Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.824
Filtrar
1.
Int Ophthalmol ; 44(1): 229, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795168

RESUMO

BACKGROUND: The multifunctional profibrotic cytokine transforming growth factor-beta2 (TGF-ß2) is implicated in the pathophysiology of primary open angle glaucoma. Paeoniflorin (PAE) is a monoterpene glycoside with multiple pharmacological efficacies, such as antioxidant, anti-fibrotic, and anti-inflammatory properties. Studies have demonstrated that paeoniflorin protects human corneal epithelial cells, retinal pigment epithelial cells, and retinal microglia from damage. Here, the biological role of PAE in TGF-ß2-dependent remodeling of the extracellular matrix (ECM) within the trabecular meshwork (TM) microenvironment. METHODS: Primary or transformed (GTM3) human TM (HTM) cells conditioned in serum-free media were incubated with TGF-ß2 (5 ng/mL). PAE (300 µM) was added to serum-starved confluent cultures of HTM cells for 2 h, followed by incubation with TGF-ß2 for 22 h. SB-431542, a TGF-ß receptor inhibitor (10 µM), was used as a positive control. The levels of intracellular ROS were evaluated by CellROX green dye. Western blotting was used to measure the levels of TGF-ß2/Smad2/3 signaling-related molecules. Collagen 1α1, collagen 4α1, and connective tissue growth factor (CTGF) expression was evaluated by RT-qPCR. Immunofluorescence assay was conducted to measure collagen I/IV expression in HTM cells. Phalloidin staining assay was conducted for evaluating F-actin stress fiber formation in the cells. RESULTS: PAE attenuated TGF-ß2-induced oxidative stress and suppressed TGF-ß2-induced Smad2/3 signaling in primary or transformed HTM cells. Additionally, PAE repressed TGF-ß2-induced upregulation of collagen 1α1, collagen 4α1, and CTGF expression and reduced TGF-ß2-mediated collagen I/IV expression and of F-actin stress fiber formation in primary or transformed HTM cells. CONCLUSION: PAE alleviates TGF-ß2-induced ECM deposition and oxidative stress in HTM cells through inactivation of Smad2/3 signaling.


Assuntos
Matriz Extracelular , Glucosídeos , Monoterpenos , Estresse Oxidativo , Malha Trabecular , Fator de Crescimento Transformador beta2 , Humanos , Estresse Oxidativo/efeitos dos fármacos , Monoterpenos/farmacologia , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta2/farmacologia , Glucosídeos/farmacologia , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/metabolismo , Malha Trabecular/patologia , Células Cultivadas , Transdução de Sinais/efeitos dos fármacos , Western Blotting
2.
FASEB J ; 38(10): e23651, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38752537

RESUMO

Singleton-Merten syndrome (SMS) is a rare immunogenetic disorder affecting multiple systems, characterized by dental dysplasia, aortic calcification, glaucoma, skeletal abnormalities, and psoriasis. Glaucoma, a key feature of both classical and atypical SMS, remains poorly understood in terms of its molecular mechanism caused by DDX58 mutation. This study presented a novel DDX58 variant (c.1649A>C [p.Asp550Ala]) in a family with childhood glaucoma. Functional analysis showed that DDX58 variant caused an increase in IFN-stimulated gene expression and high IFN-ß-based type-I IFN. As the trabecular meshwork (TM) is responsible for controlling intraocular pressure (IOP), we examine the effect of IFN-ß on TM cells. Our study is the first to demonstrate that IFN-ß significantly reduced TM cell viability and function by activating autophagy. In addition, anterior chamber injection of IFN-ß remarkably increased IOP level in mice, which can be attenuated by treatments with autophagy inhibitor chloroquine. To uncover the specific mechanism underlying IFN-ß-induced autophagy in TM cells, we performed microarray analysis in IFN-ß-treated and DDX58 p.Asp550Ala TM cells. It showed that RSAD2 is necessary for IFN-ß-induced autophagy. Knockdown of RSAD2 by siRNA significantly decreased autophagy flux induced by IFN-ß. Our findings suggest that DDX58 mutation leads to the overproduction of IFN-ß, which elevates IOP by modulating autophagy through RSAD2 in TM cells.


