Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.619
Filtrar
1.
Nat Commun ; 15(1): 5550, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956014

RESUMO

Oocyte in vitro maturation is a technique in assisted reproductive technology. Thousands of genes show abnormally high expression in in vitro maturated metaphase II (MII) oocytes compared to those matured in vivo in bovines, mice, and humans. The mechanisms underlying this phenomenon are poorly understood. Here, we use poly(A) inclusive RNA isoform sequencing (PAIso-seq) for profiling the transcriptome-wide poly(A) tails in both in vivo and in vitro matured mouse and human oocytes. Our results demonstrate that the observed increase in maternal mRNA abundance is caused by impaired deadenylation in in vitro MII oocytes. Moreover, the cytoplasmic polyadenylation of dormant Btg4 and Cnot7 mRNAs, which encode key components of deadenylation machinery, is impaired in in vitro MII oocytes, contributing to reduced translation of these deadenylase machinery components and subsequently impaired global maternal mRNA deadenylation. Our findings highlight impaired maternal mRNA deadenylation as a distinct molecular defect in in vitro MII oocytes.


Assuntos
Oócitos , Poliadenilação , Oócitos/metabolismo , Animais , Humanos , Feminino , Camundongos , Poli A/metabolismo , Técnicas de Maturação in Vitro de Oócitos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Transcriptoma , RNA Mensageiro Estocado/metabolismo , RNA Mensageiro Estocado/genética , Metáfase , Exorribonucleases , Proteínas Repressoras , Proteínas de Ciclo Celular
2.
PLoS Genet ; 20(6): e1011329, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38913752

RESUMO

Precise regulation of chromosome dynamics in the germline is essential for reproductive success across species. Yet, the mechanisms underlying meiotic chromosomal events such as homolog pairing and chromosome segregation are not fully understood in many species. Here, we employ Oligopaint DNA FISH to investigate mechanisms of meiotic homolog pairing and chromosome segregation in the holocentric pantry moth, Plodia interpunctella, and compare our findings to new and previous studies in the silkworm moth, Bombyx mori, which diverged from P. interpunctella over 100 million years ago. We find that pairing in both Bombyx and Plodia spermatogenesis is initiated at gene-rich chromosome ends. Additionally, both species form rod shaped cruciform-like bivalents at metaphase I. However, unlike the telomere-oriented chromosome segregation mechanism observed in Bombyx, Plodia can orient bivalents in multiple different ways at metaphase I. Surprisingly, in both species we find that kinetochores consistently assemble at non-telomeric loci toward the center of chromosomes regardless of where chromosome centers are located in the bivalent. Additionally, sister kinetochores do not seem to be paired in these species. Instead, four distinct kinetochores are easily observed at metaphase I. Despite this, we find clear end-on microtubule attachments and not lateral microtubule attachments co-orienting these separated kinetochores. These findings challenge the classical view of segregation where paired, poleward-facing kinetochores are required for accurate homolog separation in meiosis I. Our studies here highlight the importance of exploring fundamental processes in non-model systems, as employing novel organisms can lead to the discovery of novel biology.


Assuntos
Bombyx , Segregação de Cromossomos , Meiose , Mariposas , Espermatogênese , Animais , Segregação de Cromossomos/genética , Mariposas/genética , Mariposas/fisiologia , Masculino , Espermatogênese/genética , Meiose/genética , Bombyx/genética , Bombyx/fisiologia , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Microtúbulos/genética , Pareamento Cromossômico/genética , Cromossomos de Insetos/genética , Hibridização in Situ Fluorescente , Metáfase , Telômero/genética , Telômero/metabolismo , Cinética
3.
Methods Mol Biol ; 2825: 137-150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38913307

