Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.870
Filtrar
1.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38719750

RESUMO

Celiac disease (CD) is an autoimmune enteropathy resulting from an interaction between diet, genome, and immunity. Although many patients respond to a gluten-free diet, in a substantive number of individuals, the intestinal injury persists. Thus, other factors might amplify the ongoing inflammation. Candida albicans is a commensal fungus that is well adapted to the intestinal life. However, specific conditions increase Candida pathogenicity. The hypothesis that Candida may be a trigger in CD has been proposed after the observation of similarity between a fungal wall component and two CD-related gliadin T-cell epitopes. However, despite being implicated in intestinal disorders, Candida may also protect against immune pathologies highlighting a more intriguing role in the gut. Herein, we postulated that a state of chronic inflammation associated with microbial dysbiosis and leaky gut are favorable conditions that promote C. albicans pathogenicity eventually contributing to CD pathology via a mast cells (MC)-IL-9 axis. However, the restoration of immune and microbial homeostasis promotes a beneficial C. albicans-MC cross-talk favoring the attenuation of CD pathology to alleviate CD pathology and symptoms.


Assuntos
Candida albicans , Doença Celíaca , Homeostase , Mastócitos , Doença Celíaca/imunologia , Doença Celíaca/microbiologia , Doença Celíaca/metabolismo , Humanos , Candida albicans/patogenicidade , Candida albicans/imunologia , Mastócitos/imunologia , Mastócitos/metabolismo , Microbioma Gastrointestinal/imunologia , Disbiose/imunologia , Candidíase/imunologia , Candidíase/microbiologia , Animais , Candida/patogenicidade , Candida/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo
2.
Clin Exp Med ; 24(1): 98, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727918

RESUMO

The role of mast cells in physiologic and pathological processes extends far beyond the allergy processes: they are involved in wound healing, chronic inflammation, and tumor growth. This short article emphasizes the role played by mast cells in age-related macular degeneration (AMD). Mast cells can induce angiogenesis and are present around Bruch's membrane during the early and late stages of choroidal neovascularization in AMD. Proteolytic enzymes released by mast cells lead to thinning of the choroid in AMD as well as degradation of vascular basement membranes and Bruch's membrane, which in turn could result in retinal pigment epithelial death and choriocapillaris degeneration in geographical atrophy and exudative AMD.


Assuntos
Corioide , Degeneração Macular , Mastócitos , Humanos , Corioide/patologia , Degeneração Macular/patologia , Degeneração Macular/metabolismo , Neovascularização de Coroide/patologia , Neovascularização de Coroide/metabolismo , Lâmina Basilar da Corioide/patologia , Lâmina Basilar da Corioide/metabolismo
4.
J Immunol Methods ; 529: 113682, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705372

RESUMO

BACKGROUND: The measurement of antigen-specific serum IgE is common in clinical assessments of type I allergies. However, the interaction between antigens and IgE won't invariably trigger mast cell activation. We previously developed the IgE crosslinking-induced luciferase expression (EXiLE) method using the RS-ATL8 mast cell line; however, the method may not be sensitive enough in some cases. METHODS: In this study, we introduced an NF-AT-regulated luciferase reporter gene into the RBL-2H3 rat mast cell line and expressed a chimeric high-affinity IgE receptor (FcεRI) α chain gene, comprising an extracellular domain from humans and transmembrane/intracellular domains from rats. RESULTS: We generated multiple clones expressing the chimeric receptor. Based on their responsiveness and proliferation, we selected the HuRa-40 clone. This cell line exhibited significantly elevated human α chain expression compared to RS-ATL8 cells, demonstrating a 10-fold enhancement of antigen-specific reactivity. Reproducibility across different batches and operators was excellent. Moreover, we observed a detectable response inhibition by an anti-allergy drugs (omalizumab and cyclosporin A). CONCLUSIONS: HuRa-40 cells-which carry the human-rat chimeric IgE receptor-comprise a valuable reporter cell line for the EXiLE method. Their versatility extends to various applications and facilitates high-throughput screening of anti-allergy drugs.