Assuntos
Autofagia , Interferon beta , Pressão Intraocular , Malha Trabecular , Autofagia/efeitos dos fármacos , Malha Trabecular/metabolismo , Malha Trabecular/efeitos dos fármacos , Humanos , Animais , Camundongos , Pressão Intraocular/fisiologia , Interferon beta/metabolismo , Masculino , Feminino , Glaucoma/patologia , Glaucoma/metabolismo , Glaucoma/genética , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Perda Auditiva Neurossensorial/metabolismo , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/genética , Camundongos Endogâmicos C57BL , Mutação , Atrofia Óptica/genética , Atrofia Óptica/metabolismo , Atrofia Óptica/patologia , Linhagem , Odontodisplasia , Calcificação Vascular , Hipoplasia do Esmalte Dentário , Metacarpo/anormalidades , Osteoporose , Doenças Musculares , Doenças da Aorta , Receptores Imunológicos
3.
Sci Rep ; 14(1): 10258, 2024 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704467

RESUMO

In order to identify how differential gene expression in the trabecular meshwork (TM) contributes to racial disparities of caveolar protein expression, TM dysfunction and development of primary open angle glaucoma (POAG), RNA sequencing was performed to compare TM tissue obtained from White and Black POAG surgical (trabeculectomy) specimens. Healthy donor TM tissue from White and Black donors was analyzed by PCR, qPCR, immunohistochemistry staining, and Western blot to evaluate SDPR (serum deprivation protein response; Cavin 2) and CAV1/CAV2 (Caveolin 1/Caveolin 2). Standard transmission electron microscopy (TEM) and immunogold labeled studies were performed. RNA sequencing demonstrated reduced SDPR expression in TM from Black vs White POAG patients' surgical specimens, with no significant expression differences in other caveolae-associated genes, confirmed by qPCR analysis. No racial differences in SDPR gene expression were noted in healthy donor tissue by PCR analysis, but there was greater expression as compared to specimens from patients with glaucoma. Analysis of SDPR protein expression confirmed specific expression in the TM regions, but not in adjacent tissues. TEM studies of TM specimens from healthy donors did not demonstrate any racial differences in caveolar morphology, but a significant reduction of caveolae with normal morphology and immuno-gold staining of SDPR were noted in glaucomatous TM as compared to TM from healthy donors. Linkage of SDPR expression levels in TM, POAG development, and caveolar ultrastructural morphology may provide the basis for a novel pathway of exploration of the pathologic mechanisms of glaucoma. Differential gene expression of SDPR in TM from Black vs White subjects with glaucoma may further our understanding of the important public health implications of the racial disparities of this blinding disease.


Assuntos
Caveolina 1 , Glaucoma de Ângulo Aberto , Malha Trabecular , Humanos , Malha Trabecular/metabolismo , Malha Trabecular/patologia , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/metabolismo , Glaucoma de Ângulo Aberto/patologia , Glaucoma de Ângulo Aberto/etnologia , Feminino , Masculino , Pessoa de Meia-Idade , Caveolina 1/genética , Caveolina 1/metabolismo , Caveolina 2/genética , Caveolina 2/metabolismo , Idoso , População Branca/genética , Negro ou Afro-Americano/genética
4.
Zhonghua Yan Ke Za Zhi ; 60(5): 399-402, 2024 May 11.
Artigo em Chinês | MEDLINE | ID: mdl-38706076

RESUMO

The advent of minimally invasive glaucoma surgery (MIGS) has broadened the therapeutic options for managing glaucoma. In recent years, MIGS procedures targeting the trabecular meshwork-Schlemm's canal aqueous outflow resistance site have garnered significant attention. This focus has extended to the pathophysiological changes occurring within the aqueous outflow pathway. However, questions persist regarding the efficacy of near-peripheral or peripheral trabeculotomy in achieving the anticipated reduction of outflow resistance and the suitability of MIGS surgery for patients with primary open-angle glaucoma. By integrating clinical experience with pertinent clinical research, this paper advocates for a reevaluation of MIGS procedures to aid clinicians in making informed decisions regarding various glaucoma surgical interventions.


Assuntos
Procedimentos Cirúrgicos Minimamente Invasivos , Malha Trabecular , Trabeculectomia , Humanos , Malha Trabecular/cirurgia , Trabeculectomia/métodos , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Glaucoma de Ângulo Aberto/cirurgia , Glaucoma/cirurgia , Humor Aquoso
5.
J Biomech ; 168: 112113, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38648717

RESUMO

Atomic force microscopy (AFM) is a valuable tool for assessing mechanical properties of biological samples, but interpretations of measurements on whole tissues can be difficult due to the tissue's highly heterogeneous nature. To overcome such difficulties and obtain more robust estimates of tissue mechanical properties, we describe an AFM force mapping and data analysis pipeline to characterize the mechanical properties of cryosectioned soft tissues. We assessed this approach on mouse optic nerve head and rat trabecular meshwork, cornea, and sclera. Our data show that the use of repeated measurements, outlier exclusion, and log-normal data transformation increases confidence in AFM mechanical measurements, and we propose that this methodology can be broadly applied to measuring soft tissue properties from cryosections.


