Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.813
Filtrar
1.
Food Chem ; 462: 141004, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39216378

RESUMO

This study assessed the effect of konjac glucomannan (KGM) on the aggregation of soy protein isolate (SPI) and its gel-related structure and properties. Raman results showed that KGM promoted the rearrangement of SPI to form more ß-sheets, contributing to the formation of an ordered structure. Atomic force microscopy, confocal laser scanning microscopy, and small-angle X-ray scattering results indicated that KGM reduced the size of SPI particles, narrowed their size distribution, and loosened the large aggregates formed by the stacking of SPI particles, improving the uniformity of gel system. As the hydrogen bonding between the KGM and SPI molecules enhanced, a well-developed network structure was obtained, further reducing the immobilized water's content (T22) and increasing the water-holding capacity (WHC) of SPI gel. Furthermore, this gel structure showed improved gel hardness and resistance to both small and large deformations. These findings facilitate the design and production of SPI-based gels with desired performance.


Assuntos
Géis , Mananas , Proteínas de Soja , Proteínas de Soja/química , Mananas/química , Géis/química , Tamanho da Partícula , Agregados Proteicos
2.
Carbohydr Polym ; 345: 122571, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39227106

RESUMO

Konjac glucomannan (KGM) molecular chains contain a small amount of acetyl groups and a large number of hydroxyl groups, thereby exhibiting exceptional water retention and gel-forming properties. To meet diverse requirements, KGM undergoes modification processes such as oxidation, acetylation, grafting, and cationization, which reduce its viscosity, enhance its mechanical strength, and improve its water solubility. Researchers have found that KGM and its derivatives can regulate the polarization of macrophages, inducing their transformation into classically activated M1-type macrophages or alternatively activated M2-type macrophages, and even facilitating the interconversion between M1 and M2 phenotypes. Concurrently, the modulation of macrophage polarization states holds significant importance for chronic wound healing, inflammatory bowel disease (IBD), antitumor therapy, tissue engineering scaffolds, oral vaccines, pulmonary delivery, and probiotics. Therefore, KGM has the advantages of both immunomodulatory effects (biological activity) and gel-forming properties (physicochemical properties), giving it significant advantages in a variety of biomedical engineering applications.


Assuntos
Macrófagos , Mananas , Mananas/química , Mananas/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Humanos , Animais , Engenharia Tecidual/métodos
3.
Nutrients ; 16(17)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39275258

RESUMO

Our previous studies have demonstrated that konjac glucomannan (KGM) can prevent dysbiosis induced by antibiotics. While exercise may also impact the gut microbiome, there are limited studies reporting its protective effect on antibiotic-induced dysbiosis. Therefore, this study investigated the preventive and regulatory effects of a combination of 6-week exercise and KGM intervention on antibiotic-induced dysbiosis in C57BL/6J mice compared with a single intervention. The results showed that combined exercise and KGM intervention could restore the changes in the relative abundance of Bacteroides (3.73% with CTL versus 14.23% with ATBX versus 4.46% with EK) and Prevotellaceae_Prevotella (0.33% with CTL versus 0.00% with ATBX versus 0.30% with EK) induced by antibiotics (p < 0.05), and minimized the Bray-Curtis distance induced by antibiotics (0.55 with CTL versus 0.81 with ATBX versus 0.80 with EXC versus 0.83 with KGM versus 0.75 with EK). Compared with the combined intervention, exercise intervention also produced a certain level of recovery effects; the relative abundance of Rikenellaceae (1.96% with CTL versus 0.09% with ATBX versus 0.49% with EXC) was restored, while KGM supplementation showed the best preventive effect. In addition, the combination of exercise and KGM significantly enriched microbial purine metabolic pathways (p < 0.05). These findings indicate that combining exercise with KGM could be a promising approach to reducing the side effects of antibiotics on the gut microbiome.


