RESUMO
Com as universidades fechadas e a implementação do Ensino Remoto Emergencial, as atividades curriculares ocorreram através de plataformas digitais. O objetivo do presente trabalho foi avaliar a percepção de aprendizagem on-line na disciplina de Biomateriais da Faculdade de Odontologia da Universidade Federal Fluminense no período da pandemia. O questionário COLLES (Constructivist OnLine Learning Environment Survey) foi enviado individualmente por e-mail aos cinquenta alunos, apresentando 24 declarações divididas em seis quesitos: relevância, reflexão crítica, interatividade, apoio dos tutores, apoio entre os colegas e compreensão; e para cada declaração cinco opções de resposta: quase sempre, frequentemente, algumas vezes, raramente e quase nunca. Quarenta e um alunos responderam. A soma das médias obtidas em quase sempre e frequentemente foi de 87,2% para relevância, 70% para reflexão crítica, 33,9% para interatividade, 47,6% para apoio dos tutores, 44,2% para apoio dos colegas e 89,5% para compreensão. Concluiu-se que a relevância, a reflexão crítica e a compreensão apresentaram melhores resultados, enquanto a interatividade, o apoio entre os colegas e o apoio dos tutores demonstraram necessidade de aprimoramento. E apesar das limitações do ERE, a avaliação positiva dos alunos evidenciou esta modalidade de educação on-line como uma solução plausível.
With universities closed and the implementation of Emergency Remote Teaching, curricular activities took place through digital platforms. The objective of this study was to assess the perception of online learning in the Biomaterials course at the Dental School of the Federal Fluminense University during the pandemic. The COLLES questionnaire (Constructivist OnLine Learning Environment Survey) was individually sent via email to fifty students, presenting 24 statements divided into six aspects: relevance, critical reflection, interactivity, tutor support, peer support, and comprehension. For each statement, there were five response options: almost always, often, sometimes, rarely, and almost never. Forty-one students responded. The sum of the averages obtained for almost always and often was 87.2% for relevance, 70% for critical reflection, 33.9% for interactivity, 47.6% for tutor support, 44.2% for peer support, and 89.5% for comprehension. It was concluded that relevance, critical reflection, and comprehension showed better results, while interactivity, peer support, and tutor support demonstrated a need for improvement. Despite the limitations of Emergency Remote Teaching, the positive evaluation from the students highlighted this mode of online education as a plausible solution.
Assuntos
Humanos , Masculino , Feminino , Percepção , Materiais Biocompatíveis , Educação a Distância , Educação em Odontologia , Aprendizagem , Inquéritos e QuestionáriosRESUMO
PURPOSE: To describe an experimental surgical model in rats using a dual-plane technique for evaluation of biomaterials in an in-vivo silicone implant coverage. METHODS: This study was developed following the ISO 10993-6 standard. In this study, 40 male Wistar rats weighing between 250 and 350 g were used, distributed into two groups: experimental, biomaterial superimposed on the minimammary prosthesis (MP); and control, MP without implantation of the biomaterial, with eight animals at each biological point: 1, 2, 4, 12, and 26 weeks. Thus, at the end of biological points (1, 2, 4, 12, and 26 weeks; n = 8 animals per week), the tissue specimens achieved were fixed in buffered formalin and stained with hematoxylin-eosin. RESULTS: Macroscopically, throughout the study, no postoperative complications were apparent. In the histological analysis, it was possible to observe the evolution of the inflammatory response, tissue repair, and fibrous capsule during the biological points. CONCLUSIONS: The experimental model described in this study proved to be suitable for evaluating the biomaterial used in the coverage of breast silicone implants.