RESUMO

Chromosome banding can be defined as the lengthwise variation in staining properties along a chromosome stained with a dye. Chromosome banding became more practical in the early 1970s and is an essential technique used in karyotyping to identify human chromosomes for both clinical and research purposes. Most importantly, karyotyping is now considered a mandatory investigation of all newly diagnosed leukemias. Some banding methods, such as Giemsa (G)-, reverse (R)-, and centromere (C)-banding, still contribute greatly by being used as a routine procedure in clinical cytogenetic laboratory nowadays. Each chromosome has a unique sequence of bar code-like stripes, allowing the identification of individual homologues and the recognition of structural abnormalities through analyzing the disruption of the normal banding pattern at specific landmarks, regions, and bands as described in the ideogram. Since the quality of metaphases obtained from malignant cells is generally inferior to normal constitutional cells for karyotyping, a practical and accurate chromosome identification training guide is indispensable for a trainee or newly employed cytogenetic technologist in a cancer cytogenetic laboratory. The most common and currently used banding methods and chromosome recognition guide for distinguishable bands of each chromosome are described in detail in this chapter with an aim to facilitate quick and accurate karyotyping in cancer cells.


Assuntos
Bandeamento Cromossômico , Cariotipagem , Humanos , Cariotipagem/métodos , Cromossomos Humanos/genética , Metáfase
4.
Comput Biol Med ; 177: 108601, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38776728

RESUMO

Automated karyotyping is of great importance for cytogenetic research, as it speeds up the process for cytogeneticists through incorporating AI-driven automated segmentation and classification techniques. Existing frameworks confront two primary issues: Firstly the necessity for instance-level data annotation with either detection bounding boxes or semantic masks for training, and secondly, its poor robustness particularly when confronted with domain shifts. In this work, we first propose an accurate segmentation framework, namely KaryoXpert. This framework leverages the strengths of both morphology algorithms and deep learning models, allowing for efficient training that breaks the limit for the acquirement of manually labeled ground-truth mask annotations. Additionally, we present an accurate classification model based on metric learning, designed to overcome the challenges posed by inter-class similarity and batch effects. Our framework exhibits state-of-the-art performance with exceptional robustness in both chromosome segmentation and classification. The proposed KaryoXpert framework showcases its capacity for instance-level chromosome segmentation even in the absence of annotated data, offering novel insights into the research for automated chromosome segmentation. The proposed method has been successfully deployed to support clinical karyotype diagnosis.


Assuntos
Cariotipagem , Humanos , Cariotipagem/métodos , Metáfase , Algoritmos , Cromossomos Humanos/genética , Processamento de Imagem Assistida por Computador/métodos , Aprendizado Profundo
5.
J Biomed Opt ; 29(6): 065002, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38812963

RESUMO

Significance: Preparation of a recipient cytoplast by oocyte enucleation is an essential task for animal cloning and assisted reproductive technologies in humans. The femtosecond laser is a precise and low-invasive tool for oocyte enucleation, and it should be an appropriate alternative to traditional enucleation by a microneedle aspiration. However, until recently, the laser enucleation was performed only with applying a fluorescent dye. Aim: This work is aimed to (1) achieve femtosecond laser oocyte enucleation without applying a fluorescent dye and (2) to study the effect of laser destruction of chromosomes on the structure and dynamics of the spindle. Approach: We applied polarized light microscopy for spindle visualization and performed stain-free mouse and human oocyte enucleation with a 1033 nm femtosecond laser. Also, we studied transformation of a spindle after metaphase plate elimination by a confocal microscopy. Results: We demonstrated a fundamental possibility of inactivating the metaphase plate in mouse and human oocytes by 1033 nm femtosecond laser radiation without applying a fluorescent dye. Irradiation of the spindle area, visualized by polarized light microscopy, resulted in partly or complete metaphase plate destruction but avoided the microtubules impairment. After the metaphase plate elimination, the spindle reorganized, however, it was not a complete depolymerization. Conclusions: This method of recipient cytoplast preparation is expected to be useful for animal cloning and assisted reproductive technologies.