Assuntos
Antibacterianos , Disbiose , Microbioma Gastrointestinal , Mananas , Camundongos Endogâmicos C57BL , Condicionamento Físico Animal , Animais , Mananas/farmacologia , Disbiose/prevenção & controle , Disbiose/induzido quimicamente , Antibacterianos/farmacologia , Antibacterianos/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Masculino , Terapia Combinada
4.
Food Res Int ; 195: 114962, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39277233

RESUMO

Konjac glucomannan (KGM), a water-soluble hydrocolloid, holds considerable potential in the food industry, especially for improving the quality and nutritional properties of frozen products. This study explored the alleviative effect of KGM on the quality characteristics, water status, multi-scale structure, and flavor compounds of steamed bread throughout frozen storage. KGM significantly improved the quality of steamed bread by slowing down the decrease in water content and the increase in water migration while maintaining softness and taste during frozen storage. Notably, KGM also delayed amylopectin retrogradation and starch recrystallization, thus preserving the texture and structure of the steamed bread. At week 3, the microstructure of the steamed bread with 1.0 % KGM remained intact, with the lowest free sulfhydryl content. Additionally, heat map analysis revealed that KGM contributed to flavor retention in steamed bread frozen for 3 weeks. These results indicate that KGM holds promise as an effective cryoprotectant for improving the quality of frozen steamed bread.


Assuntos
Pão , Armazenamento de Alimentos , Congelamento , Mananas , Paladar , Água , Mananas/química , Pão/análise , Armazenamento de Alimentos/métodos , Água/química , Vapor , Humanos , Qualidade dos Alimentos
5.
Sci Rep ; 14(1): 22363, 2024 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333607

RESUMO

Agricultural wastes rich in ß-mannan are an important environmental problem in tropical and sub-tropical countries. This research aims at dealing with this and investigates the valorization of mannan-rich copra meal from virgin coconut oil manufacturing into mannan-oligosaccharides (ß-MOS) by enzymatic hydrolysis using ß-mannanase from Bacillus licheniformis (BlMan26B). Lab-scale process, involving pre-treatment and bioconversion steps, were conducted and evaluated. Lyophilized ß-MOS was analyzed and its biological activities were assessed. The size of oligosaccharides obtained ranged from dimers to hexamers with 36.7% conversion yields. The prebiotic effects of ß-MOS were demonstrated in comparison with commercial inulin and fructo-oligosaccharides (FOS). In vitro toxicity assays of ß -MOS on human dermal fibroblasts and monocytes showed no cytotoxic effect. Interestingly, ß-MOS at concentrations ranging from 10 to 200 µg/mL also demonstrated potent anti-inflammatory activity against LPS-induced inflammation of human macrophage THP-1 in a dose-dependent manner. However, at high dose, ß-MOS could also stimulate inflammation. Therefore, further investigation must be conducted to ensure its efficacy and safe use in the future. These results indicate that ß-MOS have the potential to be used as valued-added health-promoting nutraceutical or feed additive after additional in-depth studies. These finding should be applicable for other agricultural wastes rich in mannan as well.


Assuntos
Bacillus , Mananas , Oligossacarídeos , beta-Manosidase , Mananas/química , Humanos , Oligossacarídeos/química , Oligossacarídeos/farmacologia , beta-Manosidase/metabolismo , Bacillus/metabolismo , Prebióticos , Hidrólise , Células THP-1
6.
Food Funct ; 15(18): 9116-9135, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39219450

RESUMO

Konjac glucomannan (KGM) is a dietary fiber supplement that exhibits multiple biological activities, including weight control as well as regulation of glucose and lipid metabolism. Currently, KGM intake patterns in practical applications include KGM sol, thermal irreversible gel, and frozen thermal irreversible gel. In this study, four intake patterns of KGM, namely KGM sol (KS), deacetylated KGM (DK), KGM gel (KG), and frozen KGM gel (FKG), were used as materials to explore the effects of different KGM intake patterns on glucose and lipid metabolism and intestinal flora in obese mice induced by a high fat diet under the same dose. The results showed that any type of KGM intake could reduce body weight, fat mass, lipid levels, and insulin resistance in obese mice, and alleviate liver damage and inflammation caused by obesity. However, KS has the most significant effect on controlling blood glucose and blood lipid in obese mice. Additionally, it was found that KS, DK, KG and FKG can increase the α-diversity of intestinal microflora in high-fat mice and improve the microflora disorder in high-fat mice. Finally, KS may increase the levels of fasting appetite hormones GLP-1 and PYY in mice, up-regulate the expression of LDLR, GCK and G-6-pase mRNA, and increase the production of short-chain fatty acids (SCFAs) in the intestinal flora of mice, thus regulating glucose and lipid metabolism. This study systematically investigated the effects of different intake forms of KGM on metabolism and intestinal flora in obese mice, which is of great significance for further understanding the role of KGM in the prevention and treatment of obesity-related metabolic diseases and for developing targeted dietary interventions.


Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal , Metabolismo dos Lipídeos , Mananas , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade , Animais , Mananas/farmacologia , Mananas/administração & dosagem , Camundongos , Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Resistência à Insulina , Glicemia/metabolismo , Glucose/metabolismo , Fibras na Dieta/farmacologia , Peptídeo YY/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos
7.
Sci Rep ; 14(1): 21671, 2024 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289462

RESUMO

The primary plant cell wall (PCW) is a specialized structure composed predominantly of cellulose, hemicelluloses and pectin. While the role of cellulose and hemicelluloses in the formation of the PCW scaffold is undeniable, the mechanisms of how hemicelluloses determine the mechanical properties of PCW remain debatable. Thus, we produced bacterial cellulose-hemicellulose hydrogels as PCW analogues, incorporated with hemicelluloses. Next, we treated samples with hemicellulose degrading enzymes, and explored its structural and mechanical properties. As suggested, difference of hemicelluloses in structure and chemical composition resulted in a variety of the properties studied. By analyzing all the direct and indirect evidences we have found that glucomannan, xyloglucan and arabinoxylan increased the width of cellulose fibers both by hemicellulose surface deposition and fiber entrapment. Arabinoxylan increased stresses and moduli of the hydrogel by its reinforcing effect, while for xylan, increase in mechanical properties was determined by establishment of stiff cellulose-cellulose junctions. In contrast, increasing content of xyloglucan decreased stresses and moduli of hydrogel by its weak interactions with cellulose, while glucomannan altered cellulose network formation via surface deposition, decreasing its strength. The current results provide evidence for structure-dependent mechanisms of cellulose-hemicellulose interactions, suggesting the specific structural role of the latter.


Assuntos
Celulose , Glucanos , Hidrogéis , Mananas , Polissacarídeos , Xilanos , Hidrogéis/química , Polissacarídeos/química , Celulose/química , Xilanos/química , Xilanos/metabolismo , Mananas/química , Glucanos/química , Glucanos/biossíntese , Glucanos/metabolismo , Parede Celular/metabolismo , Parede Celular/química
8.
Carbohydr Polym ; 344: 122503, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39218541

RESUMO

Konjac glucomannan (KGM) as an emerging natural polymer has attracted increasing interests owing to its film-forming properties, excellent gelation, non-toxic characteristics, strong adhesion, good biocompatibility, and easy biodegradability. Benefiting from these superior performances, KGM has been widely applied in the construction of multiple composite materials to further improve their intrinsic performances (e.g., mechanical strength and properties). Up to now, KGM-based composite materials have obtained widespread applications in diverse fields, especially in the field of biomedical. Therefore, a timely review of relevant research progresses is important for promoting the development of KGM-based composite materials. Innovatively, firstly, this review briefly introduced the structure properties and functions of KGMs based on the unique perspective of the biomedical field. Then, the latest advances on the preparation and properties of KGM-based composite materials (i.e., gels, microspheres, films, nanofibers, nanoparticles, etc.) were comprehensively summarized. Finally, the promising applications of KGM-based composite materials in the field of biomedical are comprehensively summarized and discussed, involving drug delivery, wound healing, tissue engineering, antibacterial, tumor treatment, etc. Impressively, the remaining challenges and opportunities in this promising field were put forward. This review can provide a reference for guiding and promoting the design and biomedical applications of KGM-based composites.