Assuntos
Materiais Biocompatíveis , Implantes de Mama , Ratos Wistar , Géis de Silicone , Animais , Masculino , Ratos , Teste de Materiais , Modelos Animais , Silicones , Fatores de TempoRESUMO
Magnet-mediated gene therapy has gained considerable interest from researchers as a novel alternative for treating genetic disorders, particularly through the use of superparamagnetic iron oxide nanoparticles (NPs)-such as magnetite NPs (Fe3O4NPs)-as non-viral genetic vectors. Despite their commercial availability for specific genetic transfection, such as in microglia cell lines, many potential uses remain unexplored. Still, ethical concerns surrounding the use of human DNA often impede genetic research. Hence, this study examined DNA-coated Fe3O4NPs (DNA-Fe3O4NPs) as potential transfection vectors for human foreskin fibroblasts (HFFs) and A549 (lung cancer) cell lines, using banana (Musa sp.) as a low-cost, and bioethically unproblematic DNA source. Following coprecipitation synthesis, DNA-Fe3O4NP characterization revealed a ζ-potential of 40.65 ± 4.10 mV, indicating good colloidal stability in aqueous media, as well as a superparamagnetic regime, evidenced by the absence of hysteresis in their magnetization curves. Successful DNA coating on the NPs was confirmed through infrared spectra and surface analysis results, while magnetite content was verified via characteristic X-ray diffraction peaks. Transmission electron microscopy (TEM) determined the average size of the DNA-Fe3O4NPs to be 14.69 ± 5.22 nm. TEM micrographs also showed no morphological changes in the DNA-Fe3O4NPs over a 30-day period. Confocal microscopy of HFF and A549 lung cancer cell lines incubated with fluoresceinamine-labeled DNA-Fe3O4NPs demonstrated their internalization into both the cytoplasm and nucleus. Neither uncoated Fe3O4NPs nor DNA-Fe3O4NPs showed cytotoxicity to A549 lung cancer cells at 1-50 µg/mL and 25-100 µg/mL, respectively, after 24 h. HFFs also maintained viability at 1-10 µg/mL for both NP types. In conclusion, DNA-Fe3O4NPs were successfully internalized into cells and exhibited no cytotoxicity in both healthy and cancerous cells across a range of concentrations. These NPs, capable of binding to various types of DNA and RNA, hold promise for applications in gene therapy.
Assuntos
DNA , Nanopartículas de Magnetita , Musa , Humanos , Nanopartículas de Magnetita/química , Musa/química , Células A549 , Frutas/química , Fibroblastos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Transfecção , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular TumoralRESUMO
Chitosan chemical functionalization is a powerful tool to provide novel materials for additive manufacturing strategies. The main aim of this study was the employment of computer-aided wet spinning (CAWS) for the first time to design and fabricate carboxymethyl chitosan (CMCS) scaffolds. For this purpose, the synthesis of a chitosan derivative with a high degree of O-substitution (1.07) and water soluble in a large pH range allowed the fabrication of scaffolds with a 3D interconnected porous structure. In particular, the developed scaffolds were composed of CMCS fibers with a small diameter (< 60 µm) and a hollow structure due to a fast non solvent-induced coagulation. Zn2+ ionotropic crosslinking endowed the CMCS scaffolds with stability in aqueous solutions, pH-sensitive water uptake capability, and antimicrobial activity against Escherichia coli and Staphylococcus aureus. In addition, post-printing functionalization through collagen grafting resulted in a decreased stiffness (1.6 ± 0.3 kPa) and a higher elongation at break (101 ± 9 %) of CMCS scaffolds, as well as in their improved ability to support in vitro fibroblast viability and wound healing process. The obtained results encourage therefore further investigation of the developed scaffolds as antimicrobial wound dressing hydrogels for skin regeneration.
Assuntos
Antibacterianos , Bandagens , Quitosana , Escherichia coli , Staphylococcus aureus , Alicerces Teciduais , Cicatrização , Quitosana/química , Quitosana/análogos & derivados , Quitosana/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Alicerces Teciduais/química , Antibacterianos/farmacologia , Antibacterianos/química , Animais , Camundongos , Fibroblastos/efeitos dos fármacos , Porosidade , Sobrevivência Celular/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Reagentes de Ligações Cruzadas/química , HumanosRESUMO
Herein, four different grafted chitosans were synthesized by covalent attachment of glycine, L-arginine, L-glutamic acid, or L-cysteine to the chitosan chains. All products were subsequently permethylated to obtain their corresponding quaternary ammonium salts to enhance the inherent antimicrobial properties of native chitosan. In all cases, transparent hydrogels with the following remarkable characteristics were obtained: i) high-water absorption capacity (32-44 g H2O per g of polymer), ii) viscoelastic behavior at low deformations, iii) flexibility when subjected to deformations and iv) stability over long time scales. All the permethylated derivatives successfully inhibited 100 % of the growth of S. aureus. They also exhibited higher antimicrobial activity against E. coli than native chitosan. The structure of the chemically crosslinked products was more stable under external perturbations than that of the physically crosslinked ones. Between the chemically crosslinked products, the permethylated glutamic acid-grafted chitosan exhibited a noteworthy higher water absorption capacity with respect to that modified with cysteine, which makes it the most promising material for various industrial applications, including biomedical and food industries. Regarding biomedical applications, this derivative met the required physicochemical criteria for wound dressings, which encourages the pursuit of biological studies necessary to ensure the safety of its use for this application.
