Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.894
Filtrar
3.
J Neuroinflammation ; 21(1): 101, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38632579

RESUMO

BACKGROUND: Increased neuroinflammation in brain regions regulating sympathetic nerves is associated with hypertension. Emerging evidence from both human and animal studies suggests a link between hypertension and gut microbiota, as well as microbiota-derived metabolites short-chain fatty acids (SCFAs). However, the precise mechanisms underlying this gut-brain axis remain unclear. METHODS: The levels of microbiota-derived SCFAs in spontaneously hypertensive rats (SHRs) were determined by gas chromatography-mass spectrometry. To observe the effect of acetate on arterial blood pressure (ABP) in rats, sodium acetate was supplemented via drinking water for continuous 7 days. ABP was recorded by radio telemetry. The inflammatory factors, morphology of microglia and astrocytes in rostral ventrolateral medulla (RVLM) were detected. In addition, blood-brain barrier (BBB) permeability, composition and metabolomics of the gut microbiome, and intestinal pathological manifestations were also measured. RESULTS: The serum acetate levels in SHRs are lower than in normotensive control rats. Supplementation with acetate reduces ABP, inhibits sympathetic nerve activity in SHRs. Furthermore, acetate suppresses RVLM neuroinflammation in SHRs, increases microglia and astrocyte morphologic complexity, decreases BBB permeability, modulates intestinal flora, increases fecal flora metabolites, and inhibits intestinal fibrosis. CONCLUSIONS: Microbiota-derived acetate exerts antihypertensive effects by modulating microglia and astrocytes and inhibiting neuroinflammation and sympathetic output.


Assuntos
Hipertensão , Microbiota , Humanos , Ratos , Animais , Ratos Endogâmicos SHR , Doenças Neuroinflamatórias , Hipertensão/metabolismo , Pressão Sanguínea , Bulbo/metabolismo , Acetatos/farmacologia
4.
Physiol Behav ; 280: 114564, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657747

RESUMO

Although salivation is essential during eating behavior, little is known about the brainstem centers that directly control the salivary glands. With regard to the inferior salivatory nucleus (ISN), the site of origin of the parasympathetic preganglionic cell bodies that innervate the parotid glands, previous anatomical studies have located it within the rostrodorsal medullary reticular formation. However, to date there is no functional data that shows the secretory nature of the somas grouped in this region. To activate only the somas and rule out the activation of the efferent fibers from and the afferent fibers to the ISN, in exp. 1, NMDA neurotoxin was administered to the rostrodorsal medullary region and the secretion of saliva was recorded during the following hour. Results showed an increased secretion of parotid saliva but a total absence of submandibular-sublingual secretion. In exp. 2, results showed that the hypersecretion of parotid saliva after NMDA microinjection was completely blocked by the administration of atropine (a cholinergic blocker) but not after administration of dihydroergotamine plus propranolol (α and ß-adrenergic blockers, respectively). These findings suggest that the somata of the rostrodorsal medulla are secretory in nature, controlling parotid secretion via a cholinergic pathway. The data thus functionally supports the idea that these cells constitute the ISN.


Assuntos
N-Metilaspartato , Glândula Parótida , Receptores de N-Metil-D-Aspartato , Animais , Masculino , Ratos , Glândula Parótida/metabolismo , Glândula Parótida/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , N-Metilaspartato/farmacologia , N-Metilaspartato/metabolismo , Ratos Wistar , Salivação/efeitos dos fármacos , Salivação/fisiologia , Bulbo/metabolismo , Bulbo/efeitos dos fármacos , Saliva/metabolismo , Agonistas de Aminoácidos Excitatórios/farmacologia , Atropina/farmacologia , Propranolol/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Microinjeções , Sialorreia
5.
Sci Adv ; 10(17): eadj9581, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669335