Assuntos
Materiais Biocompatíveis , Mananas , Engenharia Tecidual , Mananas/química , Humanos , Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Animais , Cicatrização/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Sistemas de Liberação de Medicamentos
9.
Carbohydr Polym ; 346: 122570, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39245477

RESUMO

This study investigated the influence of Konjac Glucomannan (KGM) with varying degrees of polymerization (DKGMx) on the gelatinization and retrogradation characteristics of wheat starch, providing new insights into starch-polysaccharide interactions. This research uniquely focuses on the effects of DKGMx, utilizing multidisciplinary approaches including Rapid Visco Analysis (RVA), Differential Scanning Calorimetry (DSC), rheological testing, Low-Field Nuclear Magnetic Resonance (LF-NMR), and molecular simulations to assess the effects of DKGMx on gelatinization temperature, viscosity, structural changes post-retrogradation, and molecular interactions. Our findings revealed that higher degrees of polymerization (DP) of DKGMx significantly enhanced starch's pasting viscosity and stability, whereas lower DP reduced viscosity and interfered with retrogradation. High DP DKGMx promoted retrogradation by modifying moisture distribution. Molecular simulations revealed the interplay between low DP DKGMx and starch molecules. These interactions, characterized by increased hydrogen bonds and tighter binding to more starch chains, inhibited starch molecular rearrangement. Specifically, low DP DKGMx established a dense hydrogen bond network with starch, significantly restricting molecular mobility and rearrangement. This study provides new insights into the role of the DP of DKGMx in modulating wheat starch's properties, offering valuable implications for the functional improvement of starch-based foods and advancing starch science.


Assuntos
Mananas , Polimerização , Amido , Triticum , Triticum/química , Amido/química , Viscosidade , Mananas/química , Ligação de Hidrogênio , Reologia , Simulação de Dinâmica Molecular , Varredura Diferencial de Calorimetria
10.
Curr Microbiol ; 81(11): 375, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39317904

RESUMO

Herpes simplex virus (HSV) infections can occur throughout life, thereby allowing transmission to new hosts, with an impact on public health. Acyclovir remains the treatment of choice for these infections; however, an increase in resistant strains in recent years has been observed. In this study, the activity of a native Delonix regia galactomannan (NDr) against HSV-1 was investigated in vitro. NDr was characterized using infrared spectroscopy and NMR. Evaluation of cytotoxicity and the antiviral effect was determined, respectively, by MTT and plaque reduction assays. The NDr concentrations that inhibited cell viability (CC50) and viral infection (IC50) by 50% were above 2000 and 64 µg/mL, respectively. Thus, the polysaccharide showed a high selectivity index (> 31.25). When NDr was added at different stages of HSV-1 replication, a strong inhibitory effect was found by direct interaction with the virus (71-67%, virucidal effect) or previously with the cell, 6 h before infection (99.8-68.4%, prophylactic effect) at concentrations from 200 to 50 µg/mL. NDr showed similar effects in prophylactic 1 h (52%) and adsorption inhibition (55%) assays at 200 µg/mL. A reduction in the antiherpetic effect was observed after infection. These results suggest that NDr is effective in the early stages of HSV-1 infection and is a promising agent for controlling herpetic infections.


Assuntos
Antivirais , Galactose , Herpesvirus Humano 1 , Mananas , Sementes , Mananas/farmacologia , Mananas/química , Galactose/análogos & derivados , Galactose/farmacologia , Antivirais/farmacologia , Antivirais/química , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/fisiologia , Animais , Chlorocebus aethiops , Células Vero , Sementes/química , Replicação Viral/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Humanos , Herpes Simples/tratamento farmacológico , Herpes Simples/virologia
11.
PLoS Negl Trop Dis ; 18(8): e0012472, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39208382

RESUMO

BACKGROUND: Paracoccidioidomycosis (PCM) and histoplasmosis are endemic fungal diseases in South America. Both can lead to lung involvement with fungal dissemination progressing to systemic and severe clinical manifestations, especially in immunosuppressed hosts. As the population of immunosuppressed individuals has been rising, a higher occurrence of fungal infections is predicted in this setting. This poses challenges regarding the differential diagnosis due to overlapping clinical and laboratorial findings, hampering the management of cases. OBJECTIVES: In this study, the authors discuss the occurrence of a false-positive Histoplasma urinary antigen detection in a kidney transplant recipient with acute PCM. Given the scarce information about this subject, a review on literature data is provided. METHODS: A comprehensive literature search was conducted to investigate previous studies that found cross-reactivity between Histoplasma urinary antigen assays in human patients with confirmed diagnosis of PCM. Additionally, an update of PCM in transplant recipients is provided. FINDINGS: The included studies reported 120 samples from patients with PCM tested for Histoplasma antigen, presenting an overall cross-reactivity of 51.67% and 17 cases of PCM in transplant recipients. CONCLUSIONS: The galactomannan urinary antigen developed to diagnose histoplasmosis can cross react with PCM, which may represent a concern in countries where both mycoses overlap.