Assuntos
Microscopia de Força Atômica , Animais , Microscopia de Força Atômica/métodos , Camundongos , Ratos , Esclera/fisiologia , Esclera/diagnóstico por imagem , Córnea/fisiologia , Córnea/diagnóstico por imagem , Malha Trabecular/fisiologia , Malha Trabecular/diagnóstico por imagem , Crioultramicrotomia/métodos , Disco Óptico/diagnóstico por imagem , Disco Óptico/fisiologia , Fenômenos Biomecânicos
6.
Acta Biomater ; 180: 206-229, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641184

RESUMO

This study presents a 3D in vitro cell culture model, meticulously 3D printed to replicate the conventional aqueous outflow pathway anatomical structure, facilitating the study of trabecular meshwork (TM) cellular responses under glaucomatous conditions. Glaucoma affects TM cell functionality, leading to extracellular matrix (ECM) stiffening, enhanced cell-ECM adhesion, and obstructed aqueous humor outflow. Our model, reconstructed from polyacrylamide gel with elastic moduli of 1.5 and 21.7 kPa, is based on serial block-face scanning electron microscopy images of the outflow pathway. It allows for quantifying 3D, depth-dependent, dynamic traction forces exerted by both normal and glaucomatous TM cells within an active fluid-structure interaction (FSI) environment. In our experimental design, we designed two scenarios: a control group with TM cells observed over 20 hours without flow (static setting), focusing on intrinsic cellular contractile forces, and a second scenario incorporating active FSI to evaluate its impact on traction forces (dynamic setting). Our observations revealed that active FSI results in higher traction forces (normal: 1.83-fold and glaucoma: 2.24-fold) and shear strains (normal: 1.81-fold and glaucoma: 2.41-fold), with stiffer substrates amplifying this effect. Glaucomatous cells consistently exhibited larger forces than normal cells. Increasing gel stiffness led to enhanced stress fiber formation in TM cells, particularly in glaucomatous cells. Exposure to active FSI dramatically altered actin organization in both normal and glaucomatous TM cells, particularly affecting cortical actin stress fiber arrangement. This model while preliminary offers a new method in understanding TM cell biomechanics and ECM stiffening in glaucoma, highlighting the importance of FSI in these processes. STATEMENT OF SIGNIFICANCE: This pioneering project presents an advanced 3D in vitro model, meticulously replicating the human trabecular meshwork's anatomy for glaucoma research. It enables precise quantification of cellular forces in a dynamic fluid-structure interaction, a leap forward from existing 2D models. This advancement promises significant insights into trabecular meshwork cell biomechanics and the stiffening of the extracellular matrix in glaucoma, offering potential pathways for innovative treatments. This research is positioned at the forefront of ocular disease study, with implications that extend to broader biomedical applications.


Assuntos
Glaucoma , Malha Trabecular , Malha Trabecular/patologia , Humanos , Glaucoma/patologia , Glaucoma/fisiopatologia , Matriz Extracelular/metabolismo , Técnicas de Cultura de Células em Três Dimensões , Células Cultivadas , Fenômenos Biomecânicos
7.
Mol Vis ; 30: 107-113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601017

RESUMO

Purpose: To compare the microstructure of the corneal endothelial transition zone in different laboratory animals. Methods: Flat-mount corneas of rabbits, rats, and mice were stained with Alizarin Red S (ARS) and observed using scanning electron microscopy (SEM). The progenitor cell markers p75 neurotrophin receptor (p75NTR), SRY-box transcription factor 9 (SOX9), leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5), telomerase reverse transcriptase (TERT), and proliferation marker Ki-67 were examined in the flat-mounted corneas of three laboratory animals using immunofluorescence microscopy. Results: On flat mounts, proximity to the trabecular meshwork correlated with weaker ARS staining and greater polymorphism of endothelial cells in the transition zone in all animals. On SEM, distinct and smooth structures of the transition zone were negligibly detected in all animals. The endothelial cells in the transition zone had irregular shapes, with less dense, less wavy intercellular junctions, especially in murine corneas, exhibiting unique intercellular cystic spaces. In the transition zone of the rabbit cornea, progenitor cell markers p75NTR, SOX9, Lgr5, TERT, and proliferation marker Ki-67 were expressed, in contrast to those in other murine corneas. Conclusions: Although the transition zone was not identified clearly, irregular cell morphology and loss of cell-cell contact were observed in all animal corneal endothelial cells. The proliferative capacity and the presence of progenitor cells were confirmed in the transition zone, especially in the rabbit cornea.