Assuntos
Oócitos , Animais , Camundongos , Oócitos/citologia , Humanos , Feminino , Lasers , Fuso Acromático , Microscopia Confocal/métodos , Metáfase , Microscopia de Polarização/métodos
6.
J Assist Reprod Genet ; 41(6): 1557-1567, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38573535

RESUMO

PURPOSE: Ovarian stimulation with gonadotropins is crucial for obtaining mature oocytes for in vitro fertilization (IVF). Determining the optimal gonadotropin dosage is essential for maximizing its effectiveness. Our study aimed to develop a machine learning (ML) model to predict oocyte counts in IVF patients and retrospectively analyze whether higher gonadotropin doses improve ovarian stimulation outcomes. METHODS: We analyzed the data from 9598 ovarian stimulations. An ML model was employed to predict the number of mature metaphase II (MII) oocytes based on clinical parameters. These predictions were compared with the actual counts of retrieved MII oocytes at different gonadotropin dosages. RESULTS: The ML model provided precise predictions of MII counts, with the AMH and AFC being the most important, and the previous stimulation outcome and age, the less important features for the prediction. Our findings revealed that increasing gonadotropin dosage did not result in a higher number of retrieved MII oocytes. Specifically, for patients predicted to produce 4-8 MII oocytes, a decline in oocyte count was observed as gonadotropin dosage increased. Patients with low (1-3) and high (9-12) MII predictions achieved the best results when administered a daily dose of 225 IU; lower and higher doses proved to be less effective. CONCLUSIONS: Our study suggests that high gonadotropin doses do not enhance MII oocyte retrieval. Our ML model can offer clinicians a novel tool for the precise prediction of MII to guide gonadotropin dosing.


Assuntos
Fertilização in vitro , Gonadotropinas , Recuperação de Oócitos , Oócitos , Indução da Ovulação , Humanos , Feminino , Indução da Ovulação/métodos , Recuperação de Oócitos/métodos , Adulto , Oócitos/efeitos dos fármacos , Oócitos/crescimento & desenvolvimento , Gonadotropinas/administração & dosagem , Gonadotropinas/uso terapêutico , Fertilização in vitro/métodos , Gravidez , Taxa de Gravidez , Estudos Retrospectivos , Metáfase/efeitos dos fármacos
7.
Development ; 151(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38639390

RESUMO

The planar orientation of cell division (OCD) is important for epithelial morphogenesis and homeostasis. Here, we ask how mechanics and antero-posterior (AP) patterning combine to influence the first divisions after gastrulation in the Drosophila embryonic epithelium. We analyse hundreds of cell divisions and show that stress anisotropy, notably from compressive forces, can reorient division directly in metaphase. Stress anisotropy influences the OCD by imposing metaphase cell elongation, despite mitotic rounding, and overrides interphase cell elongation. In strongly elongated cells, the mitotic spindle adapts its length to, and hence its orientation is constrained by, the cell long axis. Alongside mechanical cues, we find a tissue-wide bias of the mitotic spindle orientation towards AP-patterned planar polarised Myosin-II. This spindle bias is lost in an AP-patterning mutant. Thus, a patterning-induced mitotic spindle orientation bias overrides mechanical cues in mildly elongated cells, whereas in strongly elongated cells the spindle is constrained close to the high stress axis.


Assuntos
Divisão Celular , Polaridade Celular , Drosophila melanogaster , Células Epiteliais , Metáfase , Fuso Acromático , Estresse Mecânico , Animais , Metáfase/fisiologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Fuso Acromático/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/citologia , Polaridade Celular/fisiologia , Padronização Corporal , Miosina Tipo II/metabolismo , Embrião não Mamífero/citologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Gastrulação/fisiologia
8.
Cell Mol Life Sci ; 81(1): 168, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587639