RESUMO

The supraspinal descending pain modulatory system (DPMS) shapes pain perception via monoaminergic modulation of sensory information in the spinal cord. However, the role and synaptic mechanisms of descending noradrenergic signaling remain unclear. Here, we establish that noradrenergic neurons of the locus coeruleus (LC) are essential for supraspinal opioid antinociception. While much previous work has emphasized the role of descending serotonergic pathways, we find that opioid antinociception is primarily driven by excitatory output from the ventrolateral periaqueductal gray (vlPAG) to the LC. Furthermore, we identify a previously unknown opioid-sensitive inhibitory input from the rostroventromedial medulla (RVM), the suppression of which disinhibits LC neurons to drive spinal noradrenergic antinociception. We describe pain-related activity throughout this circuit and report the presence of prominent bifurcating outputs from the vlPAG to the LC and the RVM. Our findings substantially revise current models of the DPMS and establish a supraspinal antinociceptive pathway that may contribute to multiple forms of descending pain modulation.


Assuntos
Analgésicos Opioides , Locus Cerúleo , Bulbo , Dor , Substância Cinzenta Periaquedutal , Locus Cerúleo/metabolismo , Locus Cerúleo/efeitos dos fármacos , Substância Cinzenta Periaquedutal/metabolismo , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Animais , Bulbo/metabolismo , Bulbo/efeitos dos fármacos , Dor/tratamento farmacológico , Dor/metabolismo , Analgésicos Opioides/farmacologia , Masculino , Neurônios Adrenérgicos/metabolismo , Neurônios Adrenérgicos/efeitos dos fármacos , Camundongos , Vias Neurais/efeitos dos fármacos
7.
CNS Neurosci Ther ; 30(3): e14686, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38516817

RESUMO

OBJECTIVES: The new daily persistent headache (NDPH) is a rare primary headache disorder. However, the underlying mechanisms of NDPH remain incompletely understood. This study aims to apply seed-based analysis to explore the functional connectivity (FC) of brainstem nuclei in patients with NDPH using resting-state functional magnetic resonance imaging (MRI). METHODS: The FC analysis from the region of interest (ROI) to whole brain voxels was used to investigate 29 patients with NDPH and 37 well-matched healthy controls (HCs) with 3.0 Tesla MRI. The 76 nuclei in the brainstem atlas were defined as ROIs. Furthermore, we explored the correlations between FC and patients' clinical characteristics and neuropsychological evaluations. RESULTS: Patients with NDPH exhibited reduced FC in multiple brainstem nuclei compared to HCs (including right inferior medullary reticular formation, right mesencephalic reticular formation, bilateral locus coeruleus, bilateral laterodorsal tegmental nucleus-central gray of the rhombencephalon, median raphe, left medial parabrachial nucleus, periaqueductal gray, and bilateral ventral tegmental area-parabrachial pigmented nucleus complex) and increased FC in periaqueductal gray. No significant correlations were found between the FC of these brain regions and clinical characteristics or neuropsychological evaluations after Bonferroni correction (p > 0.00016). CONCLUSIONS: Our results demonstrated that patients with NDPH have abnormal FC of brainstem nuclei involved in the perception and regulation of pain and emotions.


Assuntos
Tronco Encefálico , Encéfalo , Humanos , Tronco Encefálico/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Bulbo , Mapeamento Encefálico , Cefaleia
8.
Cell Rep ; 43(3): 113884, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38458194

RESUMO

Primate hands house an array of mechanoreceptors and proprioceptors, which are essential for tactile and kinematic information crucial for daily motor action. While the regulation of these somatosensory signals is essential for hand movements, the specific central nervous system (CNS) location and mechanism remain unclear. Our study demonstrates the attenuation of somatosensory signals in the cuneate nucleus during voluntary movement, suggesting significant modulation at this initial relay station in the CNS. The attenuation is comparable to the cerebral cortex but more pronounced than in the spinal cord, indicating the cuneate nuclei's role in somatosensory perception modulation during movement. Moreover, our findings suggest that the descending motor tract may regulate somatosensory transmission in the cuneate nucleus, enhancing relevant signals and suppressing unnecessary ones for the regulation of movement. This process of recurrent somatosensory modulation between cortical and subcortical areas could be a basic mechanism for modulating somatosensory signals to achieve active perception.