Assuntos
Células Endoteliais , Endotélio Corneano , Animais , Ratos , Camundongos , Coelhos , Córnea , Animais de Laboratório , Malha Trabecular
8.
Sci Rep ; 14(1): 7861, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570526

RESUMO

Ripasudil-brimonidine fixed-dose combination (K-232) simultaneously targets three different intraocular pressure (IOP) lowering mechanisms, increasing trabecular meshwork outflow and uveoscleral outflow, and reducing aqueous humor production Vascularly, ripasudil induces transient vasodilation, brimonidine transient vasoconstriction. Investigating effects on IOP, aqueous dynamics, and EVP in mice eyes by microneedle and constant-pressure perfusion methods, and on cytoskeletal and fibrotic proteins changes in HTM cells by a gel contraction assay and immunocytochemistry. Ripasudil, K-232, and brimonidine droplets significantly reduced IOP at 30 min, with K-232 sustaining the effect at 60 min. For EVP, only K-232 exhibited reduced EVP until 60 min after instillation. In vitro, ripasudil inhibited gel contractility and TGFß2-induced fibrotic changes, whereas brimonidine did not. K-232 significantly lowered IOPs in mice by combining the effects of ripasudil and brimonidine. Brimonidine alone also showed IOP reductions with enhanced outflow facility, and the drug did not interfere with the effects of ripasudil on the trabecular meshwork outflow; K-232 and ripasudil alone both significantly lowered the EVP and enhanced outflow facility, demonstrating that K-232 efficiently reduces IOPs.


Assuntos
Humor Aquoso , Pressão Intraocular , Isoquinolinas , Sulfonamidas , Animais , Camundongos , Tartarato de Brimonidina/farmacologia , Humor Aquoso/metabolismo , Malha Trabecular/metabolismo
9.
Exp Eye Res ; 243: 109904, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642600

RESUMO

Aqueous humor (AQH) is a transparent fluid with characteristics similar to those of the interstitial fluid, which fills the eyeball posterior and anterior chambers and circulates in them from the sites of production to those of drainage. The AQH volume and pressure homeostasis is essential for the trophism of the ocular avascular tissues and their normal structure and function. Different AQH outflow pathways exist, including a main pathway, quite well defined anatomically and referred to as the conventional pathway, and some accessory pathways, more recently described and still not fully morphofunctionally understood, generically referred to as unconventional pathways. The conventional pathway is based on the existence of a series of conduits starting with the trabecular meshwork and Schlemm's Canal and continuing with a system of intrascleral and episcleral venules, which are tributaries to veins of the anterior segment of the eyeball. The unconventional pathways are mainly represented by the uveoscleral pathway, in which AQH flows through clefts, interstitial conduits located in the ciliary body and sclera, and then merges into the aforementioned intrascleral and episcleral venules. A further unconventional pathway, the lymphatic pathway, has been supported by the demonstration of lymphatic microvessels in the limbal sclera and, possibly, in the uvea (ciliary body, choroid) as well as by the ocular glymphatic channels, present in the neural retina and optic nerve. It follows that AQH may be drained from the eyeball through blood vessels (TM-SC pathway, US pathway) or lymphatic vessels (lymphatic pathway), and the different pathways may integrate or compensate for each other, optimizing the AQH drainage. The present review aims to define the state-of-the-art concerning the structural organization and the functional anatomy of all the AQH outflow pathways. Particular attention is paid to examining the regulatory mechanisms active in each of them. The new data on the anatomy and physiology of AQH outflow pathways is the key to understanding the pathophysiology of AQH outflow disorders and could open the way for novel approaches to their treatment.


Assuntos
Humor Aquoso , Sistema Linfático , Humor Aquoso/fisiologia , Humor Aquoso/metabolismo , Humanos , Sistema Linfático/fisiologia , Esclera/irrigação sanguínea , Malha Trabecular/metabolismo , Vasos Linfáticos/fisiologia , Veias/fisiologia , Úvea , Animais , Pressão Intraocular/fisiologia , Linfa/fisiologia , Corpo Ciliar/irrigação sanguínea , Corpo Ciliar/metabolismo
10.
Am J Physiol Cell Physiol ; 326(5): C1505-C1519, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557355

RESUMO

Glaucoma is a blinding disease. Reduction of intraocular pressure (IOP) is the mainstay of treatment, but current drugs show side effects or become progressively ineffective, highlighting the need for novel compounds. We have synthesized a family of perhydro-1,4-oxazepine derivatives of digoxin, the selective inhibitor of Na,K-ATPase. The cyclobutyl derivative (DcB) displays strong selectivity for the human α2 isoform and potently reduces IOP in rabbits. These observations appeared consistent with a hypothesis that in ciliary epithelium DcB inhibits the α2 isoform of Na,K-ATPase, which is expressed strongly in nonpigmented cells, reducing aqueous humor (AH) inflow. This paper extends assessment of efficacy and mechanism of action of DcB using an ocular hypertensive nonhuman primate model (OHT-NHP) (Macaca fascicularis). In OHT-NHP, DcB potently lowers IOP, in both acute (24 h) and extended (7-10 days) settings, accompanied by increased aqueous humor flow rate (AFR). By contrast, ocular normotensive animals (ONT-NHP) are poorly responsive to DcB, if at all. The mechanism of action of DcB has been analyzed using isolated porcine ciliary epithelium and perfused enucleated eyes to study AH inflow and AH outflow facility, respectively. 1) DcB significantly stimulates AH inflow although prior addition of 8-Br-cAMP, which raises AH inflow, precludes additional effects of DcB. 2) DcB significantly increases AH outflow facility via the trabecular meshwork (TM). Taken together, the data indicate that the original hypothesis on the mechanism of action must be revised. In the OHT-NHP, and presumably other species, DcB lowers IOP by increasing AH outflow facility rather than by decreasing AH inflow.NEW & NOTEWORTHY When applied topically, a cyclobutyl derivative of digoxin (DcB) potently reduces intraocular pressure in an ocular hypertensive nonhuman primate model (Macaca fascicularis), associated with increased aqueous humor (AH) flow rate (AFR). The mechanism of action of DcB involves increased AH outflow facility as detected in enucleated perfused porcine eyes and, in parallel, increased (AH) inflow as detected in isolated porcine ciliary epithelium. DcB might have potential as a drug for the treatment of open-angle human glaucoma.