RESUMO

Kinesin family member 3A (KIF3A) is a microtubule-oriented motor protein that belongs to the kinesin-2 family for regulating intracellular transport and microtubule movement. In this study, we characterized the critical roles of KIF3A during mouse oocyte meiosis. We found that KIF3A associated with microtubules during meiosis and depletion of KIF3A resulted in oocyte maturation defects. LC-MS data indicated that KIF3A associated with cell cycle regulation, cytoskeleton, mitochondrial function and intracellular transport-related molecules. Depletion of KIF3A activated the spindle assembly checkpoint, leading to metaphase I arrest of the first meiosis. In addition, KIF3A depletion caused aberrant spindle pole organization based on its association with KIFC1 to regulate expression and polar localization of NuMA and γ-tubulin; and KIF3A knockdown also reduced microtubule stability due to the altered microtubule deacetylation by histone deacetylase 6 (HDAC6). Exogenous Kif3a mRNA supplementation rescued the maturation defects caused by KIF3A depletion. Moreover, KIF3A was also essential for the distribution and function of mitochondria, Golgi apparatus and endoplasmic reticulum in oocytes. Conditional knockout of epithelial splicing regulatory protein 1 (ESRP1) disrupted the expression and localization of KIF3A in oocytes. Overall, our results suggest that KIF3A regulates cell cycle progression, spindle assembly and organelle distribution during mouse oocyte meiosis.


Assuntos
Cinesinas , Oócitos , Animais , Camundongos , Transporte Biológico , Cinesinas/genética , Meiose , Metáfase
9.
J Assist Reprod Genet ; 41(5): 1449-1458, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499932

RESUMO

PURPOSE: To analyze the fertilization, developmental, and pregnancy potentials in oocytes with narrow perivitelline space. METHODS: Perivitelline space (PVS) of oocytes was evaluated at the time of ICSI, and those without sufficient PVS were judged as oocytes with narrow PVS (NPVS oocytes), and those with sufficient PVS formation were judged as oocytes with non-narrow PVS (non-NPVS oocytes). The analysis included 634 NPVS oocytes from 278 cycles and 12,121 non-NPVS oocytes from 1698 cycles. The fertilization and developmental potentials of NPVS and non-NPVS oocytes were compared by calculating odds ratios using a mixed-effects logistic regression model. We also compared the embryo transfer outcomes of those used for single vitrified-warmed blastocyst transfer after developing into the blastocyst stage. RESULTS: NPVS oocytes had higher odds ratios for degeneration (adjusted odds ratio [aOR], 1.555; 95% confidence interval [CI], 1.096-2.206; p = 0.0133) and 0PN (aOR, 1.387; 95% CI, 1.083-1.775; p = 0.0095), resulting in a lower 2PN rate (aOR, 0.761; 95% CI, 0.623-0.929; p = 0.0072). Even embryos with confirmed 2PN had lower odds ratios for cleavage (aOR, 0.501; 95% CI, 0.294-0.853; p = 0.0109) and blastocyst development (Gardner criteria; CC-AA) rates (aOR, 0.612; 95% CI, 0.476-0.788; p = 0.0001). Blastocysts developed from NPVS oocytes had significantly lower odds ratios for clinical pregnancy (aOR, 0.435; 95% CI, 0.222-0.854; p = 0.0156) than those developed from non-NPVS oocytes. CONCLUSIONS: Oocytes with NPVS have low fertilization and developmental potential, as well as low likelihood of pregnancy.


Assuntos
Transferência Embrionária , Fertilização in vitro , Metáfase , Oócitos , Taxa de Gravidez , Injeções de Esperma Intracitoplásmicas , Humanos , Feminino , Gravidez , Oócitos/crescimento & desenvolvimento , Adulto , Transferência Embrionária/métodos , Injeções de Esperma Intracitoplásmicas/métodos , Fertilização in vitro/métodos , Blastocisto/citologia , Fertilização , Desenvolvimento Embrionário
10.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(3): 300-305, 2024 Mar 10.
Artigo em Chinês | MEDLINE | ID: mdl-38448018

RESUMO

OBJECTIVE: To train a deep convolutional neural networks (CNN) using a labeled data set to classify the metaphase chromosomes and test its accuracy for chromosomal identification. METHODS: Three thousand and three hundred individuals undergoing surveillance for chromosomal disorders at the Laboratory for Comprehensive Prevention and Treatment of Birth Defects, Ningbo Maternal and Child Health Care Hospital from January 2013 to July 2019 were enrolled. A total of 3 300×46 chromosome images were included, of which 70% were used as the training set and 30% were used as the test set for the deep CNN. The accuracy of chromosome counting and "cutting + recognition + arrangement + automatic analysis" of the model were respectively evaluated. Another 80 images were collected to record the time and accuracy of chromosome classification by geneticists and the model, respectively, so as to assess the practical value of the model. RESULTS: The CNN model was used to count the chromosomes with an accuracy of 61.81%, and the "cutting + recognition + arrangement + automatic analysis" accuracy of the model was 96.16%. Compared with manual operation, the classification time of the CNN model has been greatly reduced, and its karyotyping accuracy was only 3.58% lower than that of geneticists. CONCLUSION: The CNN model has a high performance for chromosome classification and can significantly reduce the work load involved with the segmentation and classification and improve the efficiency of chromosomal karyotyping, thereby has a broad application prospect.