Assuntos
Bandagens , Quitosana , Hidrogéis , Quitosana/química , Quitosana/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Água/química , Cicatrização/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologiaRESUMO
This study aimed to evaluate the effect of in vitro immersion solutions or an in vivo method on volumetric change of bioceramic root repair materials: Bio-C Repair (BCR, Angelus, Londrina, PR, Brazil) and Biodentine (BIO, Septodont, Saint-Maur-des-Fossés, France) compared to IRM (Dentsply Sirona, York, Pennsylvania, USA) by using microcomputed tomography (µCT) assessment. Tubes of polyvinyl chloride (PVC, 4 mm of length x 1.3 mm of inside diameter, n = 7) were filled with the materials for volumetric analysis in µCT. Samples were scanned after materials setting and after immersion in distilled water, PBS, or in vivo tissue fluid of subcutaneous tissue of rats for 7 days. IRM showed higher volumetric change than BCR and BIO in all immersion solutions (P<0.05). BIO and BCR presented similar volumetric changes when immersed in PBS and distilled water (P>0.05). When the in vivo method was used, BIO and BCR showed lower volumetric change (P<0.05), including an increase in volume for BCR. The immersion solutions influenced the evaluation of the volumetric change of bioceramic repair materials. Bioceramic materials show greater volumetric stability when evaluated by the in vivo method. The in vivo method in the subcutaneous tissue of rats can be an alternative for analyzing the properties of bioceramic cement, showing similarity with the clinical application.
Assuntos
Materiais Biocompatíveis , Cerâmica , Microtomografia por Raio-X , Ratos , Animais , Microtomografia por Raio-X/métodos , Teste de Materiais , Ratos Wistar , Silicatos , Compostos de Cálcio , MasculinoRESUMO
Large bone defects are a significant health problem today with various origins, including extensive trauma, tumours, or congenital musculoskeletal disorders. Tissue engineering, and in particular bone tissue engineering, aims to respond to this demand. As such, we propose a specific model based on Elastin-Like Recombinamers-based click-chemistry hydrogels given their high biocompatibility and their potent on bone regeneration effect conferred by different bioactive sequences. In this work we demonstrate, using biochemistry, histology, histomorphometry and imaging techniques, the biocompatibility of our matrix and its potent effect on bone regeneration in a model of bone parietal lesion in female New Zealand rabbits.
Assuntos
Materiais Biocompatíveis , Regeneração Óssea , Elastina , Hidrogéis , Engenharia Tecidual , Animais , Feminino , Coelhos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Regeneração Óssea/efeitos dos fármacos , Química Click/métodos , Elastina/química , Hidrogéis/química , Hidrogéis/farmacologia , Engenharia Tecidual/métodos , Alicerces Teciduais/químicaRESUMO
BACKGROUND: Tissue engineering seeks to improve, maintain, or replace the biological functions of damaged organs or tissues with biological substitutes such as the development of scaffolds. In the case of bone tissue, they must have excellent mechanical properties like native bone. OBJECTIVE: In this work, three geometric models were designed for scaffolds with different structure lattices and porosity that could be biomechanically suitable and support cell growth for trabecular bone replacement applications in tissue engineering and regenerative medicine to the proximal femur area. METHODS: Geometries were designed using computer-aided design (CAD) software and evaluated using finite element analysis in compression tests. Three loads were considered according to the daily activity: 1177 N for slow walking, 2060 N for fast walking, and 245.25 N for a person in a bipedal position. All these loads for an adult weight of 75 kg. For each of them, three biomaterials were assigned: two polymers (poly-glycolic acid (PGA) and poly-lactic acid (PLA)) and one mineral (hydroxyapatite (HA)). 54 tests were performed: 27 for each of the tests. RESULTS: The results showed Young's modulus (E) between 1 and 4 GPa. CONCLUSION: If the resultant E is in the range of 0.1 to 5 GPa, the biomaterial is considered an appropriate alternative for the trabecular bone which is the main component of the proximal bone. However, for the models applied in this study, the best option is the poly-lactic acid which will allow absorbing the acting loads.