Assuntos
Humor Aquoso , Digoxina , Pressão Intraocular , Macaca fascicularis , Hipertensão Ocular , Animais , Pressão Intraocular/efeitos dos fármacos , Digoxina/farmacologia , Humor Aquoso/metabolismo , Humor Aquoso/efeitos dos fármacos , Hipertensão Ocular/tratamento farmacológico , Hipertensão Ocular/fisiopatologia , Hipertensão Ocular/metabolismo , Modelos Animais de Doenças , Glaucoma/tratamento farmacológico , Glaucoma/metabolismo , Glaucoma/fisiopatologia , Coelhos , Humanos , Corpo Ciliar/efeitos dos fármacos , Corpo Ciliar/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Masculino , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/metabolismo
11.
J Biomech Eng ; 146(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38529724

RESUMO

Murine models are commonly used to study glaucoma, the leading cause of irreversible blindness. Glaucoma is associated with elevated intra-ocular pressure (IOP), which is regulated by the tissues of the aqueous outflow pathway. In particular, pectinate ligaments (PLs) connect the iris and trabecular meshwork (TM) at the anterior chamber angle, with an unknown role in maintenance of the biomechanical stability of the aqueous outflow pathway, thus motivating this study. We conducted histomorphometric analysis and optical coherence tomography-based finite element (FE) modeling on three cohorts of C57BL/6 mice: "young" (2-6 months), "middle-aged" (11-16 months), and "elderly" (25-32 months). We evaluated the age-specific morphology of the outflow pathway tissues. Further, because of the known pressure-dependent Schlemm's canal (SC) narrowing, we assessed the dependence of the SC lumen area on varying IOPs in age-specific FE models over a physiological range of TM/PL stiffness values. We found age-dependent changes in morphology of outflow tissues; notably, the PLs were more developed in older mice compared to younger ones. In addition, FE modeling demonstrated that murine SC patency is highly dependent on the presence of PLs and that increased IOP caused SC collapse only with sufficiently low TM/PL stiffness values. Moreover, the elderly model showed more susceptibility to SC collapse compared to the younger models. In conclusion, our study elucidated the previously unexplored role of PLs in the aqueous outflow pathway, indicating their function in supporting TM and SC under elevated IOP.


Assuntos
Humor Aquoso , Glaucoma , Humanos , Idoso , Camundongos , Animais , Humor Aquoso/metabolismo , Pressão Intraocular , Camundongos Endogâmicos C57BL , Malha Trabecular/metabolismo
13.
Exp Eye Res ; 241: 109853, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453038

RESUMO

High myopia is a risk factor for primary open angle glaucoma (POAG). The pathological mechanism of high myopia induced POAG occurrence is not fully understood. In this study, we successfully established the guinea pig model of ocular hypertension with high myopia, and demonstrated the susceptibility of high myopia for the occurrence of microbead-induced glaucoma compared with non-myopia group and the effect of YAP/TGF-ß signaling pathway in TM pathogenesis induced by high myopia. Moreover, we performed stretching treatment on primary trabecular meshwork (TM) cells to simulate the mechanical environment of high myopia. It was found that stretching treatment disrupted the cytoskeleton, decreased phagocytic function, enhanced ECM remodeling, and promoted cell apoptosis. The experiments of mechanics-induced human TM cell lines appeared the similar trend. Mechanically, the differential expressed genes of TM cells caused by stretch treatment enriched YAP/TGF-ß signaling pathway. To inhibit YAP/TGF-ß signaling pathway effectively reversed mechanics-induced TM damage. Together, this study enriches mechanistic insights of high myopia induced POAG susceptibility and provides a potential target for the prevention of POAG with high myopia.


Assuntos
Glaucoma de Ângulo Aberto , Hipertensão Ocular , Humanos , Animais , Cobaias , Fator de Crescimento Transformador beta/metabolismo , Malha Trabecular/metabolismo , Glaucoma de Ângulo Aberto/prevenção & controle , Glaucoma de Ângulo Aberto/genética , Hipertensão Ocular/metabolismo , Fatores de Risco , Células Cultivadas
14.
Exp Eye Res ; 241: 109859, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467175

RESUMO

It is known that the actin cytoskeleton and its associated cellular interactions in the trabecular meshwork (TM) and juxtacanalicular tissues mainly contribute to the formation of resistance to aqueous outflow of the eye. Fibulin-3, encoded by EFEMP1 gene, has a role in extracellular matrix (ECM) modulation, and interacts with enzymatic ECM regulators, but the effects of fibulin-3 on TM cells has not been explored. Here, we report a stop codon variant (c.T1480C, p.X494Q) of EFEMP1 that co-segregates with primary open angle glaucoma (POAG) in a Chinese pedigree. In the human TM cells, overexpression of wild-type fibulin-3 reduced intracellular actin stress fibers formation and the extracellular fibronectin levels by inhibiting Rho/ROCK signaling. TGFß1 up-regulated fibulin-3 protein levels in human TM cells by activating Rho/ROCK signaling. In rat eyes, overexpression of wild-type fibulin-3 decreased the intraocular pressure and the fibronectin expression of TM, however, overexpression of mutant fibulin-3 (c.T1480C, p.X494Q) showed opposite effects in cells and rat eyes. Taken together, the EFEMP1 variant may impair the regulatory capacity of fibulin-3 which has a role for modulating the cell contractile activity and ECM synthesis in TM cells, and in turn may maintain normal resistance of aqueous humor outflow. This study contributes to the understanding of the important role of fibulin-3 in TM pathophysiology and provides a new possible POAG therapeutic approach.


Assuntos
Humor Aquoso , Glaucoma de Ângulo Aberto , Humanos , Humor Aquoso/metabolismo , Fibronectinas/metabolismo , Glaucoma de Ângulo Aberto/metabolismo , Códon de Terminação/metabolismo , Malha Trabecular/metabolismo , Pressão Intraocular , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo
15.
Front Biosci (Landmark Ed) ; 29(3): 91, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38538254

RESUMO

OBJECTIVE: The morphology and functions of the human trabecular meshwork (HTM) are dysregulated in glaucoma, and the molecular mechanisms of this dysregulation remain unknown. According to an established in vitro model, whose function was to study the regulatory networks sustaining the response of HTM cells to the increased substrate stiffness, we systematically analyzed the expression pattern of long noncoding RNAs (lncRNAs), the important regulatory RNAs in cells. METHODS: Bioinformatics analysis was performed to identify the dysregulated lncRNAs in response to increased substrate stiffness using transcriptome sequencing data (RNA-seq). Then we interfered with the expression of several dysregulated lncRNAs in HTM cells to explore their molecular targets. The cross-linking immunoprecipitation and sequencing method (CLIP-seq) was used to identify enhancer of zeste homolog 2 (EZH2)-targeted RNAs in HTM cells. The chromatin IP and sequencing method (ChIP-seq) was used to identify the targets of EZH2 and histone H3 at lysine 27 (H3K27me3). RESULTS: The response of thousands of dysregulated lncRNAs to increased substrate stiffness was identified through RNA-seq. Functional prediction of these lncRNAs revealed that they potentially regulated key biological processes, including extracellular matrix (ECM) organization. By interfering with the expression of lncRNA SHNG8, ZFHX4-AS1, and RP11-552M11.4, the results demonstrated that those lncRNAs extensively regulated the expression levels of ECM-associated genes. Moreover, we found that EZH2 expression was significantly decreased at high substrate stiffness. Using CLIP-seq to identify EZH2-targeted RNAs in HTM cells, we found that SNHG8 was bound by EZH2. According to the CLIP-seq data of EZH2, we found that EZH2 binding sites were observed in the transcripts of SNHG8-regulated genes, but not in the ChIP-seq results of EZH2 and H3K27me3. CONCLUSION: Our results suggest that SNHG8 and EZH2 may cooperate to regulate the expression of a subset of genes by influencing their RNA abundance, explaining how they support HTM cell morphology and high density. This study contributes to the understanding of the alteration of HTM during the progression of glaucoma by identifying functional lncRNAs, especially SNHG8, and suggests novel therapeutic targets to treat glaucoma.