Assuntos
Família , Redes Neurais de Computação , Criança , Humanos , Metáfase , Cariotipagem , Cromossomos
11.
Front Endocrinol (Lausanne) ; 15: 1280760, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469148

RESUMO

Background: This study was designed to explore the effects of flaxseed oil on the metaphase II (MII) oocyte rates in women with decreased ovarian reserve (DOR). Methods: The women with DOR were divided into a study group (n = 108, flaxseed oil treatment) and a control group (n = 110, no treatment). All patients were treated with assisted reproductive technology (ART). Subsequently, the ART stimulation cycle parameters, embryo transfer (ET) results, and clinical reproductive outcomes were recorded. The influencing factors affecting the MII oocyte rate were analyzed using univariate analysis and multivariate analysis. Results: Flaxseed oil reduced the recombinant human follicle-stimulating hormone (r-hFSH) dosage and stimulation time and increased the peak estradiol (E2) concentration in DOR women during ART treatment. The MII oocyte rate, fertilization rate, cleavage rate, high-quality embryo rate, and blastocyst formation rate were increased after flaxseed oil intervention. The embryo implantation rate of the study group was higher than that of the control group (p = 0.05). Additionally, the female age [odds ratio (OR): 0.609, 95% confidence interval (CI): 0.52-0.72, p < 0.01] was the hindering factor of MII oocyte rate, while anti-Müllerian hormone (AMH; OR: 100, 95% CI: 20.31-495, p < 0.01), peak E2 concentration (OR: 1.00, 95% CI: 1.00-1.00, p = 0.01), and the intake of flaxseed oil (OR: 2.51, 95% CI: 1.06-5.93, p = 0.04) were the promoting factors for MII oocyte rate. Conclusion: Flaxseed oil improved ovarian response and the quality of oocytes and embryos, thereby increasing the fertilization rate and high-quality embryo rate in DOR patients. The use of flaxseed oil was positively correlated with MII oocyte rate in women with DOR. Clinical trial number: https://www.chictr.org.cn/, identifier ChiCTR2300073785.


Assuntos
Óleo de Semente do Linho , Reserva Ovariana , Feminino , Humanos , Suplementos Nutricionais , Transferência Embrionária/métodos , Fertilização in vitro , Óleo de Semente do Linho/farmacologia , Metáfase , Oócitos
12.
Biomolecules ; 14(2)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38397472

RESUMO

P21-activated kinase 1 (PAK1) is a critical downstream target that mediates the effect of small Rho GTPase on the regulation of cytoskeletal kinetics, cell proliferation, and cell migration. PAK1 has been identified as a crucial regulator of spindle assembly during the first meiotic division; however, its roles during the metaphase I (MI) to metaphase II (MII) transition in oocytes remain unclear. In the present study, the potential function of PAK1 in regulating microtubule organization and spindle positioning during the MI-MII transition was addressed in porcine oocytes. The results showed that activated PAK1 was co-localized with α-tubulin, and its expression was increased from the MI to MII stage (p < 0.001). However, inhibiting PAK1 activity with an inhibitor targeting PAK1 activation-3 (IPA-3) at the MI stage decreased the first polar body (PB1) extrusion rate (p < 0.05), with most oocytes arrested at the anaphase-telophase (ATI) stage. IPA-3-treated oocytes displayed a decrease in actin distribution in the plasma membrane (p < 0.001) and an increase in the rate of defects in MII spindle reassembly with abnormal spindle positioning (p < 0.001). Nevertheless, these adverse effects of IPA-3 on oocytes were reversed when the disulfide bond between PAK1 and IPA-3 was reduced by dithiothreitol (DTT). Co-immunoprecipitation revealed that PAK1 could recruit activated Aurora A and transform acidic coiled-coil 3 (TACC3) to regulate spindle assembly and interact with LIM kinase 1 (LIMK1) to facilitate actin filament-mediated spindle migration. Together, PAK1 is essential for microtubule organization and spindle migration during the MI-MII transition in porcine oocytes, which is associated with the activity of p-Aurora A, p-TACC3 and p-LIMK1.