Assuntos
Imunoglobulina E , Luciferases , Mastócitos , Receptores de IgE , Receptores de IgE/metabolismo , Receptores de IgE/genética , Receptores de IgE/imunologia , Animais , Humanos , Mastócitos/imunologia , Mastócitos/metabolismo , Ratos , Imunoglobulina E/imunologia , Luciferases/genética , Luciferases/metabolismo , Linhagem Celular , Genes Reporter , Reprodutibilidade dos Testes , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo
5.
Exp Dermatol ; 33(5): e15091, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38711220

RESUMO

KIT ligand and its associated receptor KIT serve as a master regulatory system for both melanocytes and mast cells controlling survival, migration, proliferation and activation. Blockade of this pathway results in cell depletion, while overactivation leads to mastocytosis or melanoma. Expression defects are associated with pigmentary and mast cell disorders. KIT ligand regulation is complex but efficient targeting of this system would be of significant benefit to those suffering from melanocytic or mast cell disorders. Herein, we review the known associations of this pathway with cutaneous diseases and the regulators of this system both in skin and in the more well-studied germ cell system. Exogenous agents modulating this pathway will also be presented. Ultimately, we will review potential therapeutic opportunities to help our patients with melanocytic and mast cell disease processes potentially including vitiligo, hair greying, melasma, urticaria, mastocytosis and melanoma.


Assuntos
Mastócitos , Mastocitose , Melanócitos , Proteínas Proto-Oncogênicas c-kit , Fator de Células-Tronco , Humanos , Fator de Células-Tronco/metabolismo , Melanócitos/metabolismo , Mastócitos/metabolismo , Mastocitose/tratamento farmacológico , Mastocitose/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Melanoma/metabolismo , Melanoma/tratamento farmacológico , Vitiligo/metabolismo , Vitiligo/tratamento farmacológico , Vitiligo/terapia , Transtornos da Pigmentação/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Animais
6.
Yakugaku Zasshi ; 144(5): 483-488, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38692921

RESUMO

Allergic diseases (e.g., food allergies) are a growing problem, with increasing numbers of individuals experiencing them worldwide. Congruently, the adverse reactions (e.g., anaphylaxis) associated with the administration of vaccines against emerging infectious diseases such as coronavirus disease 2019 (COVID-19) have become a familiar problem. Allergic diseases, which have a wide variety of symptoms, are difficult to prevent or cure; treatment is currently limited to therapeutic drugs or allergen immunotherapy. Therefore, elucidating new allergic regulatory factors that control the allergic (i.e., mast cell) responses is important. While investigating the regulatory mechanisms of the wide range of allergic responses of mast cells, we found that the affinity of allergens to immunoglobin E (IgE) regulates allergic inflammation through the differences in the secretory responses of mast cells and the types and interactions of the cells infiltrating the tissues. Here, we present our recent findings regarding the affinity of allergens to IgE in regulating allergic inflammation, heterogeneous secretory granules inducing diverse secretory responses, and mast cells interacting with neutrophils, thereby regulating the various allergic responses.


Assuntos
Comunicação Celular , Hipersensibilidade , Imunoglobulina E , Mastócitos , Neutrófilos , Mastócitos/imunologia , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/etiologia , Imunoglobulina E/imunologia , Neutrófilos/imunologia , Alérgenos/imunologia , Animais , Hipersensibilidade Alimentar/imunologia , Hipersensibilidade Alimentar/terapia , COVID-19/imunologia , COVID-19/prevenção & controle
8.
Medicine (Baltimore) ; 103(20): e38117, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758896

RESUMO

Human immunodeficiency virus (HIV) infection continues to pose significant global health challenges, necessitating advancements in diagnostic and prognostic approaches to optimize disease management. While primarily recognized for their roles in allergic responses, mast cells have emerged as potential markers with diagnostic and prognostic significance in the context of HIV/AIDS. This paper aims to synthesize current insights and delineate future directions regarding the utility of mast cell markers in diagnosing HIV infection, predicting disease progression, and guiding therapeutic strategies. Mast cells, equipped with distinct markers such as tryptase, chymase, carboxypeptidase A3, and c-kit/CD117 receptors, exhibit tissue-specific expression patterns that offer potential as diagnostic indicators for HIV infection. Understanding the dynamics of these markers in different tissues and body fluids holds promise for accurate HIV diagnosis, disease staging, and monitoring treatment responses. Moreover, the prognostic significance of mast cell markers in HIV/AIDS lies in their potential to predict disease progression, immune dysregulation, and clinical outcomes. The integration of mast cell markers into clinical applications offers promising avenues for refining diagnostic assays, patient monitoring protocols, and therapeutic strategies in HIV/AIDS. Future research directions involve the development of novel diagnostic tools and targeted therapies based on mast cell-specific markers, potentially revolutionizing clinical practice and enhancing patient care in the management of HIV/AIDS. Continued investigations into mast cell markers' diagnostic and prognostic implications hold immense potential to advance our understanding and improve outcomes in HIV/AIDS management.


Assuntos
Biomarcadores , Infecções por HIV , Mastócitos , Humanos , Mastócitos/metabolismo , Biomarcadores/metabolismo , Biomarcadores/análise , Prognóstico , Infecções por HIV/diagnóstico , Triptases/sangue , Triptases/metabolismo , Progressão da Doença , Carboxipeptidases A/metabolismo , Quimases/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Síndrome da Imunodeficiência Adquirida/diagnóstico
9.
Front Immunol ; 15: 1353922, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745645

RESUMO

Introduction: During an innate inflammation, immune cells form distinct pro- and anti-inflammatory regions around pathogen-containing core-regions. Mast cells are localized in an anti-inflammatory microenvironment during the resolution of an innate inflammation, suggesting antiinflammatory roles of these cells. Methods: High-content imaging was used to investigated mast cell-dependent changes in the regional distribution of immune cells during an inflammation, induced by the toll-like receptor (TLR)-2 agonist zymosan. Results: The distance between the zymosan-containing core-region and the anti-inflammatory region, described by M2-like macrophages, increased in mast cell-deficient mice. Absence of mast cells abolished dendritic cell (DC) activation, as determined by CD86-expression and localized the DCs in greater distance to zymosan particles. The CD86- DCs had a higher expression of the pro-inflammatory interleukins (IL)-1ß and IL-12/23p40 as compared to activated CD86+ DCs. IL-4 administration restored CD86 expression, cytokine expression profile and localization of the DCs in mast cell-deficient mice. The IL-4 effects were mast cell-specific, since IL-4 reduction by eosinophil depletion did not affect activation of DCs. Discussion: We found that mast cells induce DC activation selectively at the site of inflammation and thereby determine their localization within the inflammation. Overall, mast cells have antiinflammatory functions in this inflammation model and limit the size of the pro-inflammatory region surrounding the zymosan-containing core region.


Assuntos
Células Dendríticas , Inflamação , Interleucina-4 , Mastócitos , Camundongos Endogâmicos C57BL , Receptor 2 Toll-Like , Zimosan , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , Camundongos , Inflamação/imunologia , Inflamação/metabolismo , Interleucina-4/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Camundongos Knockout
10.
Immunity ; 57(5): 935-937, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38749395

RESUMO

The intestinal epithelium interacts with immune cells to support tissue homeostasis and coordinate responses against pathogens. In this issue of Immunity, Yang et al. unveil a central role for mast cell-epithelial cell interactions in orchestrating protective type 2 immune responses following intestinal helminth infection.


Assuntos
Mucosa Intestinal , Mastócitos , Mastócitos/imunologia , Animais , Mucosa Intestinal/imunologia , Mucosa Intestinal/parasitologia , Humanos , Homeostase/imunologia , Helmintíase/imunologia , Helmintíase/parasitologia , Células Epiteliais/imunologia , Camundongos
11.
PLoS One ; 19(4): e0300668, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578780

RESUMO

Mast cells are effector cells known to contribute to allergic airway disease. When activated, mast cells release a broad spectrum of inflammatory mediators, including the mast cell-specific protease carboxypeptidase A3 (CPA3). The expression of CPA3 in the airway epithelium and lumen of asthma patients has been associated with a Th2-driven airway inflammation. However, the role of CPA3 in asthma is unclear and therefore, the aim of this study was to investigate the impact of CPA3 for the development and severity of allergic airway inflammation using knockout mice with a deletion in the Cpa3 gene. We used the ovalbumin (OVA)- and house-dust mite (HDM) induced murine asthma models, and monitored development of allergic airway inflammation. In the OVA model, mice were sensitized with OVA intraperitoneally at seven time points and challenged intranasally (i.n.) with OVA three times. HDM-treated mice were challenged i.n. twice weekly for three weeks. Both asthma protocols resulted in elevated airway hyperresponsiveness, increased number of eosinophils in bronchoalveolar lavage fluid, increased peribronchial mast cell degranulation, goblet cell hyperplasia, thickening of airway smooth muscle layer, increased expression of IL-33 and increased production of allergen-specific IgE in allergen-exposed mice as compared to mocktreated mice. However, increased number of peribronchial mast cells was only seen in the HDM asthma model. The asthma-like responses in Cpa3-/- mice were similar as in wild type mice, regardless of the asthma protocol used. Our results demonstrated that the absence of a functional Cpa3 gene had no effect on several symptoms of asthma in two different mouse models. This suggest that CPA3 is dispensable for development of allergic airway inflammation in acute models of asthma in mice.


Assuntos
Asma , Mastócitos , Animais , Camundongos , Alérgenos/metabolismo , Líquido da Lavagem Broncoalveolar , Carboxipeptidases/metabolismo , Modelos Animais de Doenças , Inflamação/genética , Inflamação/metabolismo , Pulmão/metabolismo , Mastócitos/metabolismo , Camundongos Endogâmicos BALB C , Ovalbumina/metabolismo
12.
Bioorg Chem ; 146: 107320, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569323

RESUMO

Spleen tyrosine kinase (Syk) plays a crucial role as a target for allergy treatment due to its involvement in immunoreceptor signaling. The purpose of this study was to identify natural inhibitors of Syk and assess their effects on the IgE-mediated allergic response in mast cells and ICR mice. A list of eight compounds was selected based on pharmacophore and molecular docking, showing potential inhibitory effects through virtual screening. Among these compounds, sophoraflavanone G (SFG) was found to inhibit Syk activity in an enzymatic assay, with an IC50 value of 2.2 µM. To investigate the conformational dynamics of the SYK-SFG system, we performed molecular dynamics simulations. The stability of the binding between SFG and Syk was evaluated using root mean square deviation (RMSD) and root mean square fluctuation (RMSF). In RBL-2H3 cells, SFG demonstrated a dose-dependent suppression of IgE/BSA-induced mast cell degranulation, with no significant cytotoxicity observed at concentrations below 10.0 µM within 24 h. Furthermore, SFG reduced the production of TNF-α and IL-4 in RBL-2H3 cells. Mechanistic investigations revealed that SFG inhibited downstream signaling proteins, including phospholipase Cγ1 (PLCγ1), as well as mitogen-activated protein kinases (AKT, Erk1/2, p38, and JNK), in mast cells in a dose-dependent manner. Passive cutaneous anaphylaxis (PCA) experiments demonstrated that SFG could reduce ear swelling, mast cell degranulation, and the expression of COX-2 and IL-4. Overall, our findings identify naturally occurring SFG as a direct inhibitor of Syk that effectively suppresses mast cell degranulation both in vitro and in vivo.


Assuntos
Interleucina-4 , Mastócitos , Camundongos , Animais , Interleucina-4/metabolismo , Interleucina-4/farmacologia , Mastócitos/metabolismo , Anafilaxia Cutânea Passiva , Simulação de Acoplamento Molecular , Imunoglobulina E/metabolismo , Imunoglobulina E/farmacologia , Camundongos Endogâmicos ICR , Camundongos Endogâmicos BALB C
13.
Cells ; 13(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38667305

RESUMO

The significant role of mast cells in the development of allergic and inflammatory diseases is well-established. Among the various mechanisms of mast cell activation, the interaction of antigens/allergens with IgE and the subsequent binding of this complex to the high-affinity IgE receptor FcεRI stand out as the most studied and fundamental pathways. This activation process leads to the rapid exocytosis of granules containing preformed mediators, followed by the production of newly synthesized mediators, including a diverse array of cytokines, chemokines, arachidonic acid metabolites, and more. While conventional approaches to allergy control primarily focus on allergen avoidance and the use of antihistamines (despite their associated side effects), there is increasing interest in exploring novel methods to modulate mast cell activity in modern medicine. Recent evidence suggests a role for autophagy in mast cell activation, offering potential avenues for utilizing low-molecular-weight autophagy regulators in the treatment of allergic diseases. More specifically, mitochondria, which play an important role in the regulation of autophagy as well as mast cell activation, emerge as promising targets for drug development. This review examines the existing literature regarding the involvement of the molecular machinery associated with autophagy in FcεRI-dependent mast cell activation.


Assuntos
Autofagia , Mastócitos , Receptores de IgE , Autofagia/efeitos dos fármacos , Mastócitos/metabolismo , Mastócitos/imunologia , Humanos , Receptores de IgE/metabolismo , Animais , Mitocôndrias/metabolismo , Hipersensibilidade/imunologia , Hipersensibilidade/tratamento farmacológico
14.
J Ethnopharmacol ; 330: 118105, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38631485

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese medicine (TCM) XYQFT is composed of 10 herbs. According to the NHIRD, XYQFT is one of the top ten most commonly used TCM prescriptions for asthma treatment. AIM OF THE STUDY: The aim of this study was to explore whether XYQFT reduces asthma symptoms in a mouse model of chronic asthma and determine the immunomodulatory mechanism of mast cells. MATERIALS AND METHODS: BALB/c mice were intratracheally (it) stimulated with 40 µL (2.5 µg/µL) of Dermatophagoides pteronyssinus (Der p) once a week for 6 consecutive weeks and orally administered XYQFT at 1 g/kg 30 min before Der p stimulation. Airway hypersensitivity, inflammatory cells in the BALF and total IgE in the blood were assessed in mice. In addition, RBL-2H3 cells (mast cells) were stimulated with DNP-IgE, after which different concentrations of XYQFT were added for 30 min to evaluate the effect of XYQFT on the gene expression and degranulation of DNP-stimulated RBL-2H3 cells. After the compounds in XYQFT were identified using LC‒MS/MS, the PBD method was used to identify the chemical components that inhibited the expression of the GM-CSF and COX-2 genes in mast cells. RESULTS: The airway hypersensitivity assay demonstrated that XYQFT significantly alleviated Der p-induced airway hypersensitivity. Moreover, cell counting and typing of bronchoalveolar lavage fluid revealed a significant reduction in Der p-induced inflammatory cell infiltration with XYQFT treatment. ELISA examination further indicated a significant decrease in Der p-induced total IgE levels in serum following XYQFT administration. In addition, XYQFT inhibited the degranulation and expression of genes (IL-3, IL-4, ALOX-5, IL-13, GM-CSF, COX-2, TNF-α, and MCP-1) in RBL-2H3 cells after DNP stimulation. The compounds timosaponin AIII and genkwanin in XYQFT were found to be key factors in the inhibition of COX-2 and GM-CSF gene expression in mast cells. CONCLUSION: By regulating mast cells, XYQFT inhibited inflammatory cell infiltration, airway hypersensitivity and specific immunity in a mouse model of asthma. In addition, XYQFT synergistically inhibited the expression of the GM-CSF and COX-2 genes in mast cells through timosaponin AIII and genkwanin.


Assuntos
Asma , Ciclo-Oxigenase 2 , Medicamentos de Ervas Chinesas , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Mastócitos , Camundongos Endogâmicos BALB C , Animais , Medicamentos de Ervas Chinesas/farmacologia , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Asma/tratamento farmacológico , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Camundongos , Ratos , Imunoglobulina E/sangue , Masculino , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Linhagem Celular , Antiasmáticos/farmacologia , Modelos Animais de Doenças
15.
J Dermatol ; 51(5): 621-631, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605467

RESUMO

Alopecia areata refers to an autoimmune illness indicated by persistent inflammation. The key requirement for alopecia areata occurrence is the disruption of immune-privileged regions within the hair follicles. Recent research has indicated that neuropeptides play a role in the damage to hair follicles by triggering neurogenic inflammation, stimulating mast cells ambient the follicles, and promoting apoptotic processes in keratinocytes. However, the exact pathogenesis of alopecia areata requires further investigation. Recently, there has been an increasing focus on understanding the mechanisms of immune diseases resulting from the interplay between the nervous and the immune system. Neurogenic inflammation due to neuroimmune disorders of the skin system may disrupt the inflammatory microenvironment of the hair follicle, which plays a crucial part in the progression of alopecia areata.


Assuntos
Alopecia em Áreas , Folículo Piloso , Inflamação Neurogênica , Alopecia em Áreas/imunologia , Alopecia em Áreas/etiologia , Alopecia em Áreas/patologia , Humanos , Folículo Piloso/imunologia , Folículo Piloso/patologia , Inflamação Neurogênica/imunologia , Inflamação Neurogênica/etiologia , Neuropeptídeos/metabolismo , Neuropeptídeos/imunologia , Mastócitos/imunologia , Queratinócitos/imunologia , Queratinócitos/patologia , Apoptose/imunologia , Animais
16.
Immunity ; 57(5): 1056-1070.e5, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38614091

RESUMO

A specialized population of mast cells residing within epithelial layers, currently known as intraepithelial mast cells (IEMCs), was originally observed over a century ago, yet their physiological functions have remained enigmatic. In this study, we unveil an unexpected and crucial role of IEMCs in driving gasdermin C-mediated type 2 immunity. During helminth infection, αEß7 integrin-positive IEMCs engaged in extensive intercellular crosstalk with neighboring intestinal epithelial cells (IECs). Through the action of IEMC-derived proteases, gasdermin C proteins intrinsic to the epithelial cells underwent cleavage, leading to the release of a critical type 2 cytokine, interleukin-33 (IL-33). Notably, mast cell deficiency abolished the gasdermin C-mediated immune cascade initiated by epithelium. These findings shed light on the functions of IEMCs, uncover a previously unrecognized phase of type 2 immunity involving mast cell-epithelial cell crosstalk, and advance our understanding of the cellular mechanisms underlying gasdermin C activation.


Assuntos
Interleucina-33 , Mastócitos , Proteínas de Ligação a Fosfato , Mastócitos/imunologia , Mastócitos/metabolismo , Animais , Interleucina-33/metabolismo , Interleucina-33/imunologia , Camundongos , Proteínas de Ligação a Fosfato/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Comunicação Celular/imunologia
17.
Mol Immunol ; 170: 60-75, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38626622

RESUMO

Liver diseases caused by viral infections, alcoholism, drugs, or chemical poisons are a significant health problem: Liver diseases are a leading contributor to mortality, with approximately 2 million deaths per year worldwide. Liver fibrosis, as a common liver disease characterized by excessive collagen deposition, is associated with high morbidity and mortality, and there is no effective treatment. Numerous studies have shown that the accumulation of mast cells (MCs) in the liver is closely associated with liver injury caused by a variety of factors. This study investigated the relationship between MCs and carbon tetrachloride (CCl4)-induced liver fibrosis in rats and the effects of the MC stabilizers sodium cromoglycate (SGC) and ketotifen (KET) on CCl4-induced liver fibrosis. The results showed that MCs were recruited or activated during CCl4-induced liver fibrosis. Coadministration of SCG or KET alleviated the liver fibrosis by decreasing SCF/c-kit expression, inhibiting the TGF-ß1/Smad2/3 pathway, depressing the HIF-1a/VEGF pathway, activating Nrf2/HO-1 pathway, and increasing the hepatic levels of GSH, GSH-Px, and GR, thereby reducing hepatic oxidative stress. Collectively, recruitment or activation of MCs is linked to liver fibrosis and the stabilization of MCs may provide a new approach to the prevention of liver fibrosis.


Assuntos
Tetracloreto de Carbono , Cromolina Sódica , Cirrose Hepática , Fígado , Mastócitos , Animais , Mastócitos/metabolismo , Mastócitos/imunologia , Mastócitos/efeitos dos fármacos , Tetracloreto de Carbono/toxicidade , Ratos , Masculino , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/imunologia , Cirrose Hepática/induzido quimicamente , Cromolina Sódica/farmacologia , Fígado/patologia , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Ratos Sprague-Dawley , Cetotifeno/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Estresse Oxidativo/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Int Immunopharmacol ; 133: 112113, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657498

RESUMO

BACKGROUND: Phytosphingosine and its derivative are known for their skin-protective properties. While mYG-II-6, a phytosphingosine derivative, has shown anti-inflammatory and antipsoriatic effects, its potential antipruritic qualities have yet to be explored. This study aimed to investigate mYG-II-6's antipruritic properties. METHODS: The calcium imaging technique was employed to investigate the activity of ion channels and receptors. Mast cell degranulation was confirmed through the ß-hexosaminidase assay. Additionally, in silico molecular docking and an in vivo mouse scratching behavior test were utilized. RESULTS: Using HEK293T cells transfected with H1R and TRPV1, we examined the impact of mYG-II-6 on histamine-induced intracellular calcium rise, a key signal in itch-mediating sensory neurons. Pretreatment with mYG-II-6 significantly reduced histamine-induced calcium levels and inhibited TRPV1 activity, suggesting its role in blocking the calcium influx channel. Additionally, mYG-II-6 suppressed histamine-induced calcium increase in primary cultures of mouse dorsal root ganglia, indicating its potential antipruritic effect mediated by histamine. Interestingly, mYG-II-6 exhibited inhibitory effects on human MRGPRX2, a G protein-coupled receptor involved in IgE-independent mast cell degranulation. However, it did not inhibit mouse MrgprB2, the ortholog of human MRGPRX2. Molecular docking analysis revealed that mYG-II-6 selectively interacts with the binding pocket of MRGPRX2. Importantly, mYG-II-6 suppressed histamine-induced scratching behaviors in mice. CONCLUSIONS: Our findings show that mYG-II-6 can alleviate histamine-induced itch sensation through dual mechanisms. This underscores its potential as a versatile treatment for various pruritic conditions.


Assuntos
Degranulação Celular , Histamina , Mastócitos , Simulação de Acoplamento Molecular , Receptores Acoplados a Proteínas G , Canais de Cátion TRPV , Animais , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Humanos , Canais de Cátion TRPV/metabolismo , Degranulação Celular/efeitos dos fármacos , Células HEK293 , Histamina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Camundongos , Masculino , Prurido/tratamento farmacológico , Cálcio/metabolismo , Antipruriginosos/farmacologia , Antipruriginosos/uso terapêutico , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Esfingosina/metabolismo , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Neuropeptídeos/metabolismo , Camundongos Endogâmicos C57BL
19.
Inflamm Res ; 73(6): 945-960, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38587532

RESUMO

OBJECTIVE AND DESIGN: Mast cells (MCs), as the fastest immune responders, play a critical role in the progression of neuroinflammation-related diseases, especially in depression. Quercetin (Que) and kaempferol (Kae), as two major diet-derived flavonoids, inhibit MC activation and exhibit significant antidepressant effect due to their anti-inflammatory capacity. The study aimed to explore the mechanisms of inhibitory effect of Que and Kae on MC activation, and whether Que and Kae suppress hippocampal mast cell activation in LPS-induced depressive mice. SUBJECTS AND TREATMENT: In vitro assays, human mast cells (HMC-1) were pretreated with Que or Kae for 1 h, then stimulated by phorbol 12-myristate 13-acetate (PMA) and 2,5-di-t-butyl-1,4-benzohydroquinone (tBHQ) for 3 h or 12 h. In vivo assays, Que or Kae was administered by oral gavage once daily for 14 days and then lipopolysaccharide (LPS) intraperitoneally injection to induce depressive behaviors. METHODS: The secretion and expression of TNF-α were determined by ELISA and Western blotting. The nuclear factor of activated T cells (NFAT) transcriptional activity was measured in HMC-1 stably expressing NFAT luciferase reporter gene. Nuclear translocation of NFATc2 was detected by nuclear protein extraction and also was fluorescently detected in HMC-1 stably expressing eGFP-NFATc2. We used Ca2+ imaging to evaluate changes of store-operated calcium entry (SOCE) in HMC-1 stably expressing fluorescent Ca2+ indicator jGCamP7s. Molecular docking was used to assess interaction between the Que or Kae and calcium release-activated calcium modulator (ORAI). The  hippocampal mast cell accumulation and activation  were detected by toluidine blue staining and immunohistochemistry with ß-tryptase. RESULTS: In vitro assays of HMC-1 activated by PtBHQ (PMA and tBHQ), Que and Kae significantly decreased expression and secretion of TNF-α. Moreover, NFAT transcriptional activity and nuclear translocation of NFATc2 were remarkably inhibited by Que and Kae. In addition, the Ca2+ influx mediated by SOCE was suppressed by Que, Kae and the YM58483 (ORAI inhibitor), respectively. Importantly, the combination of YM58483 with Que or Kae had no additive effect on the inhibition of SOCE. The molecular docking also showed that Que and Kae both exhibit high binding affinities with ORAI at the same binding site as YM58483. In vivo assays, Que and Kae significantly reversed LPS-induced depression-like behaviors in mice, and inhibited hippocampal mast cell activation  in LPS-induced depressive mice. CONCLUSIONS: Our results indicated that suppression of SOCE/NFATc2 pathway-mediated by ORAI channels may be the mechanism of inhibitory effect of Que and Kae on MC activation, and also suggested Que and Kae may exert the antidepressant effect through suppressing hippocampal mast cell activation.


Assuntos
Depressão , Hipocampo , Quempferóis , Lipopolissacarídeos , Mastócitos , Fatores de Transcrição NFATC , Quercetina , Animais , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Fatores de Transcrição NFATC/metabolismo , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Masculino , Quercetina/farmacologia , Quercetina/uso terapêutico , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Depressão/metabolismo , Linhagem Celular , Transdução de Sinais/efeitos dos fármacos , Camundongos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Camundongos Endogâmicos C57BL , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico
20.
Front Immunol ; 15: 1360296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638437

RESUMO

Mast cells have long been recognized for their involvement in allergic pathology through the immunoglobulin E (IgE)-mediated degranulation mechanism. However, there is growing evidence of other "non-canonical" degranulation mechanisms activated by certain pathogen recognition receptors. Mast cells release several mediators, including histamine, cytokines, chemokines, prostaglandins, and leukotrienes, to initiate and enhance inflammation. The chemical nature of activating stimuli influences receptors, triggering mechanisms for the secretion of formed and new synthesized mediators. Mast cells have more than 30 known surface receptors that activate different pathways for direct and indirect activation by microbes. Different bacterial strains stimulate mast cells through various ligands, initiating the innate immune response, which aids in clearing the bacterial burden. Mast cell interactions with adaptative immune cells also play a crucial role in infections. Recent publications revealed another "non-canonical" degranulation mechanism present in tryptase and chymase mast cells in humans and connective tissue mast cells in mice, occurring through the activation of the Mas-related G protein-coupled receptor (MRGPRX2/b2). This receptor represents a new therapeutic target alongside antibiotic therapy. There is an urgent need to reconsider and redefine the biological role of these MASTer cells of innate immunity, extending beyond their involvement in allergic pathology.


Assuntos
Anti-Infecciosos , Hipersensibilidade , Humanos , Animais , Camundongos , Anti-Infecciosos/metabolismo , Citocinas/metabolismo , Imunoglobulina E , Imunidade Inata , Mastócitos , Proteínas do Tecido Nervoso/metabolismo , Receptores de Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...