Assuntos
Desenho Assistido por Computador , Análise de Elementos Finitos , Engenharia Tecidual , Alicerces Teciduais , Alicerces Teciduais/química , Humanos , Engenharia Tecidual/métodos , Durapatita/química , Módulo de Elasticidade , Bioimpressão/métodos , Poliésteres/química , Porosidade , Simulação por Computador , Materiais Biocompatíveis/química , Substitutos Ósseos/química , Ácido Poliglicólico/química , Impressão Tridimensional , Teste de Materiais , Osso e OssosRESUMO
OBJECTIVE: This study aimed to address the lack of comparative analyses of newly developed bioceramic materials by examining the chemical composition, thermodynamic profile, and microscopic surface features of three bioceramic putties: EndoSequence BC Root Repair Material Fast Set Putty (ESRRM-FS), BIO-C Repair (BCR), and Cera Putty (CP). METHODS: Samples of each of the three bioceramic putty obtained directly from manufacturers were prepared for analysis of physicochemical composition and microscopic features by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) imagery, and energy-disper-sive X-ray spectroscopy (EDS). The data obtained was qualitatively and statistically analysed. Statistical signif-icance was determined at p≤0.05. RESULTS: DSC analysis indicated a standard polymeric vehicle for BCR and CP, coinciding with the polyethene glycol (PEG) thermal profile; the polymeric vehicle in ESRRM-FS remains to be identified. The material with the highest heat capacity was CP (p<0.05), followed by ESRRM-FS and BCR. TGA revealed an inflexion point at 394.12 ºC for ESRRM-FS, which may correspond to the mass loss of dihydroxylation of calcium hydroxide. A more homogenous structure was observed in scanning electron microscopy (SEM) images for ESRRM-FS. EDS analysis indicated BCR had minimal amounts of aluminium (2.06+-0.44%) and a lower percentage of cal-cium than ESRRM-FS (9.11+-1.38% vs. 11.3+-0.87%). CP was composed of aluminium (49.35+-7.01%), carbon (30.65+-5.62%), and oxygen (16.75+-2.44%); no silicon was identified. ESRRM-FS had no aluminium present and the highest calcium percentage (11.3+-0.87%) (p<0.05). CONCLUSION: BCR is a Portland cement-derived material with a lower percentage of calcium than ESRRM-FS and minimal amounts of aluminium. CP is a monocalcium aluminate cement, mainly composed of aluminium, carbon, and oxygen. ESRRM-FS is a biphasic material with the highest calcium percentage among all materials studied and no aluminium.
Assuntos
Cerâmica , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Varredura/métodos , Varredura Diferencial de Calorimetria , Materiais Restauradores do Canal Radicular/química , Espectrometria por Raios X/métodos , Termogravimetria/métodos , Materiais Biocompatíveis/química , Teste de Materiais/métodos , Propriedades de Superfície , Fosfatos de Cálcio , Combinação de Medicamentos , Óxidos , SilicatosRESUMO
The skin is a tissue constantly exposed to the risk of damage, such as cuts, burns, and genetic disorders. The standard treatment is autograft, but it can cause pain to the patient being extremely complex in patients suffering from burns on large body surfaces. Considering that there is a need to develop technologies for the repair of skin tissue like 3D bioprinting. Skin is a tissue that is approximately 1/16 of the total body weight and has three main layers: epidermis, dermis, and hypodermis. Therefore, there are several studies using cells, biomaterials, and bioprinting for skin regeneration. Here, we provide an overview of the structure and function of the epidermis, dermis, and hypodermis, and showed in the recent research in skin regeneration, the main cells used, biomaterials studied that provide initial support for these cells, allowing the growth and formation of the neotissue and general characteristics, advantages and disadvantages of each methodology and the landmarks in recent research in the 3D skin bioprinting.
Assuntos
Materiais Biocompatíveis , Bioimpressão , Impressão Tridimensional , Medicina Regenerativa , Pele , Engenharia Tecidual , Humanos , Medicina Regenerativa/métodos , Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Animais , Pele/citologia , Alicerces Teciduais/química , RegeneraçãoRESUMO
The COVID-19 pandemic has revealed weaknesses in healthcare systems and underscored the need for advanced antimicrobial materials. This study investigates the quaternization of agar, a seaweed-derived polysaccharide, and the development of electrospun membranes for air filtration in facemasks and biomedical applications. Using the betacoronavirus MHV-3 as a model, quaternized agar and membranes achieved a 90-99.99 % reduction in viral load, without associated cytotoxicity. The quaternization process reduced the viscosity of the solution from 1.19 ± 0.005 to 0.64 ± 0.005 Pa.s and consequently the electrospun fiber diameter ranged from 360 to 185 nm. Membranes synthesized based on polyvinyl alcohol and thermally cross-linked with citric acid exhibited lower water permeability. Avoiding organic solvents in the electrospinning technique ensured eco-friendly production. This approach offers a promising way to develop biocompatible and functional materials for healthcare and environmental applications.
Assuntos
Ágar , SARS-CoV-2 , Ágar/química , SARS-CoV-2/efeitos dos fármacos , COVID-19/virologia , COVID-19/prevenção & controle , Humanos , Inativação de Vírus/efeitos dos fármacos , Viscosidade , Membranas Artificiais , Animais , Álcool de Polivinil/química , Álcool de Polivinil/farmacologia , Pandemias/prevenção & controle , Chlorocebus aethiops , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologiaRESUMO
This work reports the virucidal properties of nonwoven fibers developed via electrospinning with polycaprolactone (PCL) and chitosan quaternized with phosphonium salt (NPCS), emphasizing the influence of NPCS concentration on the structure of fibers and their performance against the MHV-3 coronavirus. The addition of NPCS enhances solutions conductivity and viscosity, leading to fibers containing a finer porous structure with a more hydrophilic and smoother surface, thereby making them a potent barrier against respiratory particles, which is a key factor for protective face masks. In terms of degradation, NPCS paced-up the process, suggesting potential environmental benefits. PCL/NPCS (90/10) fibers exhibit a 99 % coronavirus inhibition within a five-minute exposure without cellular toxicity, while also meeting breathability standards for medical masks. These findings suggest the use of NPCS as a promising strategy to design materials with remarkable virucidal performance and physical characteristics that reinforce their use in the field of biomaterials engineering.
Assuntos
Antivirais , Quitosana , Poliésteres , Quitosana/química , Quitosana/farmacologia , Poliésteres/química , Antivirais/química , Antivirais/farmacologia , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , HumanosRESUMO
Cardiovascular diseases, particularly myocardial infarction, have significant healthcare challenges due to the limited regenerative capacity of injured heart tissue. Cardiac tissue engineering (CTE) offers a promising approach to repairing myocardial damage using biomaterials that mimic the heart's extracellular matrix. This study investigates the potential of graphene nanopowder (Gnp)-enhanced polycaprolactone (PCL) scaffolds fabricated via electrospinning to improve the properties necessary for effective cardiac repair. This work aimed to analyze scaffolds with varying graphene concentrations (0.5%, 1%, 1.5%, and 2% by weight) to determine their morphological, chemical, mechanical, and biocompatibility characteristics. The results presented that incorporating graphene improves PCL scaffolds' mechanical properties and cellular interactions. The optimal concentration of 1% graphene significantly enhanced mechanical properties and biocompatibility, promoting cell adhesion and proliferation. These findings suggest that Gnp-enhanced PCL scaffolds at this concentration can serve as a potent substrate for CTE providing insights into designing more effective biomaterials for myocardial restoration.
Assuntos
Proliferação de Células , Grafite , Nanofibras , Poliésteres , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Grafite/química , Poliésteres/química , Proliferação de Células/efeitos dos fármacos , Materiais Biocompatíveis , Adesão Celular/efeitos dos fármacos , Teste de Materiais , Animais , Miócitos Cardíacos/efeitos dos fármacos , Humanos , Miocárdio/patologiaRESUMO
Materials with a soft tissue regenerative capacity can be produced using biopolymer scaffolds and nanomaterials, which allow injured tissue to recover without any side effects or limitations. Four formulations were prepared using polyvinyl alcohol (PVA) and chitosan (CS), with silicon dioxide nanoparticles (NPs-SiO2) incorporated using the freeze-drying method at a temperature of -50 °C. TGA and DSC showed no change in thermal degradation, with glass transition temperatures around 74 °C and 77 °C. The interactions between the hydroxyl groups of PVA and CS remained stable. Scanning electron microscopy (SEM) indicated that the incorporation of NPs-SiO2 complemented the freeze-drying process, enabling the dispersion of the components on the polymeric matrix and obtaining structures with a small pore size (between 30 and 60 µm) and large pores (between 100 and 160 µm). The antimicrobial capacity analysis of Gram-positive and Gram-negative bacteria revealed that the scaffolds inhibited around 99% of K. pneumoniae, E. cloacae, and S. aureus ATCC 55804. The subdermal implantation analysis demonstrated tissue growth and proliferation, with good biocompatibility, promoting the healing process for tissue restoration through the simultaneous degradation and formation of type I collagen fibers. All the results presented expand the boundaries in tissue engineering and regenerative medicine by highlighting the crucial role of nanoparticles in optimizing scaffold properties.
Assuntos
Quitosana , Liofilização , Nanopartículas , Álcool de Polivinil , Dióxido de Silício , Engenharia Tecidual , Alicerces Teciduais , Quitosana/química , Álcool de Polivinil/química , Dióxido de Silício/química , Alicerces Teciduais/química , Nanopartículas/química , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Medicina Regenerativa/métodos , Regeneração/efeitos dos fármacosRESUMO
This study reports on the modification of bacterial cellulose (BC) membranes produced by static fermentation of Komagataeibacter xylinus bacterial strains with graphene oxide-silver nanoparticles (GO-Ag) to yield skin wound dressings with improved antibacterial properties. The GO-Ag sheets were synthesized through chemical reduction with sodium citrate and were utilized to functionalize the BC membranes (BC/GO-Ag). The BC/GO-Ag composites were characterized to determine their surface charge, morphology, exudate absorption, antimicrobial activity, and cytotoxicity by using fibroblast cells. The antimicrobial activity of the wound dressings was assessed against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The results indicate that the BC/GO-Ag dressings can inhibit â¼70% of E. coli cells. Our findings also revealed that the porous BC/GO-Ag antimicrobial dressings can efficiently retain 94% of exudate absorption after exposure to simulated body fluid (SBF) for 24 h. These results suggest that the dressings could absorb excess exudate from the wound during clinical application, maintaining adequate moisture, and promoting the proliferation of epithelial cells. The BC/GO-Ag hybrid materials exhibited excellent mechanical flexibility and low cytotoxicity to fibroblast cells, making excellent wound dressings able to control bacterial infectious processes and promote the fast healing of dermal lesions.
Assuntos
Antibacterianos , Materiais Biocompatíveis , Celulose , Escherichia coli , Grafite , Teste de Materiais , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Prata , Staphylococcus aureus , Cicatrização , Grafite/química , Grafite/farmacologia , Prata/química , Prata/farmacologia , Cicatrização/efeitos dos fármacos , Celulose/química , Celulose/farmacologia , Nanopartículas Metálicas/química , Antibacterianos/química , Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Tamanho da Partícula , Pseudomonas aeruginosa/efeitos dos fármacos , Gluconacetobacter xylinus/química , Humanos , Camundongos , Bandagens , AnimaisRESUMO
Scaffolds are 3D biomaterials that provide an environment for cell regeneration. In the context of bone remodeling, poly(e-caprolactone) (PCL) combined with graphene has been developed as the scaffold. It is imperative for scaffolds to possess antibacterial properties in order to properly reduce the risk of potential infections.Therefore, this study aims to analyze the antibacterial characteristics of PCL/graphene scaffolds against Staphylococcus aureus (S. aureus) and Porphyromonas gingivalis (P. gingivalis) in vitro. In this study, five different groups were used, including PCL (K-), Amoxicillin (K+), PCL/Graphene 0.5 wt%, PCL/graphene 1 wt% and PCL/Graphene 1.5 wt%. All experiments were performed in triplicates and were repeated three times, and the diffusion method by Kirby-Bauer test was used. The disc was incubated with S. aureus and P. gingivalis for 24 hours and then the diameter of the inhibition zone was measured. The results showed that the PCL/graphene scaffolds exhibited dose-dependent antibacterial activity against S. aureus and P. gingivalis. The inhibition zone diameter (IZD) against S. aureus of PCL/graphene 1 wt% was 9.53 ± 0.74 mm, and increased to 11.93 ± 0.92 mm at a concentration of 1.5 wt% of graphene. The PCL/graphene scaffold with 1.5 wt% exhibited a greater inhibitory effect, with an IZD of 12.56 ± 0.06 mm against P. gingivalis, while the inhibitory activity of the 1 wt% variant was relatively lower at 10.46 ± 0.24 mm. The negative control, PCL, and PCL/graphene 0.5 wt% exhibited no antibacterial activity sequentially (p = 1). Scaffolds of poly(e-caprolactone)/graphene exhibited an antibacterial activity at 1, and 1.5 wt% on S. aureus and P. gingivalis. The antibacterial properties of this scaffold make it a promising candidate for regenerating bone tissue.
Assuntos
Antibacterianos , Grafite , Poliésteres , Porphyromonas gingivalis , Staphylococcus aureus , Alicerces Teciduais , Grafite/química , Grafite/farmacologia , Porphyromonas gingivalis/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Alicerces Teciduais/química , Antibacterianos/farmacologia , Antibacterianos/química , Poliésteres/química , Poliésteres/farmacologia , Regeneração Óssea/efeitos dos fármacos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Testes de Sensibilidade MicrobianaRESUMO
OBJECTIVE: Several materials have been developed to preserve pulp vitality. They should have ideal cytocompatibility characteristics to promote the activity of stem cells of human exfoliated deciduous teeth (SHED) and thus heal pulp tissue. OBJECTIVE: To evaluate the cytotoxicity of different dilutions of bioceramic material extracts in SHED. METHODOLOGY: SHED were immersed in αMEM + the material extract according to the following experimental groups: Group 1 (G1) -BBio membrane, Group 2 (G2) - Bio-C Repair, Group 3 (G3) - MTA Repair HP, Group 4 (G4) - TheraCal LC, and Group 5 (G5) - Biodentine. Positive and negative control groups were maintained respectively in αMEM + 10% FBS and Milli-Q Water. The methods to analyze cell viability and proliferation involved MTT and Alamar Blue assays at 24, 48, and 72H after the contact of the SHED with bioceramic extracts at 1:1 and 1:2 dilutions. Data were analyzed by the three-way ANOVA, followed by Tukey's test (p<0.05). RESULTS: At 1:1 dilution, SHED in contact with the MTA HP Repair extract showed statistically higher cell viability than the other experimental groups and the negative control (p<0.05), except for TheraCal LC (p> 0.05). At 1:2 dilution, BBio Membrane and Bio-C showed statistically higher values in intra- and intergroup comparisons (p<0.05). BBio Membrane, Bio-C Repair, and Biodentine extracts at 1:1 dilution showed greater cytotoxicity than 1:2 dilution in all periods (p<0.05). CONCLUSION: MTA HP Repair showed the lowest cytotoxicity even at a 1:1 dilution. At a 1:2 dilution, the SHED in contact with the BBio membrane extract showed high cell viability. Thus, the BBio membrane would be a new non-cytotoxic biomaterial for SHED. Results offer possibilities of biomaterials that can be indicated for use in clinical regenerative procedures of the dentin-pulp complex.
Assuntos
Compostos de Alumínio , Materiais Biocompatíveis , Compostos de Cálcio , Proliferação de Células , Sobrevivência Celular , Cerâmica , Polpa Dentária , Combinação de Medicamentos , Teste de Materiais , Óxidos , Silicatos , Células-Tronco , Dente Decíduo , Humanos , Dente Decíduo/efeitos dos fármacos , Silicatos/química , Silicatos/toxicidade , Silicatos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Compostos de Cálcio/química , Compostos de Cálcio/farmacologia , Compostos de Cálcio/toxicidade , Células-Tronco/efeitos dos fármacos , Fatores de Tempo , Óxidos/química , Óxidos/toxicidade , Proliferação de Células/efeitos dos fármacos , Polpa Dentária/efeitos dos fármacos , Polpa Dentária/citologia , Cerâmica/química , Cerâmica/toxicidade , Compostos de Alumínio/química , Compostos de Alumínio/toxicidade , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Análise de Variância , Reprodutibilidade dos Testes , Bismuto/química , Bismuto/toxicidade , Bismuto/farmacologia , Células Cultivadas , Valores de Referência , Sais de Tetrazólio , Xantenos/química , OxazinasRESUMO
La terapéutica endodóntica se apoya básicamente en dos modelos teóricos o paradigmas: el concepto de "tubo hueco" técnico y quirúrgico esencialmente mecanicista, y el modelo terapéutico para conductos radiculares, que busca la restitución ad integrum de los tejidos apicales y el hueso alveolar que los rodea. La instrumentación debe complementarse con la limpieza por irrigación abundante y la obturación con un biomaterial bioactivo, con características reológicas que permitan su adaptación plástica a las paredes del conducto radicular y module la respuesta de los tejidos hacia la regeneración con aposición de tejido calcificado en el foramen apical (AU)
Endodontic therapy is basically based on two theoretical models or paradigms, which are the concept of the technical and surgical "hollow tube", essentially mechanistic, and the therapeutic model of root canals, which seeks the ad integrum restitution of the apical tissues and bone. alveolar that surrounds them. The instrumentation must be complemented with cleaning by abundant irrigation, and with a bioactive biomaterial, with rheological characteristics that allows its plastic adaptation to the walls of the root canal and modulates the response of the tissues towards regeneration with apposition of calcified tissue in the apical foramen (AU)
Assuntos
Humanos , Feminino , Adulto , Materiais Biocompatíveis , Preparo de Canal Radicular/instrumentação , Retratamento , Doenças Periapicais/complicações , Irrigantes do Canal Radicular/uso terapêutico , Ápice Dentário , Dente MolarRESUMO
Este estudio aborda la viabilidad y los retos inherentes al uso de barreras de polímeros impresos en 3D para la regeneración ósea guiada (en adelante, ROG) en procedimientos de implantología dental. A través del análisis exhaustivo de investigaciones y aplicaciones clínicas actuales, se evalúa detalladamente la biocompatibilidad, la funcionalidad estructural y las respuestas biológicas inducidas por estas barreras innovadoras en entornos terapéuticos. Este enfoque permite una comprensión más profunda de las interacciones osteointegrativas y las perspectivas de adaptabilidad tisular asociadas con materiales poliméricos avanzados (AU)
This scholarly investigation delineates the efficacy and inherent challenges of utilizing 3D printed polymer barriers for guided bone regeneration (GBR) in dental implantology procedures. An extensive review of current research and clinical implementations provides a critical assessment of biocompatibility, structural functionality, and the biological responses elicited by these innovative barriers within therapeutic contexts. The study delves into the osteointegrative interactions and tissue adaptability prospects facilitated by advanced polymeric materials, offering significant insights into their clinical utility.(AU)
Assuntos
Polímeros , Regeneração Óssea , Impressão Tridimensional/tendências , Materiais Biocompatíveis/uso terapêutico , Osseointegração/fisiologia , Implantação Dentária Endóssea/métodosRESUMO
OBJECTIVE: To evaluate the effect of the deterioration of computer aided design/computer aided manufacturing (CAD/CAM) burs during zirconia milling, on surface roughness, contact angle, and fibroblast viability. MATERIALS AND METHODS: Ceramic blocks were milled and 75 ceramic disks (8 × 1.5 mm) made and allocated into three groups (n = 25): G1-brand new 2L and 1L burs, G2-2L bur at the end of lifetime and brand new 1L bur and G3-both burs at the end of their lifetimes. Roughness (Ra, Rq, and Rz) was evaluated using a 3D optical profilometer, the contact angle by the sessile drop method and the cell viability of the mouse NIH/3T3 fibroblast, using the Alamar Blue assay at intervals of 24, 48, and 72 h (ISO 10993-5). Data were analyzed by one-way ANOVA and Kruskal-Wallis tests (p ≤ 0.05). RESULTS: Roughness increased as the burs deteriorated and G3 (0.27 ± 0.04) presented a higher value for Ra (p < 0.001). The highest contact angle was observed in G3 (86.2 ± 2.66) when compared with G1 (63.7 ± 12.49) and G2 (75.3 ± 6.36) (p < 0.001). Alamar Blue indicated an increase in cell proliferation, with no significant differences among the groups at 24 and 72 h (p > 0.05). CONCLUSIONS: The deterioration of the burs increased the surface roughness and decreased the wettability, but did not interfere in cell viability and proliferation. CLINICAL SIGNIFICANCE: The use of custom zirconia abutments represents an effective strategy for single crowns restorations. Our findings suggest that these abutments can be efficiently milled using CAD/CAM burs within their recommended lifetime.