Assuntos
Antígenos de Fungos , Histoplasma , Histoplasmose , Transplante de Rim , Paracoccidioidomicose , Transplantados , Humanos , Antígenos de Fungos/urina , Histoplasma/imunologia , Paracoccidioidomicose/diagnóstico , Paracoccidioidomicose/urina , Histoplasmose/urina , Histoplasmose/diagnóstico , Masculino , Reações Cruzadas , Hospedeiro Imunocomprometido , Mananas/urina , Reações Falso-Positivas , Pessoa de Meia-Idade , Galactose/análogos & derivados
12.
J Immunol ; 213(6): 843-852, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39109925

RESUMO

Candida spp. are the fourth leading cause of bloodstream infections in hospitalized patients and the most common cause of invasive fungal infection. No vaccine against Candida spp. or other fungal pathogens of humans is available. We recently discovered the Blastomyces Dectin-2 ligand endoglucanase 2 that harbors antigenic and adjuvant functions and can function as a protective vaccine against that fungus. We also reported that the adjuvant activity, which is mediated by O-mannans decorating the C terminus of Blastomyces Dectin-2 ligand endoglucanase 2, can augment peptide Ag-induced vaccine immunity against heterologous agents, including Cryptococcus, Candida, and influenza. In this article, we report that the O-linked mannans alone, in the absence of any antigenic peptide, can also protect against systemic candidiasis, reducing kidney fungal load and increasing survival in a Dectin-2-dependent manner. We found that this long-term glycan-induced protection is mediated by innate lymphocyte populations including TCR-γδ+ T cells, innate lymphoid cells, and NK cells that subsequently activate and release reactive oxygen species from neutrophils and monocytes. Our findings suggest that Blastomyces O-mannan displayed by Eng2 induces a form of protective trained immunity mediated by innate lymphocyte populations.


Assuntos
Candidíase , Vacinas Fúngicas , Imunidade Inata , Mananas , Camundongos , Animais , Vacinas Fúngicas/imunologia , Imunidade Inata/imunologia , Candidíase/imunologia , Candidíase/prevenção & controle , Mananas/imunologia , Blastomyces/imunologia , Lectinas Tipo C/imunologia , Camundongos Endogâmicos C57BL , Vacinação , Células Matadoras Naturais/imunologia , Humanos , Camundongos Knockout
13.
J Food Prot ; 87(10): 100339, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39127227

RESUMO

In this study, different proportions of curcumin (CUR) and alizarin (ALI) were added to konjac glucomannan (KG)/ polyvinyl alcohol (PVA) to prepare an active intelligent packaging film and evaluate its potential to indicate pork freshness. The mixed indicator had a richer color hierarchy in the buffer solution with pH = 2-12. The surface of the KG-2C2A and KG-1C3A films is smoother and has fewer cross-section faults. With the increase of CUR content in the film, the crystal structure becomes more prominent, leading to poor compatibility with KG. The WAC of KG-3C1A and KG-1C3A films was significantly higher than that of the other groups, and they had better hydrophobicity. With the increase of CUR content in the films, the thermal stability of the films was enhanced, and the KG-C films showed the highest thermal stability. Among them, the KG-2A2C and KG-1C3A films showed the most significant color change during pork spoiling and could be used to monitor the freshness of pork. As a pH colorimetric indicator, CUR and ALI-coated KG films might be of great potential in fresh meat monitoring.