Assuntos
Mãos , Bulbo , Animais , Bulbo/fisiologia , Medula Espinal/fisiologia , Tato , Primatas , Córtex Somatossensorial/fisiologia , Movimento/fisiologia
9.
Acta Neurochir (Wien) ; 166(1): 139, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488893

RESUMO

Neurovascular compression of the rostral ventrolateral medulla (RVLM) has been described as a possible cause of refractory essential hypertension. We present the case of a patient affected by episodes of severe paroxysmal hypertension, some episodes associated with vago-glossopharyngeal neuralgia. Classical secondary forms of hypertension were excluded. Imaging revealed a neurovascular conflict between the posterior inferior cerebellar artery (PICA) and the ventrolateral medulla at the level of the root entry zone of the ninth and tenth cranial nerves (CN IX-X REZ). A MVD of a conflict between the PICA and the RVLM and adjacent CN IX-X REZ was performed, resulting in reduction of the frequency and severity of the episodes. Brain MRI should be performed in cases of paroxysmal hypertension. MVD can be considered in selected patients.


Assuntos
Doenças do Nervo Glossofaríngeo , Hipertensão , Humanos , Bulbo/diagnóstico por imagem , Hipertensão/complicações , Nervo Vago , Pressão
10.
Brain Nerve ; 76(3): 239-247, 2024 Mar.
Artigo em Japonês | MEDLINE | ID: mdl-38514105

RESUMO

Based on a recent review by Krohn et al, the respiratory center and its regulatory mechanisms are described. Although the respiratory control centers in the medulla and pons ensure rhythmic respiration, maintaining and regulating respiration involves a complex network of peripheral chemoreceptors, vagal nerves, and central chemoreceptors. This review discusses the pathophysiology of respiratory disorders in neuromuscular diseases and evaluation and treatment methods based on the anatomy of the respiratory network.


Assuntos
Doenças Neuromusculares , Insuficiência Respiratória , Humanos , Respiração , Doenças Neuromusculares/complicações , Insuficiência Respiratória/etiologia , Bulbo , Ponte
11.
Science ; 383(6687): eadi8081, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452069

RESUMO

Phonation critically depends on precise controls of laryngeal muscles in coordination with ongoing respiration. However, the neural mechanisms governing these processes remain unclear. We identified excitatory vocalization-specific laryngeal premotor neurons located in the retroambiguus nucleus (RAmVOC) in adult mice as being both necessary and sufficient for driving vocal cord closure and eliciting mouse ultrasonic vocalizations (USVs). The duration of RAmVOC activation can determine the lengths of both USV syllables and concurrent expiration periods, with the impact of RAmVOC activation depending on respiration phases. RAmVOC neurons receive inhibition from the preBötzinger complex, and inspiration needs override RAmVOC-mediated vocal cord closure. Ablating inhibitory synapses in RAmVOC neurons compromised this inspiration gating of laryngeal adduction, resulting in discoordination of vocalization with respiration. Our study reveals the circuits for vocal production and vocal-respiratory coordination.


Assuntos
Tronco Encefálico , Fonação , Respiração , Prega Vocal , Animais , Masculino , Camundongos , Tronco Encefálico/fisiologia , Bulbo/fisiologia , Neurônios/fisiologia , Fonação/fisiologia , Prega Vocal/inervação , Prega Vocal/fisiologia , Camundongos Endogâmicos C57BL , Feminino , Proteínas Proto-Oncogênicas c-fos/genética
12.
J Neuroimmunol ; 389: 578316, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38394966

RESUMO

Early life inflammation has been linked to long-term modulation of behavioural outcomes due to the central nervous system, but it is now becoming apparent it is also linked to dysfunction of visceral physiology. The medulla oblongata contains a number of nuclei critical for homeostasis, therefore we utilised the well-established model of neonatal lipopolysaccharide (LPS) exposure to examine the immediate and long-term impacts of systemic inflammation on the medulla oblongata. Wistar rats were injected with LPS or saline on postnatal days 3 and 5, with tissues collected on postnatal days 7 or 90 in order to assess expression of inflammatory mediators and microglial morphology in autonomic regions of the medulla oblongata. We observed a distinct sex-specific response of all measured inflammatory mediators at both ages, as well as significant neonatal sex differences in inflammatory mediators within saline groups. At both ages, microglial morphology had significant changes in branch length and soma size in a sex-specific manner in response to LPS exposure. This data not only highlights the strong sex-specific response of neonates to LPS administration, but also the significant life-long impact on the medulla oblongata and the potential altered control of visceral organs.


Assuntos
Lipopolissacarídeos , Bulbo , Ratos , Animais , Feminino , Masculino , Ratos Wistar , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Animais Recém-Nascidos
13.
J Neuropathol Exp Neurol ; 83(3): 144-160, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38323418

RESUMO

The failure of chemoreflexes, arousal, and/or autoresuscitation to asphyxia may underlie some sudden infant death syndrome (SIDS) cases. In Part I, we showed that some SIDS infants had altered 5-hydroxytryptamine (5-HT)2A/C receptor binding in medullary nuclei supporting chemoreflexes, arousal, and autoresuscitation. Here, using the same dataset, we tested the hypotheses that the prevalence of low 5-HT1A and/or 5-HT2A/C receptor binding (defined as levels below the 95% confidence interval of controls-a new approach), and the percentages of nuclei affected are greater in SIDS versus controls, and that the distribution of low binding varied with age of death. The prevalence and percentage of nuclei with low 5-HT1A and 5-HT2A/C binding in SIDS were twice that of controls. The percentage of nuclei with low 5-HT2A/C binding was greater in older SIDS infants. In >80% of older SIDS infants, low 5-HT2A/C binding characterized the hypoglossal nucleus, vagal dorsal nucleus, nucleus of solitary tract, and nuclei of the olivocerebellar subnetwork (important for blood pressure regulation). Together, our findings from SIDS infants and from animal models of serotonergic dysfunction suggest that some SIDS cases represent a serotonopathy. We present new hypotheses, yet to be tested, about how defects within serotonergic subnetworks may lead to SIDS.


Assuntos
Morte Súbita do Lactente , Lactente , Animais , Humanos , Idoso , Bulbo/metabolismo , Serotonina/metabolismo , Receptores de Serotonina/metabolismo
14.
Nat Commun ; 15(1): 1542, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378819

RESUMO

Spinal cord injury disrupts the descending command from the brain and causes a range of motor deficits. Here, we use optogenetic tools to investigate the functional plasticity of the glutamatergic reticulospinal drive of the medullary reticular formation after a lateral thoracic hemisection in female mice. Sites evoking stronger excitatory descending drive in intact conditions are the most impaired after injury, whereas those associated with a weaker drive are potentiated. After lesion, pro- and anti-locomotor activities (that is, initiation/acceleration versus stop/deceleration) are overall preserved. Activating the descending reticulospinal drive improves stepping ability on a flat surface of chronically impaired injured mice, and its priming enhances recovery of skilled locomotion on a horizontal ladder. This study highlights the resilience and capacity for reorganization of the glutamatergic reticulospinal command after injury, along with its suitability as a therapeutical target to promote functional recovery.


Assuntos
Neurônios , Traumatismos da Medula Espinal , Camundongos , Animais , Feminino , Neurônios/fisiologia , Bulbo , Formação Reticular , Encéfalo/patologia , Medula Espinal/patologia , Locomoção/fisiologia
15.
Sci Rep ; 14(1): 4069, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374419

RESUMO

We investigated the participation of the nucleus of the tractus solitarius (NTS) in tonic‒clonic seizures and postictal antinociception control mediated by NMDA receptors, the role of NTS GABAergic interneurons and noradrenergic pathways from the locus coeruleus (LC) in these phenomena. The NTS-lateral nucleus reticularis paragigantocellularis (lPGi)-LC pathway was studied by evaluating neural tract tracer deposits in the lPGi. NMDA and GABAergic receptors agonists and antagonists were microinjected into the NTS, followed by pharmacologically induced seizures. The effects of LC neurotoxic lesions caused by DSP-4, followed by NTS-NMDA receptor activation, on both tonic‒clonic seizures and postictal antinociception were also investigated. The NTS is connected to lPGi neurons that send outputs to the LC. Glutamatergic vesicles were found on dendrites and perikarya of GABAergic interneurons in the NTS. Both tonic‒clonic seizures and postictal antinociception are partially dependent on glutamatergic-mediated neurotransmission in the NTS of seizing rats in addition to the integrity of the noradrenergic system since NMDA receptor blockade in the NTS and intrathecal administration of DSP-4 decrease the postictal antinociception. The GABAA receptor activation in the NTS decreases both seizure severity and postictal antinociception. These findings suggest that glutamatergic inputs to NTS-GABAergic interneurons, in addition to ascending and descending noradrenergic pathways from the LC, are critical for the control of both seizures and postictal antinociception.


Assuntos
Benzilaminas , Locus Cerúleo , Receptores de N-Metil-D-Aspartato , Ratos , Animais , Locus Cerúleo/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Bulbo/metabolismo , Núcleo Solitário/metabolismo , Norepinefrina/metabolismo , Convulsões/metabolismo
16.
J Physiol ; 602(5): 949-966, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38353989

RESUMO

Exposure to stressful stimuli promotes multi-system biological responses to restore homeostasis. Catecholaminergic neurons in the rostral ventrolateral medulla (RVLM) facilitate sympathetic activity and promote physiological adaptations, including glycaemic mobilization and corticosterone release. While it is unclear how brain regions involved in the cognitive appraisal of stress regulate RVLM neural activity, recent studies found that the rodent ventromedial prefrontal cortex (vmPFC) mediates stress appraisal and physiological stress responses. Thus, a vmPFC-RVLM connection could represent a circuit mechanism linking stress appraisal and physiological reactivity. The current study investigated a direct vmPFC-RVLM circuit utilizing genetically encoded anterograde and retrograde tract tracers. Together, these studies found that stress-activated vmPFC neurons project to catecholaminergic neurons throughout the ventrolateral medulla in male and female rats. Next, we utilized optogenetic terminal stimulation to evoke vmPFC synaptic glutamate release in the RVLM. Photostimulating the vmPFC-RVLM circuit during restraint stress suppressed glycaemic stress responses in males, without altering the female response. However, circuit stimulation decreased corticosterone responses to stress in both sexes. Circuit stimulation did not modulate affective behaviour in either sex. Further analysis indicated that circuit stimulation preferentially activated non-catecholaminergic medullary neurons in both sexes. Additionally, vmPFC terminals targeted medullary inhibitory neurons. Thus, both male and female rats have a direct vmPFC projection to the RVLM that reduces endocrine stress responses, likely by recruiting local RVLM inhibitory neurons. Ultimately, the excitatory/inhibitory balance of vmPFC synapses in the RVLM may regulate stress reactivity and stress-related health outcomes. KEY POINTS: Glutamatergic efferents from the ventromedial prefrontal cortex target catecholaminergic neurons throughout the ventrolateral medulla. Partially segregated, stress-activated ventromedial prefrontal cortex populations innervate the rostral and caudal ventrolateral medulla. Stimulating ventromedial prefrontal cortex synapses in the rostral ventrolateral medulla decreases stress-induced glucocorticoid release in males and females. Stimulating ventromedial prefrontal cortex terminals in the rostral ventrolateral medulla preferentially activates non-catecholaminergic neurons. Ventromedial prefrontal cortex terminals target medullary inhibitory neurons.


Assuntos
Corticosterona , Bulbo , Ratos , Masculino , Feminino , Animais , Ratos Sprague-Dawley , Bulbo/fisiologia , Neurônios/fisiologia , Estresse Fisiológico
17.
Neurocirugia (Astur : Engl Ed) ; 35(3): 152-163, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38244925

RESUMO

OBJECTIVES: Throughout neurosurgical history, the treatment of intrinsic lesions located in the brainstem has been subject of much controversy. The brainstem is the anatomical structure of the central nervous system (CNS) that presents the highest concentration of nuclei and fibers, and its simple manipulation can lead to significant morbidity and mortality. Once one of the safe entry points at the medulla oblongata has been established, we wanted to evaluate the safest approach to the olivary body (the most used safe entry zone on the anterolateral surface of the medulla oblongata). The proposed objective was to evaluate the working channel from the surface of each of the far lateral and retrosigmoid approaches to the olivary body: distances, angles of attack and channel content. MATERIAL AND METHODS: To complete this work, a total of 10 heads injected with red/blue silicone were used. A total of 40 approaches were made in the 10 heads used (20 retrosigmoid and 20 far lateral). After completing the anatomical study and obtaining the data referring to all the approaches performed, it was decided to expand the sample of this research study by using 30 high-definition magnetic resonance imaging of anonymous patients without cranial or cerebral pathology. The reference points used were the same ones defined in the anatomical study. After defining the working channels in each of the approaches, the working distances, angle of attack, exposed surface, and the number of neurovascular structures present in the central trajectory were analyzed. RESULTS: The distances to the cranial and medial region of the olivary body were 52.71 mm (SD 3.59) from the retrosigmoid approach and 27.94 mm (SD 3.99) from the far lateral; to the most basal region of the olivary body, the distances were 49.93 (SD 3.72) from the retrosigmoid approach and 18.1 mm (SD 2.5) from the far lateral. The angle of attack to the caudal region was 19.44° (SD 1.3) for the retrosigmoid approach and 50.97° (SD 8.01) for the far lateral approach; the angle of attack to the cranial region was 20.3° (SD 1.22) for the retrosigmoid and 39.9° (SD 5.12) for the far lateral. Regarding neurovascular structures, the probability of finding an arterial structure is higher for the lateral far, whereas a neural structure will be more likely from a retrosigmoid approach. CONCLUSIONS: As conclusions of this work, we can say that far lateral approach presents more favorable conditions for the microsurgical treatment of intrinsic bulbar and bulbomedullary lesions approached through the caudal half of the olivary body. In those cases of bulbar and pontine-bulbar lesions approached through the cranial half of the olivary body, the retrosigmoid approach can be considered for selected cases.


Assuntos
Núcleo Olivar , Humanos , Núcleo Olivar/diagnóstico por imagem , Núcleo Olivar/anatomia & histologia , Procedimentos Neurocirúrgicos/métodos , Imageamento por Ressonância Magnética , Cadáver , Bulbo/anatomia & histologia , Bulbo/diagnóstico por imagem , Bulbo/irrigação sanguínea
18.
Respir Physiol Neurobiol ; 322: 104217, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38237884

RESUMO

Central respiratory chemoreceptors are cells in the brain that regulate breathing in relation to arterial pH and PCO2. Neurons located at the retrotrapezoid nucleus (RTN) have been hypothesized to be central chemoreceptors and/or to be part of the neural network that drives the central respiratory chemoreflex. The inhibition or ablation of RTN chemoreceptor neurons has offered important insights into the role of these cells on central respiratory chemoreception and the neural control of breathing over almost 60 years since the original identification of acid-sensitive properties of this ventral medullary site. Here, we discuss the current definition of chemoreceptor neurons in the RTN and describe how this definition has evolved over time. We then summarize the results of studies that use loss-of-function approaches to evaluate the effects of disrupting the function of RTN neurons on respiration. These studies offer evidence that RTN neurons are indispensable for the central respiratory chemoreflex in mammals and exert a tonic drive to breathe at rest. Moreover, RTN has an interdependent relationship with oxygen sensing mechanisms for the maintenance of the neural drive to breathe and blood gas homeostasis. Collectively, RTN neurons are a genetically-defined group of putative central respiratory chemoreceptors that generate CO2-dependent drive that supports eupneic breathing and stimulates the hypercapnic ventilatory reflex.


Assuntos
Células Quimiorreceptoras , Bulbo , Animais , Células Quimiorreceptoras/fisiologia , Bulbo/fisiologia , Hipercapnia , Respiração , Neurônios/fisiologia , Dióxido de Carbono , Mamíferos
19.
Respir Physiol Neurobiol ; 322: 104218, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38237882

RESUMO

Expiratory neurons in the caudal ventral respiratory group extend descending axons to the lumbar and sacral spinal cord, and they possess axon collaterals, the distribution of which has been well-documented. Likewise, these expiratory neurons extend axons to the thoracic spinal cord and innervate thoracic expiratory motoneurons. These axons also give rise to collaterals, and their distribution may influence the strength of synaptic connectivity between the axons and the thoracic expiratory motoneurons. We investigated the distribution of axon collaterals in the thoracic spinal cord using a microstimulation technique. This study was performed on cats; one cat was used to make an anatomical atlas and six were used in the experiment. Extracellular spikes of expiratory neurons were recorded in artificially ventilated cats. The thoracic spinal gray matter was microstimulated from dorsal to ventral sites at 100-µm intervals using a glass-insulated tungsten microelectrode with a current of 150-250 µA. The stimulation tracks were made at 1 mm intervals along the spinal cord in segments Th9 to Th13, and the effective stimulating sites of antidromic activation in axon collaterals were systematically mapped. The effective stimulating sites in the contralateral thoracic spinal cord with expiratory neurons in the caudal ventral respiratory group (cVRG) occupied 14.4% of the total length of the thoracic spinal cord examined. The mean percentage of effective stimulating tracks per unit was 18.6 ± 4.4%. The distribution of axon collaterals of expiratory neurons in the feline thoracic spinal cord indeed resembled that reported in the upper lumbar spinal cord. We propose that a single medullary expiratory neuron exerts excitatory effects across multiple segments of the thoracic spinal cord via its collaterals.


Assuntos
Axônios , Medula Espinal , Gatos , Animais , Medula Espinal/fisiologia , Neurônios Motores/fisiologia , Bulbo/fisiologia , Tórax
20.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253582

RESUMO

The preBötzinger complex (preBötC), located in the medulla, is the essential rhythm-generating neural network for breathing. The actions of opioids on this network impair its ability to generate robust, rhythmic output, contributing to life-threatening opioid-induced respiratory depression (OIRD). The occurrence of OIRD varies across individuals and internal and external states, increasing the risk of opioid use, yet the mechanisms of this variability are largely unknown. In this study, we utilize a computational model of the preBötC to perform several in silico experiments exploring how differences in network topology and the intrinsic properties of preBötC neurons influence the sensitivity of the network rhythm to opioids. We find that rhythms produced by preBötC networks in silico exhibit variable responses to simulated opioids, similar to the preBötC network in vitro. This variability is primarily due to random differences in network topology and can be manipulated by imposed changes in network connectivity and intrinsic neuronal properties. Our results identify features of the preBötC network that may regulate its susceptibility to opioids.


Assuntos
Analgésicos Opioides , Neurônios , Humanos , Analgésicos Opioides/efeitos adversos , Neurônios/fisiologia , Respiração , Bulbo/fisiologia , Centro Respiratório/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...