-Saharan Africa.


Assuntos
Vacinas Antimaláricas , Malária , Gravidez , Criança , Humanos , Feminino , Lactente , Pré-Escolar , Malaui , Estudos Transversais , Malária/prevenção & controle , Vacinação
17.
Malar J ; 23(1): 111, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641838

RESUMO

BACKGROUND: Sporozoites (SPZ), the infective form of Plasmodium falciparum malaria, can be inoculated into the human host skin by Anopheline mosquitoes. These SPZ migrate at approximately 1 µm/s to find a blood vessel and travel to the liver where they infect hepatocytes and multiply. In the skin they are still low in number (50-100 SPZ) and vulnerable to immune attack by antibodies and skin macrophages. This is why whole SPZ and SPZ proteins are used as the basis for most malaria vaccines currently deployed and undergoing late clinical testing. Mosquitoes typically inoculate SPZ into a human host between 14 and 25 days after their previous infective blood meal. However, it is unknown whether residing time within the mosquito affects SPZ condition, infectivity or immunogenicity. This study aimed to unravel how the age of P. falciparum SPZ in salivary glands (14, 17, or 20 days post blood meal) affects their infectivity and the ensuing immune responses. METHODS: SPZ numbers, viability by live/dead staining, motility using dedicated sporozoite motility orienting and organizing tool software (SMOOT), and infectivity of HC-04.j7 liver cells at 14, 17 and 20 days after mosquito feeding have been investigated. In vitro co-culture assays with SPZ stimulated monocyte-derived macrophages (MoMɸ) and CD8+ T-cells, analysed by flow cytometry, were used to investigate immune responses. RESULTS: SPZ age did not result in different SPZ numbers or viability. However, a markedly different motility pattern, whereby motility decreased from 89% at day 14 to 80% at day 17 and 71% at day 20 was observed (p ≤ 0.0001). Similarly, infectivity of day 20 SPZ dropped to ~ 50% compared with day 14 SPZ (p = 0.004). MoMɸ were better able to take up day 14 SPZ than day 20 SPZ (from 7.6% to 4.1%, p = 0.03) and displayed an increased expression of pro-inflammatory CD80, IL-6 (p = 0.005), regulatory markers PDL1 (p = 0.02), IL-10 (p = 0.009) and cytokines upon phagocytosis of younger SPZ. Interestingly, co-culture of these cells with CD8+ T-cells revealed a decreased expression of activation marker CD137 and cytokine IFNγ compared to their day 20 counterparts. These findings suggest that older (day 17-20) P. falciparum SPZ are less infectious and have decreased immune regulatory potential. CONCLUSION: Overall, this data is a first step in enhancing the understanding of how mosquito residing time affects P. falciparum SPZ and could impact the understanding of the P. falciparum infectious reservoir and the potency of whole SPZ vaccines.


Assuntos
Culicidae , Vacinas Antimaláricas , Malária Falciparum , Animais , Humanos , Esporozoítos , Linfócitos T CD8-Positivos , Envelhecimento , Plasmodium falciparum
18.
Malar J ; 23(1): 117, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664783

RESUMO

BACKGROUND: There are giant steps taken in the introduction of the novel malaria vaccine poised towards reducing mortality and morbidity associated with malaria. OBJECTIVES: This study aimed to determine the knowledge of malaria vaccine and factors militating against willingness to accept the vaccine among mothers presenting in nine hospitals in Enugu metropolis. METHODS: This was a cross-sectional study carried out among 491 mothers who presented with their children in nine hospitals in Enugu metropolis, South-East Nigeria. A pre-tested and interviewer-administered questionnaire was used in this study. RESULTS: A majority of the respondents, 72.1% were aware of malaria vaccine. A majority of the respondents, 83.1% were willing to receive malaria vaccine. Similarly, a majority of the mothers, 92.9%, were willing to vaccinate baby with the malaria vaccine, while 81.1% were willing to vaccinate self and baby with the malaria vaccine. The subjects who belong to the low socio-economic class were five times less likely to vaccinate self and baby with malaria vaccine when compared with those who were in the high socio-economic class (AOR = 0.2, 95% CI 0.1-0.5). Mothers who had good knowledge of malaria vaccination were 3.3 times more likely to vaccinate self and baby with malaria vaccine when compared with those who had poor knowledge of malaria vaccination (AOR = 3.3, 95% CI 1-6-6.8). CONCLUSION: Although the study documented a high vaccine acceptance among the mothers, there exists a poor knowledge of the malaria vaccine among them.


Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Vacinas Antimaláricas , Aceitação pelo Paciente de Cuidados de Saúde , Humanos , Nigéria , Estudos Transversais , Feminino , Adulto , Adulto Jovem , Vacinas Antimaláricas/administração & dosagem , Aceitação pelo Paciente de Cuidados de Saúde/estatística & dados numéricos , Aceitação pelo Paciente de Cuidados de Saúde/psicologia , Adolescente , Malária/prevenção & controle , Mães/psicologia , Mães/estatística & dados numéricos , Pessoa de Meia-Idade , Inquéritos e Questionários , Instituições de Assistência Ambulatorial/estatística & dados numéricos , Lactente
19.
BMJ Glob Health ; 9(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38580377

RESUMO

Three months after the first shipment of RTS,S1/AS01 vaccines, Cameroon started, on 22 January 2024, to roll out malaria vaccines in 42 districts among the most at risk for malaria. Cameroon adopted and implemented the World Health Organization (WHO) malaria vaccine readiness assessment tool to monitor the implementation of preintroduction activities at the district and national levels. One week before the start of the vaccine rollout, overall readiness was estimated at 89% at a national level with two out of the five components of readiness assessment surpassing 95% of performance (vaccine, cold chain and logistics and training) and three components between 80% and 95% (planning, monitoring and supervision, and advocacy, social mobilisation and communication). 'Vaccine, cold chain and logistics' was the component with the highest number of districts recording below 80% readiness. The South-West and North-West, two regions with a high level of insecurity, were the regions with the highest number of districts that recorded a readiness performance below 80% in the five components. To monitor progress in vaccine rollout daily, Cameroon piloted a system for capturing immunisation data by vaccination session coupled with an interactive dashboard using the R Shiny platform. In addition to displaying data on vaccine uptake, this dashboard allows the generation of the monthly immunisation report for all antigens, ensuring linkage to the regular immunisation data system based on the end-of-month reporting through District Health Information Software 2. Such a hybrid system complies with the malaria vaccine rollout principle of full integration into routine immunisation coupled with strengthened management of operations.


Assuntos
Vacinas Antimaláricas , Malária , Humanos , Camarões , Malária/prevenção & controle , Vacinação , Imunização
20.
Lancet ; 403(10437): 1660-1670, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38583454

RESUMO

BACKGROUND: The RTS,S/AS01E malaria vaccine (RTS,S) was introduced by national immunisation programmes in Ghana, Kenya, and Malawi in 2019 in large-scale pilot schemes. We aimed to address questions about feasibility and impact, and to assess safety signals that had been observed in the phase 3 trial that included an excess of meningitis and cerebral malaria cases in RTS,S recipients, and the possibility of an excess of deaths among girls who received RTS,S than in controls, to inform decisions about wider use. METHODS: In this prospective evaluation, 158 geographical clusters (66 districts in Ghana; 46 sub-counties in Kenya; and 46 groups of immunisation clinic catchment areas in Malawi) were randomly assigned to early or delayed introduction of RTS,S, with three doses to be administered between the ages of 5 months and 9 months and a fourth dose at the age of approximately 2 years. Primary outcomes of the evaluation, planned over 4 years, were mortality from all causes except injury (impact), hospital admission with severe malaria (impact), hospital admission with meningitis or cerebral malaria (safety), deaths in girls compared with boys (safety), and vaccination coverage (feasibility). Mortality was monitored in children aged 1-59 months throughout the pilot areas. Surveillance for meningitis and severe malaria was established in eight sentinel hospitals in Ghana, six in Kenya, and four in Malawi. Vaccine uptake was measured in surveys of children aged 12-23 months about 18 months after vaccine introduction. We estimated that sufficient data would have accrued after 24 months to evaluate each of the safety signals and the impact on severe malaria in a pooled analysis of the data from the three countries. We estimated incidence rate ratios (IRRs) by comparing the ratio of the number of events in children age-eligible to have received at least one dose of the vaccine (for safety outcomes), or age-eligible to have received three doses (for impact outcomes), to that in non-eligible age groups in implementation areas with the equivalent ratio in comparison areas. To establish whether there was evidence of a difference between girls and boys in the vaccine's impact on mortality, the female-to-male mortality ratio in age groups eligible to receive the vaccine (relative to the ratio in non-eligible children) was compared between implementation and comparison areas. Preliminary findings contributed to WHO's recommendation in 2021 for widespread use of RTS,S in areas of moderate-to-high malaria transmission. FINDINGS: By April 30, 2021, 652 673 children had received at least one dose of RTS,S and 494 745 children had received three doses. Coverage of the first dose was 76% in Ghana, 79% in Kenya, and 73% in Malawi, and coverage of the third dose was 66% in Ghana, 62% in Kenya, and 62% in Malawi. 26 285 children aged 1-59 months were admitted to sentinel hospitals and 13 198 deaths were reported through mortality surveillance. Among children eligible to have received at least one dose of RTS,S, there was no evidence of an excess of meningitis or cerebral malaria cases in implementation areas compared with comparison areas (hospital admission with meningitis: IRR 0·63 [95% CI 0·22-1·79]; hospital admission with cerebral malaria: IRR 1·03 [95% CI 0·61-1·74]). The impact of RTS,S introduction on mortality was similar for girls and boys (relative mortality ratio 1·03 [95% CI 0·88-1·21]). Among children eligible for three vaccine doses, RTS,S introduction was associated with a 32% reduction (95% CI 5-51%) in hospital admission with severe malaria, and a 9% reduction (95% CI 0-18%) in all-cause mortality (excluding injury). INTERPRETATION: In the first 2 years of implementation of RTS,S, the three primary doses were effectively deployed through national immunisation programmes. There was no evidence of the safety signals that had been observed in the phase 3 trial, and introduction of the vaccine was associated with substantial reductions in hospital admission with severe malaria. Evaluation continues to assess the impact of four doses of RTS,S. FUNDING: Gavi, the Vaccine Alliance; the Global Fund to Fight AIDS, Tuberculosis and Malaria; and Unitaid.


Assuntos
Estudos de Viabilidade , Programas de Imunização , Vacinas Antimaláricas , Malária Cerebral , Humanos , Gana/epidemiologia , Malaui/epidemiologia , Lactente , Feminino , Quênia/epidemiologia , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/efeitos adversos , Masculino , Pré-Escolar , Malária Cerebral/epidemiologia , Malária Cerebral/mortalidade , Estudos Prospectivos , Malária Falciparum/prevenção & controle , Malária Falciparum/epidemiologia , Meningite/epidemiologia , Meningite/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...