Assuntos
Colorimetria , Curcumina , Embalagem de Alimentos , Mananas , Mananas/química , Animais , Curcumina/química , Suínos , Concentração de Íons de Hidrogênio , Antraquinonas/química , Humanos , Carne Vermelha
14.
Int J Biol Macromol ; 278(Pt 4): 134985, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39217045

RESUMO

To improve the gelation behaviour of pectin, the effect of deacetylated konjac glucomannan (DKGM) with various deacetylation degrees (27.44 %, 44.32 %, 60.25 %, and 71.77 %) on the heat-induced gel characteristics of Ficus pumila Linn. pectin was studied. The hardness, chewiness, and adhesiveness of the gel increased as the degree of deacetylation increased from 27.44 % to 60.25 %, but decreased at 71.77 %. Additionally, DKGM addition resulted in higher apparent viscosity and non-Newtonian fluid behaviour in the composite gel. The incorporation of DKGM into the gel matrix strengthened the gel structure by promoting hydrogen bond formation and shortening relaxation time compared to the control. Scanning electron microscopy images revealed that the densification of the pectin gel network increased as the degree of deacetylation of konjac glucomannan rose from 27.44 % to 60.25 %, but then loosened when it exceeded 71.77 %. As the degree of deacetylation increased, the hydrophobic interaction between pectin and DKGM increased. Overall, the addition of DKGM effectively modulated the gel properties of Ficus pumila Linn. pectin, thus broadening its industrial application on different gel products.


Assuntos
Ficus , Géis , Mananas , Pectinas , Mananas/química , Ficus/química , Pectinas/química , Géis/química , Acetilação , Viscosidade , Reologia
15.
Int J Biol Macromol ; 278(Pt 1): 134610, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39128737

RESUMO

Multifunctional green food packaging films were developed by incorporating Koelreuteria paniculata Laxm. bract extract (KBE) and bio-waste-derived Ti-doped carbon dots (Ti-CDs) into a chitosan/locust bean gum (CG) matrix for the first time. Results from FTIR and XRD demonstrated the precise bonding of Ti-CDs to CG through a Schiff base reaction and hydrogen bonding, while KBE was effectively immobilized within the film matrix via hydrogen bonding. SEM and TGA analysis demonstrated enhanced thermal stability and density of the films. Addition of Ti-CDs synergistically improved the barrier properties and mechanical strength of the films through enhanced hydrogen bonding and Schiff base reactions. Specifically, the incorporation of 3 wt% Ti-CDs increased the oxygen barrier properties, tensile strength, water resistance, and vapor permeability of CG films by approximately 1.18, 0.75, and 1.51 times, respectively. Furthermore, the antimicrobial and antioxidant capabilities were significantly improved with the addition of KBE to films. The CG-3%CDs-KBE film coating effectively prolonged the shelf life of strawberries. Additionally, these films exhibited superior pH responsiveness and ammonia-sensitivity, enabling visual monitoring of shrimp freshness during storage. Importantly, CG-3%CDs-KBE films exhibited biodegradability in soil and displayed good biosafety. Overall, these findings underscore the promising potential of CG-3%CDs-KBE films as multifunctional green food packaging materials.


Assuntos
Carbono , Quitosana , Embalagem de Alimentos , Galactanos , Mananas , Extratos Vegetais , Gomas Vegetais , Quitosana/química , Embalagem de Alimentos/métodos , Gomas Vegetais/química , Extratos Vegetais/química , Mananas/química , Carbono/química , Galactanos/química , Titânio/química , Pontos Quânticos/química , Antioxidantes/química , Antioxidantes/farmacologia , Permeabilidade , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Química Verde , Fabaceae/química
16.
Int J Biol Macromol ; 278(Pt 1): 134676, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39137855