Assuntos
Glaucoma , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Histonas/metabolismo , Transcriptoma , Malha Trabecular/metabolismo , Cromatina/metabolismo , Biologia Computacional/métodos , Glaucoma/genética , Glaucoma/metabolismo
16.
Exp Eye Res ; 241: 109855, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453040

RESUMO

Transgenic C57BL/6 mice expressing human myocilinY437 (Tg-MYOCY437H) are a well-established model for primary open-angle glaucoma (POAG). While the reduced trabecular meshwork (TM) cellularity due to severe endoplasmic reticulum (ER) stress has been characterized as the etiology of this model, there is a limited understanding of how glaucomatous phenotypes evolve over the lifespan of Tg-MyocY437H mice. In this study, we compiled the model's intraocular pressure (IOP) data recorded in our laboratory from 2017 to 2023 and selected representative eyes to measure the outflow facility (Cr), a critical parameter indicating the condition of the conventional TM pathway. We found that Tg-MYOCY437H mice aged 4-12 months exhibited significantly higher IOPs than age-matched C57BL/6 mice. Notably, a decline in IOP was observed in Tg-MYOCY437H mice at 17-24 months of age, a phenomenon not attributable to the gene dosage of mutant myocilin. Measurements of the Cr of Tg-MYOCY437H mice indicated that the age-related IOP reduction was not a result of ongoing TM damage. Instead, Hematoxylin and Eosin staining, immunohistochemistry analysis, and transmission electron microscopic examination revealed that this reduction might be induced by degenerations of the non-pigmented epithelium in the ciliary body of aged Tg-MYOCY437H mice. Overall, our findings provide a comprehensive profile of mutant myocilin-induced ocular changes over the Tg-MYOCY437H mouse lifespan and suggest a specific temporal window of elevated IOP that may be ideal for experimental purposes.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Animais , Humanos , Camundongos , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Glaucoma/metabolismo , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/metabolismo , Pressão Intraocular , Longevidade , Camundongos Endogâmicos C57BL , Malha Trabecular/metabolismo
17.
Am J Physiol Cell Physiol ; 326(5): C1293-C1307, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38525543

RESUMO

Given the widespread application of glucocorticoids in ophthalmology, the associated elevation of intraocular pressure (IOP) has long been a vexing concern for clinicians, yet the underlying mechanisms remain inconclusive. Much of the discussion focuses on the extracellular matrix (ECM) of trabecular meshwork (TM). It is widely agreed that glucocorticoids impact the expression of matrix metalloproteinases (MMPs), leading to ECM deposition. Since Zn2+ is vital for MMPs, we explored its role in ECM alterations induced by dexamethasone (DEX). Our study revealed that in human TM cells treated with DEX, the level of intracellular Zn2+ significantly decreased, accompanied by impaired extracellular Zn2+ uptake. This correlated with changes in several Zrt-, Irt-related proteins (ZIPs) and metallothionein. ZIP8 knockdown impaired extracellular Zn2+ uptake, but Zn2+ chelation did not affect ZIP8 expression. Resembling DEX's effects, chelation of Zn2+ decreased MMP2 expression, increased the deposition of ECM proteins, and induced structural disarray of ECM. Conversely, supplementation of exogenous Zn2+ in DEX-treated cells ameliorated these outcomes. Notably, dietary zinc supplementation in mice significantly reduced DEX-induced IOP elevation and collagen content in TM, thereby rescuing the visual function of the mice. These findings underscore zinc's pivotal role in ECM regulation, providing a novel perspective on the pathogenesis of glaucoma.NEW & NOTEWORTHY Our study explores zinc's pivotal role in mitigating extracellular matrix dysregulation in the trabecular meshwork and glucocorticoid-induced ocular hypertension. We found that in human trabecular meshwork cells treated with dexamethasone, intracellular Zn2+ significantly decreased, accompanied by impaired extracellular Zn2+ uptake. Zinc supplementation rescues visual function by modulating extracellular matrix proteins and lowering intraocular pressure, offering a direction for further exploration in glaucoma management.


Assuntos
Glaucoma , Malha Trabecular , Camundongos , Humanos , Animais , Malha Trabecular/metabolismo , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Glaucoma/patologia , Pressão Intraocular , Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Metaloproteinases da Matriz/metabolismo , Zinco/metabolismo , Células Cultivadas
18.
J Ocul Pharmacol Ther ; 40(3): 189-196, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38502813

RESUMO

Purpose: The objective of the present study was to evaluate the effects of low concentrations of benzalkonium chloride (BAC) (10-7%, 10-6%, or 10-5%) on healthy and glaucomatous human trabecular meshwork (HTM) cells. For this purpose, we used in vitro models replicating a healthy HTM and HTM with primary open-angle glaucoma (POAG) or steroid-induced glaucoma (SG) using two-dimensional (2D) cultures of HTM cells not treated or treated with a 5 ng/mL solution of transforming growth factor-ß2 or 250 nM dexamethasone (DEX). Methods: Analyses were carried out for (1) the intercellular affinity function of 2D HTM monolayers, as determined by transepithelial electrical resistance (TEER) measurements; (2) cell viability; (3) cellular metabolism by using a Seahorse bioanalyzer; and (4) expression of extracellular matrix (ECM) molecules, an ECM modulator, and cell junction-related molecules. Results: In the absence and presence of BAC (10-7% or 10-5%), intercellular affinity function determined by TEER and cellular metabolic activities were significantly and dose dependently affected in both healthy and glaucomatous HTM cells despite the fact that there was no significant decrease in cell viabilities. However, the effects based on TEER values were significantly greater in the healthy HTM. The mRNA expression of several molecules that were tested was not substantially modulated by these concentrations of BAC. Conclusions: The findings reported herein suggest that low concentrations of BAC may have unfavorable adverse effects on cellular metabolic capacity by inducing increases in the intercellular affinity properties of the HTM, but those effects of BAC were different in healthy and glaucomatous HTM cells.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Humanos , Malha Trabecular/metabolismo , Compostos de Benzalcônio/farmacologia , Compostos de Benzalcônio/uso terapêutico , Glaucoma de Ângulo Aberto/tratamento farmacológico , Glaucoma de Ângulo Aberto/metabolismo , Células Cultivadas , Glaucoma/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Fatores de Crescimento Transformadores/metabolismo , Fatores de Crescimento Transformadores/farmacologia , Fatores de Crescimento Transformadores/uso terapêutico
19.
J Physiol Sci ; 74(1): 14, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431563

RESUMO

Intraocular pressure (IOP) plays a crucial role in glaucoma development, involving the dynamics of aqueous humor (AH). AH flows in from the ciliary body and exits through the trabecular meshwork (TM). IOP follows a circadian rhythm synchronized with the suprachiasmatic nucleus (SCN), the circadian pacemaker. The SCN resets peripheral clocks through sympathetic nerves or adrenal glucocorticoids (GCs). IOP's circadian rhythm is governed by circadian time signals, sympathetic noradrenaline (NE), and GCs, rather than the local clock. The activity of Na+/K+-ATPase in non-pigmented epithelial cells in the ciliary body can influence the nocturnal increase in IOP by enhancing AH inflow. Conversely, NE, not GCs, can regulate the IOP rhythm by suppressing TM macrophage phagocytosis and AH outflow. The activation of the ß1-adrenergic receptor (AR)-mediated EPAC-SHIP1 signal through the ablation of phosphatidylinositol triphosphate may govern phagocytic cup formation. These findings could offer insights for better glaucoma management, such as chronotherapy.


Assuntos
Glaucoma , Pressão Intraocular , Humanos , Malha Trabecular , Humor Aquoso/fisiologia , Ritmo Circadiano/fisiologia , Glucocorticoides
20.
Sci Rep ; 14(1): 6112, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480777

RESUMO

Digital ocular massage has been reported to temporarily lower intraocular pressure (IOP). This could be related to an enhanced aqueous humor outflow; however, the mechanism is not clearly understood. Using anterior segment optical coherence tomography, the Schlemm's canal (SC) and trabecular meshwork (TM) can be imaged and measured. Here, 66 healthy adults underwent digital ocular massage for 10 min in their right eyes. The IOP and dimensions of the SC and TM were measured before and after ocular massage. All subjects demonstrated IOP reduction from 15.7 ± 2.5 mmHg at baseline to 9.6 ± 2.2 mmHg immediately after, and median of 11.6 mmHg 5-min after ocular massage (Friedman's test, p < 0.001). There was significant change in SC area (median 10,063.5 µm2 at baseline to median 10,151.0 µm2 after ocular massage, Wilcoxon test, p = 0.02), and TM thickness (median 149.8 µm at baseline to 144.6 ± 25.3 µm after ocular massage, Wilcoxon test, p = 0.036). One-third of the subjects demonstrated collapse of the SC area (-2 to -52%), while two-thirds showed expansion of the SC area (2 to 168%). There were no significant changes in SC diameter (270.4 ± 84.1 µm vs. 276.5 ± 68.7 µm, paired t-test, p = 0.499), and TM width (733.3 ± 110.1 µm vs. 733.5 ± 111.6 µm, paired t-test, p = 0.988). Eyes with a higher baseline IOP demonstrated a greater IOP reduction (Pearson correlation coefficient r = -0.521, p < 0.001). Eyes with smaller SC area at baseline showed greater SC area expansion (Pearson correlation coefficient = -0.389, p < 0.001). Greater IOP reduction appeared in eyes with greater SC area expansion (Pearson correlation coefficient r = -0.306, p = 0.01). Association between change in IOP and change in TM thickness was not significant (Spearman's ρ = 0.015, p = 0.902). Simple digital ocular massage is an effective method to lower IOP values, and change in the SC area was significantly associated with IOP changes.


Assuntos
Glaucoma , Hipotensão Ocular , Adulto , Humanos , Pressão Intraocular , Canal de Schlemm , Esclera , Tonometria Ocular , Malha Trabecular , Glaucoma/terapia , Tomografia de Coerência Óptica/métodos , Massagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...