Assuntos
Fuso Acromático , Quinases Ativadas por p21 , Animais , Proteínas de Ciclo Celular/metabolismo , Metáfase , Microtúbulos/metabolismo , Oócitos/metabolismo , Quinases Ativadas por p21/metabolismo , Fuso Acromático/metabolismo , Suínos
13.
Methods Mol Biol ; 2740: 211-227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38393478

RESUMO

Whole-mount immunofluorescence allows direct visualization of the cellular architecture within cells. Here, we apply this technique to mouse oocytes to visualize spindle morphology and microtubule attachments to kinetochores, using a technique we call "cold treatment," at various phases of the meiotic cell cycle. This method allows the analysis of spindle structures at different meiosis I stages and at metaphase II. An adaptation of the protocol to the cell cycle stage of interest is described.


Assuntos
Meiose , Fuso Acromático , Animais , Camundongos , Fuso Acromático/metabolismo , Metáfase , Microtúbulos/metabolismo , Cinetocoros , Oócitos/metabolismo
14.
Methods Mol Biol ; 2740: 275-293, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38393482

RESUMO

In this chapter, we describe a software called MAARS (Mitotic Analysis And Recording System) that enables automatic and quantitative analysis of mitotic progression on an open-source platform. This computer-assisted analysis of cell division allows the unbiased acquisition of multiple parameters such as cell shape or size, metaphase or anaphase delays, as well as various mitotic abnormalities. This chapter describes the power of such an expert system to highlight the complexity of the mechanisms required to prevent mitotic chromosome segregation errors, leading to aneuploidy.


Assuntos
Mitose , Fuso Acromático , Metáfase , Anáfase , Segregação de Cromossomos , Software
15.
Reproduction ; 167(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401264

RESUMO

In brief: Optical coherence microscopy non-invasively visualizes metaphase II spindles allowing for quantitative analysis of their volume and shape, which may prove useful in the assessment of the oocyte quality. Using a mouse model, we showed also that analysis of spindle length combined with morphokinetics improves the evaluation of the resulting embryos. Abstract: The proper development of embryos strongly depends on the quality of oocytes, so the evaluation of oocytes may be a useful initial step in IVF procedures. Additionally, it enables embryologists to make more informed decisions regarding the treatments chosen for the patients and better manage patients' expectations. Optical coherence microscopy (OCM) allows for non-invasive 3D visualization of intracellular structures, such as spindles or nuclei, which have been linked to the success of embryonic development. Here, we applied a mouse model to examine whether OCM imaging could be used in the quality assessment of metaphase II (MII) oocytes. We showed that quantitative parameters describing the shape and volume of the MII spindle were associated with the quality of the resulting embryos, including the likelihood of blastocyst formation and the embryos' ability to differentiate the trophectoderm and primitive endoderm, but not the epiblast. We also created a multivariate linear regression model, combining OCM-based quantification of MII spindles with morphokinetic analysis of the embryos, that allowed for improved evaluation of the embryo quality. Finally, we proved that OCM does not interfere with the viability of the scanned cells, at least during the preimplantation development. Therefore, we believe that OCM-based quantitative assessment of MII spindles can improve the oocyte and embryo selection in IVF procedures.


Assuntos
Núcleo Celular , Oócitos , Feminino , Gravidez , Humanos , Metáfase , Embrião de Mamíferos
16.
EMBO Rep ; 25(4): 1909-1935, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38424231

RESUMO

Stabilization of microtubule plus end-directed kinesin CENP-E at the metaphase kinetochores is important for chromosome alignment, but its mechanism remains unclear. Here, we show that CKAP5, a conserved microtubule plus tip protein, regulates CENP-E at kinetochores in human cells. Depletion of CKAP5 impairs CENP-E localization at kinetochores at the metaphase plate and results in increased kinetochore-microtubule stability and attachment errors. Erroneous attachments are also supported by computational modeling. Analysis of CKAP5 knockout cancer cells of multiple tissue origins shows that CKAP5 is preferentially essential in aneuploid, chromosomally unstable cells, and the sensitivity to CKAP5 depletion is correlated to that of CENP-E depletion. CKAP5 depletion leads to reduction in CENP-E-BubR1 interaction and the interaction is rescued by TOG4-TOG5 domain of CKAP5. The same domain can rescue CKAP5 depletion-induced CENP-E removal from the kinetochores. Interestingly, CKAP5 depletion facilitates recruitment of PP1 to the kinetochores and furthermore, a PP1 target site-specific CENP-E phospho-mimicking mutant gets stabilized at kinetochores in the CKAP5-depleted cells. Together, the results support a model in which CKAP5 controls mitotic chromosome attachment errors by stabilizing CENP-E at kinetochores and by regulating stability of the kinetochore-attached microtubules.


Assuntos
Proteínas Cromossômicas não Histona , Cinetocoros , Humanos , Cinetocoros/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Microtúbulos/metabolismo , Metáfase , Cinesinas/genética , Células HeLa , Mitose , Segregação de Cromossomos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo
17.
Fertil Steril ; 121(6): 1031-1039, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38316207

RESUMO

OBJECTIVE: To report pregnancy and live birth resulting from intracytoplasmic sperm injection of ex vivo-retrieved mature oocytes from a woman with bilateral ovarian carcinoma. DESIGN: Case report. SETTING: Fertility clinic. PATIENT: A 34-year-old nulliparous woman with bilateral ovarian tumor, with a risk of malignancy of 96.1% according to International Ovarian Tumor Analysis Group recommendations for adnexal tumors, who desired fertility preservation before definitive surgical treatment. INTERVENTION(S): Cryopreservation of ex vivo-retrieved mature metaphase II oocytes is followed by fertilization with donor sperm and embryo transfer to a gestational carrier. MAIN OUTCOME MEASURE(S): Fertility preservation. RESULTS: After controlled ovarian stimulation, 12 metaphase II oocytes were retrieved from oophorectomized specimens and vitrified. Intracytoplasmic sperm injection with donor sperm was performed in remission, resulting in 9 cleavage-stage embryos, 2 of which were transferred to a gestational carrier, resulting in a normal, healthy singleton pregnancy, and the live birth of a healthy infant. CONCLUSION(S): Ex vivo oocyte retrieval after oophorectomy may be a safe alternative to standard oocyte retrieval for fertility preservation in women with ovarian malignancies.


Assuntos
Preservação da Fertilidade , Nascido Vivo , Metáfase , Recuperação de Oócitos , Neoplasias Ovarianas , Injeções de Esperma Intracitoplásmicas , Humanos , Feminino , Gravidez , Adulto , Preservação da Fertilidade/métodos , Neoplasias Ovarianas/cirurgia , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/diagnóstico , Criopreservação , Oócitos , Transferência Embrionária , Ovariectomia , Resultado do Tratamento
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 312: 124026, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38368817

RESUMO

Chromosomes are intranuclear structures, their main function is to store and transmit genetic information during cell division. They are composed of tightly packed DNA in the form of chromatin, which is constantly exposed to various damaging factors. The resulting changes in DNA can have serious consequences (e.g. mutations) if they are not repaired or repaired incorrectly. In this article, we studied chromosomes isolated from human cervical cancer cells (HeLa) exposed to a genotoxic drug causing both single- and double-strand breaks. Specifically, we used bleomycin to induce DNA damage. We followed morphological and chemical changes in chromosomes upon damage induction. Atomic force microscopy was used to visualize the morphology of chromosomes, while Raman microspectroscopy enabled the detection of changes in the chemical structure of chromatin with the resolution close to the diffraction limit. Additionally, we extracted spectra corresponding to chromosome I or chromatin from hyperspectral Raman maps with convolutional neural networks (CNN), which were further analysed with the principal component analysis (PCA) algorithm to reveal molecular markers of DNA damage in chromosomes. The applied multimodal approach revealed simultaneous morphological and molecular changes, including chromosomal aberrations, alterations in DNA conformation, methylation pattern, and increased protein expression upon the bleomycin treatment at the level of the single chromosome.


Assuntos
Bleomicina , Cromossomos , Humanos , Bleomicina/farmacologia , Metáfase , Cromatina , DNA
19.
Reprod Biomed Online ; 48(3): 103571, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244346

RESUMO

RESEARCH QUESTION: Are blastocysts derived from in-vitro-matured metaphase I (MI) oocytes less likely to produce usable embryos for transfer compared with those derived from in-vivo-matured oocytes in cycles undergoing preimplantation genetic testing (PGT)? DESIGN: The primary outcome was usable blastocyst rate, which was compared between blastocysts derived from in-vitro-matured MI oocytes after ovarian stimulation and from in-vivo-matured oocytes. Logistic regression analysis using generalized estimating equations was used to control for confounders in the analysis of factors that may influence the chance of a blastocyst being usable and in the comparison of embryological outcomes. Student's t-test, Mann-Whitney U test, chi-squared tests or Fisher's exact tests were used to compare clinical and pregnancy outcomes. RESULTS: A total of 1810 injected metaphase II (MII) oocytes from 154 PGT cycles involving 154 couples were included in this study. A total of 1577 MII oocytes were in-vivo-matured and 233 were in-vitro-matured MI oocytes. The usable blastocyst rate was similar between the in-vitro-matured MI oocyte group and the in-vivo-matured oocyte group (adjusted RR 0.97, 95% CI 0.40 to 2.34). Three live births were achieved using usable blastocysts derived from in-vitro-matured MI oocytes. CONCLUSIONS: If in-vitro-matured MI oocytes can be fertilized and develop into blastocysts, their ability to provide usable embryos for transfer is similar compared with those developed from in-vivo-matured oocytes. These blastocysts could be considered valuable for women with few viable embryos in assisted reproductive technology cycles.


Assuntos
Oócitos , Resultado da Gravidez , Gravidez , Humanos , Feminino , Metáfase , Oócitos/fisiologia , Testes Genéticos , Blastocisto/fisiologia
20.
Curr Biol ; 34(2): 352-360.e4, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38176417

RESUMO

Although Lepidopteran females build a synaptonemal complex (SC) in pachytene, homologs do not crossover, necessitating an alternative method of homolog conjunction. In Bombyx mori oocytes, the SC breaks down at the end of pachytene, and homolog associations are maintained by a large oocyte-specific structure, which we call the bivalent bridge (BB), connecting paired homologs. The BB is derived from at least some components of the SC lateral elements (LEs). It contains the HORMAD protein HOP1 and the LE protein SYCP2 and is formed by the fusion of the two LE derivatives. As diplotene progresses, the BB increases in width and acquires a layered structure with a thick band of HOP1 separating two layers of SYCP2. The HOP1 interacting protein, PCH2, joins the BB in mid-diplotene, and by late-diplotene, it lies in the middle of the HOP1 filament. This structure is maintained through metaphase I. SYCP2 and PCH2 are lost at anaphase I, and the BB no longer connects the separating homologs. However, a key component of the BB, HOP1, remains at the metaphase I plate. These changes in organization of the BB occur simultaneously with the movement of the kinetochore protein, DSN1, from within the BB at mid-diplotene to the edge of the homologs facing the poles by metaphase I. We view these data in context of models in which SC components and regulators can be repurposed to achieve different functions, a fascinating example of evolution achieving homolog conjunction in an alternative way with recycling of SC proteins.


Assuntos
Bombyx , Complexo Sinaptonêmico , Animais , Feminino , Meiose , Oócitos/metabolismo , Metáfase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...