RESUMO

The convergence of polymer and pharmaceutical sciences has advanced drug delivery systems significantly. Carbohydrate polymers, especially carboxymethylated ones, offer versatile benefits for pharmaceuticals. Interpenetrating polymer networks (IPNs) combine synthetic and natural polymers to enhance drug delivery. The study aims to develop IPN beads using sodium carboxymethyl cellulose (SCMC) and carboxymethyl konjac glucomannan (CMKGM) for controlled release of ibuprofen (IB) after oral administration. Objectives include formulation optimization, characterization of physicochemical properties, evaluation of pH-dependent swelling and drug release behaviors to advance biocompatible and efficient oral drug delivery systems. The beads were analyzed using SEM, FTIR, DSC, and XRD techniques. Different ratio of polymers (CMKGM:SCMS) and crosslinker concentrations (2&4 %w/v) were used, significantly impacting bead size, swelling, drug encapsulation, and release characteristics. DSC results indicated higher thermal stability in IPN beads compared to native polymers. XRD revealed IB dispersion within the polymer matrix. IPN beads size ranged from 580 ± 0.56 to 324 ± 0.27 µm, with a nearly spherical shape. IPN beads exhibited continuous release in alkaline conditions (pH 7.4) and minimal release in acidic media (pH 1.2). These findings suggest that the formulated IPN beads can modulate drug release in both acidic and alkaline environments, potentially mitigating the gastric adverse effects often associated with oral administration of IB.


Assuntos
Carboximetilcelulose Sódica , Preparações de Ação Retardada , Portadores de Fármacos , Liberação Controlada de Fármacos , Ibuprofeno , Mananas , Carboximetilcelulose Sódica/química , Mananas/química , Ibuprofeno/química , Concentração de Íons de Hidrogênio , Portadores de Fármacos/química , Microesferas
17.
Int J Biol Macromol ; 278(Pt 2): 134707, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39147339

RESUMO

Herein, we report for the first time a simple strategy to design a hierarchical chemically exfoliated magnesium diboride and guar gum network structure decorated with Ru nanoparticles (eMgB2-GG@Ru) as an electrode to evaluate its electrochemical performance for the application of supercapacitor. The eMgB2 and functionalized eMgB2-GG@Ru materials were thoroughly examined using XRD, TGA, DLS, FE-SEM, STEM, AFM, XPS, and BET techniques. The combined eMgB2-GG@Ru electrode exhibits a network structure morphology with an increased interlayer distance of eMgB2 nanolayers along with a uniform distribution of spherical Ru nanoparticles. The electrochemical performance of eMgB2-GG@Ru and its pristine materials was studied through CV, GCD, and EIS to determine their supercapacitor performance. The eMgB2-GG@Ru electrode demonstrates higher specific capacitance (352 F/g) than its eMgB2@Ru (258.9 F/g), and MgB2 (214.5 F/g) counterparts at a current density of 0.5 A/g in a three-electrode setup using 3 M KOH electrolyte. The hierarchical eMgB2-GG@Ru solid-state symmetric devices maintained higher capacity retention of 89 % even after 7000 cycles, achieving a maximum energy density of 26.12 kW/kg at the power density of 450 W/kg at 0.5 A/g. Therefore, the innovative eMgB2-GG@Ru electrode offers superior electrochemical performance with efficient electrolyte ion mobility for energy storage applications.


Assuntos
Capacitância Elétrica , Eletrodos , Galactanos , Mananas , Nanocompostos , Gomas Vegetais , Rutênio , Gomas Vegetais/química , Nanocompostos/química , Galactanos/química , Rutênio/química , Mananas/química , Técnicas Eletroquímicas , Compostos de Magnésio/química
18.
Int J Biol Macromol ; 278(Pt 2): 134710, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39151859

RESUMO

This study aimed to elaborate the combination effect of polysaccharides on physicochemical properties and in vitro digestive behavior of astaxanthin (AST)-loaded Pickering emulsion gel. AST-loaded Pickering emulsion gel was prepared by heating Pickering emulsion with konjac glucomannan (KGM) and κ-carrageenan (CRG). The microstructure revealed that adding the two polysaccharides resulted in Pickering emulsion forming a network structure. It exhibited a denser and more uniform network structure, enhancing its mechanical properties four times and increasing its water-holding capacity by 20 %. In vitro digestion experiments demonstrated that the release of free fatty acids from the Pickering emulsion gel (4.25 %) was notably lower than that from conventional Pickering emulsion (17.19 %), whereas AST bioaccessibility was remarkably low at 0.003 %. It provided a feasible strategy to regulate the bioaccessibility in Pickering emulsion, which has theoretical significance to guide the current eutrophic diet people.


Assuntos
Carragenina , Emulsões , Géis , Mananas , Xantofilas , Mananas/química , Carragenina/química , Emulsões/química , Xantofilas/química , Xantofilas/farmacologia , Géis/química , Digestão/efeitos dos fármacos , Fenômenos Químicos
19.
Int J Biol Macromol ; 278(Pt 3): 134785, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39153668

RESUMO

Probiotics regulate intestinal flora balance and enhance the intestinal barrier, which is useful in preventing and treating colitis. However, they have strict storage requirements. In addition, they degrade in a strongly acidic environment, resulting in a significant decrease in their activity when used as microbial agents. Lactobacillus rhamnosus GG (LGG) was loaded into acid-resistant and colon-targeting double-layer microgels. The inner layer consists of guar gum (GG) and low methoxyl pectin (LMP), which can achieve retention and degradation in the colon. To achieve colon localization, the outer layer was composed of chitosan (CS) and sodium alginate (SA). The formulation demonstrated favorable bio-responses across various pH conditions in vitro and sustained release of LGG in the colon lesions. Bare LGG survival decreased by 52.2 % in simulated gastric juice (pH 1.2) for 2 h, whereas that of encapsulated LGG decreased by 18.5 %. In the DSS-induced inflammatory model, LGG-loaded microgel significantly alleviated UC symptoms in mice and reduced inflammatory factor levels in the colon. Encapsulation of LGG improved its stability in acidic conditions, thus increasing its content at the colon lesions and reducing pathogenic bacteria. These findings provide an experimental basis and a technical reference for developing and applying probiotic microgel preparations.


Assuntos
Alginatos , Quitosana , Colite Ulcerativa , Lacticaseibacillus rhamnosus , Microgéis , Alginatos/química , Quitosana/química , Animais , Microgéis/química , Camundongos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/terapia , Administração Oral , Probióticos/administração & dosagem , Colo/patologia , Colo/microbiologia , Colo/metabolismo , Colo/efeitos dos fármacos , Galactanos/química , Gomas Vegetais/química , Concentração de Íons de Hidrogênio , Masculino , Modelos Animais de Doenças , Sulfato de Dextrana , Pectinas/química , Mananas
20.
Int J Biol Macromol ; 278(Pt 3): 134911, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39173796

RESUMO

In this study, composite essential oil Pickering emulsion stabilized with zein-gum arabic (GA) nanoparticles (ZGCEO) was prepared to improve the characteristics of guar gum (GG) films. ZGCEO exhibited commendable stability and compatibility with GG, while leading to a noticeable improvement in the light barrier (from 3.98 A mm-1 to 17.09 A mm-1) and water vapor barrier characteristics of GG films, concomitantly mitigating their hydrophilic nature, with decreasing moisture content (from 17.70 % to 10.50 %), water solubility (from 84.41 % to 71.79 %), water vapor permeability (from 5.64 × 10-11 g (m s Pa)-1 to 4.97 × 10-11 g (m s Pa)-1), and an increasing water contact angle (from 69.8° to 94.2°). The addition of 2 % ZGCEO yielded a notable increase in the tensile strength of the GG-ZGCEO films, but the elongation at break decreased with increasing ZGCEO concentration. Moreover, the incorporated ZGCEO demonstrated outstanding antioxidant and antimicrobial characteristics, featuring a slow-release behavior of essential oil. The GG-ZGCEO coating also showed an excellent preservation effect in pork and "Huangguan" pears during storage. Collectively, we substantiated the efficacy of ZGCEO in augmenting the functional attributes of GG films, thereby establishing their potential utility as antimicrobial packaging materials conducive to food preservation.


Assuntos
Emulsões , Conservação de Alimentos , Galactanos , Goma Arábica , Mananas , Nanopartículas , Óleos Voláteis , Gomas Vegetais , Zeína , Gomas Vegetais/química , Galactanos/química , Mananas/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Goma Arábica/química , Zeína/química , Conservação de Alimentos/métodos , Emulsões/química , Nanopartículas/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Permeabilidade , Embalagem de Alimentos/métodos , Vapor , Antioxidantes/química , Antioxidantes/farmacologia , Resistência à Tração , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA