Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protoplasma ; 258(6): 1323-1334, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34292402

RESUMO

The algae Micrasterias with its star-shaped cell pattern is a perfect unicellular model system to study morphogenesis. How the indentations are formed in the primary cell wall at exactly defined areas puzzled scientists for decades, and they searched for chemical differences in the primary wall of the extending tips compared to the resting indents. We now tackled the question by Raman imaging and scanned in situ Micrasterias cells at different stages of development. Thousands of Raman spectra were acquired from the mother cell and the developing semicell to calculate chemical images based on an algorithm finding the most different Raman spectra. Each of those spectra had characteristic Raman bands, which were assigned to molecular vibrations of BaSO4, proteins, lipids, starch, and plant cell wall carbohydrates. Visualizing the cell wall carbohydrates revealed a cell wall thickening at the indentations of the primary cell wall of the growing semicell and uniplanar orientation of the cellulose microfibrils to the cell surface in the secondary cell wall. Crystalline cellulose dominated in the secondary cell wall spectra, while in the primary cell wall spectra, also xyloglucan and pectin were reflected. Spectral differences between the indent and tip region of the primary cell wall were scarce, but a spectral mixing approach pointed to more cellulose fibrils deposited in the indent region. Therefore, we suggest that cell wall thickening together with a denser network of cellulose microfibrils stiffens the cell wall at the indent and induces different cell wall extensibility to shape the lobes.


Assuntos
Micrasterias , Parede Celular , Celulose , Morfogênese , Pectinas
2.
Protoplasma ; 258(6): 1335-1346, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34304308

RESUMO

Peat bog pools around Tamsweg (Lungau, Austria) are typical habitats of the unicellular green alga Micrasterias denticulata. By measurement of water temperature and irradiation throughout a 1-year period (2018/2019), it was intended to assess the natural environmental strain in winter. Freezing resistance of Micrasterias cells and their ability to frost harden and become tolerant to ice encasement were determined after natural hardening and exposure to a cold acclimation treatment that simulated the natural temperature decrease in autumn. Transmission electron microscopy (TEM) was performed in laboratory-cultivated cells, after artificial cold acclimation treatment and in cells collected from field. Throughout winter, the peat bog pools inhabited by Micrasterias remained unfrozen. Despite air temperature minima down to -17.3 °C, the water temperature was mostly close to +0.8 °C. The alga was unable to frost harden, and upon ice encasement, the cells showed successive frost damage. Despite an unchanged freezing stress tolerance, significant ultrastructural changes were observed in field-sampled cells and in response to the artificial cold acclimation treatment: organelles such as the endoplasmic reticulum and thylakoids of the chloroplast showed distinct membrane bloating. Still, in the field samples, the Golgi apparatus appeared in an impeccable condition, and multivesicular bodies were less frequently observed suggesting a lower overall stress strain. The observed ultrastructural changes in winter and after cold acclimation are interpreted as cytological adjustments to winter or a resting state but are not related to frost hardening as Micrasterias cells were unable to improve their freezing stress tolerance.


Assuntos
Clorófitas , Micrasterias , Temperatura Baixa , Ecossistema , Congelamento , Estações do Ano
3.
Harmful Algae ; 101: 101967, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526189

RESUMO

The proliferation of cyanobacteria Microcystis spp. and the invading green alga Micrasterias hardyi in Lake Biwa has been increasing. However, the available knowledge on the dietary utilization of these cyanobacterial and algal species by bivalves, which are key species in lake ecosystems, is limited. In this study, we examined the dietary quality and utilization of these species by freshwater bivalves of the Corbicula spp., which are important fishery resources, by performing feeding experiments and field investigations based on fatty acid profiles and stomach content analysis. Although a significant increase in the dry weight and condition factor of the Corbicula spp. individuals fed on diatom was observed at the end of the experiment, for the individuals fed on Microcystis aeruginosa or M. hardyi, a dry weight increase was not observed and their condition factor decreased. Moreover, the fatty acid profile of the Corbicula spp. individuals fed on M. aeruginosa or M. hardyi indicated that they did not assimilate these diets, even though filtration was confirmed during the experiments. However, the stomach contents of wild Corbicula spp. specimens, collected from six sampling sites in Lake Biwa on four sampling occasions, showed that Microcystis spp. were the most abundant dietary items in all sites and on all occasions. Moreover, M. hardyi was detected during the analysis of stomach contents; this alga was the third most abundant algal species. As shown in the feeding experiments, they do not contribute to bivalve growth, indicating that the high occupation of Microcystis spp. and M. hardyi in the consumer's stomach may inhibit effective carbon transfer. The expansion of these unsuitable dietary organisms may affect the stability of lake ecosystems.


Assuntos
Bivalves , Micrasterias , Microcystis , Animais , Ecossistema , Lagos
4.
PLoS One ; 15(11): e0242464, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33211752

RESUMO

In several marine hosts of microalgae, fluorescent natural products may play an important role. While the ecological function of these compounds is not well understood, an interaction of these molecules with the photosynthesis of the symbionts has been suggested. In this study, the effect of Ageladine A (Ag A), a pH-dependent fluorophore found in sponges of the genus Agelas, on microalgal fluorescence was examined. The spectra showed an accumulation of Ag A within the cells, but with variable impacts on fluorescence. While in two Synechococcus strains, fluorescence of phycoerythrin increased significantly, the fluorescence of other Synechococcus strains was not affected. In four out of the five eukaryote species examined, chlorophyll a (Chl a) fluorescence intensity was modulated. In Tisochrysis lutea, for example, the position of the fluorescence emission maximum of Chl a was shifted. The variety of these effects of Ag A on microalgal fluorescence suggests that fluorophores derived from animals could play a crucial role in shaping the composition of marine host/symbiont systems.


Assuntos
Agelas/química , Microalgas/efeitos dos fármacos , Pirróis/farmacologia , Simbiose , Animais , Clorofila A/química , Fluorescência , Micrasterias/efeitos dos fármacos , Micrasterias/metabolismo , Microalgas/metabolismo , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Ficobilissomas/química , Ficobilissomas/efeitos dos fármacos , Ficoeritrina/química , Pigmentos Biológicos/química , Pirróis/isolamento & purificação , Especificidade da Espécie , Espectrometria de Fluorescência , Synechococcus/efeitos dos fármacos , Synechococcus/metabolismo , Raios Ultravioleta
5.
Int J Mol Sci ; 21(22)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228190

RESUMO

Low temperature stress has a severe impact on the distribution, physiology, and survival of plants in their natural habitats. While numerous studies have focused on the physiological and molecular adjustments to low temperatures, this study provides evidence that cold induced physiological responses coincide with distinct ultrastructural alterations. Three plants from different evolutionary levels and habitats were investigated: The freshwater alga Micrasterias denticulata, the aquatic plant Lemna sp., and the nival plant Ranunculus glacialis. Ultrastructural alterations during low temperature stress were determined by the employment of 2-D transmission electron microscopy and 3-D reconstructions from focused ion beam-scanning electron microscopic series. With decreasing temperatures, increasing numbers of organelle contacts and particularly the fusion of mitochondria to 3-dimensional networks were observed. We assume that the increase or at least maintenance of respiration during low temperature stress is likely to be based on these mitochondrial interconnections. Moreover, it is shown that autophagy and degeneration processes accompany freezing stress in Lemna and R. glacialis. This might be an essential mechanism to recycle damaged cytoplasmic constituents to maintain the cellular metabolism during freezing stress.


Assuntos
Araceae/fisiologia , Autofagia/fisiologia , Cloroplastos/fisiologia , Micrasterias/fisiologia , Mitocôndrias/fisiologia , Ranunculus/fisiologia , Organismos Aquáticos , Araceae/ultraestrutura , Respiração Celular/fisiologia , Cloroplastos/ultraestrutura , Temperatura Baixa , Resposta ao Choque Frio , Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/ultraestrutura , Micrasterias/ultraestrutura , Microscopia Eletrônica de Transmissão , Mitocôndrias/ultraestrutura , Peroxissomos/fisiologia , Peroxissomos/ultraestrutura , Fotossíntese/fisiologia , Células Vegetais/fisiologia , Células Vegetais/ultraestrutura , Ranunculus/ultraestrutura
6.
J Plant Physiol ; 230: 80-91, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30195163

RESUMO

The unicellular model alga Micrasterias denticulata inhabits acid peat bogs that are highly endangered by pollutants due to their high humidity. As it was known from earlier studies that algae like Micrasterias are capable of storing barium naturally in form of BaSO4 crystals, it was interesting to experimentally investigate distribution and sequestration of barium and the chemically similar alkaline earth metal strontium. Additionally, we intended to analyze whether biomineralization by crystal formation contributes to diminution of the generally toxic effects of these minerals to physiology and structure of this alga which is closely related to higher plants. The results show that depending on the treatment differently shaped crystals are formed in BaCl2 and Cl2Sr exposed Micrasterias cells. Modern microscopic techniques such as analytical TEM by electron energy loss spectroscopy and Raman microscopy provide evidence for the chemical composition of these crystals. It is shown that barium treatment results in the formation of insoluble BaSO4 crystals that develop within distinct compartments. During strontium exposure long rod-like crystals are formed and are surrounded by membranes. Based on the Raman signature of these crystals their composition is attributed to strontium citrate. These crystals are instable and are dissolved during cell death. During strontium as well as barium treatment cell division rates and photosynthetic oxygen production decreased in dependence of the concentration, whereas cell vitality was reduced only slightly. Together with the fact that TEM analyses revealed only minor ultrastructural alterations as consequence of relatively high concentrated BaCl2 and Cl2Sr exposure, this indicates that biomineralization of Sr and Ba protects the cells from severe damage or cell death at least within a particular concentration range and time period. In the case of Sr treatment where ROS levels were found to be elevated, hallmarks for autophagy of single organelles were observed by TEM, indicating beginning degradation processes.


Assuntos
Bário/metabolismo , Biomineralização , Micrasterias/metabolismo , Estrôncio/metabolismo , Compostos de Bário/metabolismo , Divisão Celular , Cloretos/metabolismo , Cristalização , Micrasterias/ultraestrutura , Microscopia Eletrônica de Transmissão , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
BMC Evol Biol ; 17(1): 1, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28049419

RESUMO

BACKGROUND: Unicellular green algae of the genus Micrasterias (Desmidiales) have complex cells with multiple lobes and indentations, and therefore, they are considered model organisms for research on plant cell morphogenesis and variation. Micrasterias cells have a typical biradial symmetric arrangement and multiple terminal lobules. They are composed of two semicells that can be further differentiated into three structural components: the polar lobe and two lateral lobes. Experimental studies suggested that these cellular parts have specific evolutionary patterns and develop independently. In this study, different geometric morphometric methods were used to address whether the semicells of Micrasterias compereana are truly not integrated with regard to the covariation of their shape data. In addition, morphological integration within the semicells was studied to ascertain whether individual lobes constitute distinct units that may be considered as separate modules. In parallel, I sought to determine whether the main components of morphological asymmetry could highlight underlying cytomorphogenetic processes that could indicate preferred directions of variation, canalizing evolutionary changes in cellular morphology. RESULTS: Differentiation between opposite semicells constituted the most prominent subset of cellular asymmetry. The second important asymmetric pattern, recovered by the Procrustes ANOVA models, described differentiation between the adjacent lobules within the quadrants. Other asymmetric components proved to be relatively unimportant. Opposite semicells were shown to be completely independent of each other on the basis of the partial least squares analysis analyses. In addition, polar lobes were weakly integrated with adjacent lateral lobes. Conversely, higher covariance levels between the two lateral lobes of the same semicell indicated mutual interconnection and significant integration between these parts. CONCLUSIONS: Micrasterias cells are composed of several successively disintegrated parts. These integration patterns concurred with presumed scenarios of morphological evolution within the lineage. In addition, asymmetric differentiation in the shape of the lobules involves two major patterns: asymmetry across the isthmus axis and among the adjacent lobules. Notably, asymmetry among the adjacent lobules may be related to evolutionary differentiation among species, but it may also point out developmental instability related to environmental factors.


Assuntos
Micrasterias/anatomia & histologia , Evolução Biológica , Morfogênese
8.
J Plant Physiol ; 208: 115-127, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27936433

RESUMO

Autophagy is regarded as crucial intracellular process in plant development but also in intracellular stress response. It is known to be controlled by the energy level of the cell and consequently can be triggered by energy deprivation. In this study carbon starvation evoked in different ways was investigated in the freshwater algae model system Micrasterias denticulata (Streptophyta) which is closely related to higher plants. Cells exposed to the photosynthesis inhibiting herbicide DCMU, to the glycolysis inhibitor 2-Deoxy-d-glucose and to complete darkness over up to 9 weeks for preventing metabolism downstream of glucose supply, were investigated by means of Nile red staining and analyses in CLSM, and TEM after cryo-preparation. Our results show that lipid bodies containing both neutral and polar lipids are evenly distributed inside the chloroplast in control cells. During carbon starvation they are displaced into the cytoplasm and are either degraded via autophagy and/or excreted from the cell. Upon discharge from the chloroplast lipid bodies become engulfed by double membranes probably deriving from the ER, thus forming autophagosomes which later fuse with vacuoles. Coincidently indications for autophagy of other organelles and cytoplasmic portions were found during starvation and particularly in DCMU treated cells the number of starch grains decreased and pyrenoids disintegrated. Additionally our molecular data provide first evidence for the existence of a single ATG8 isoform in Micrasterias. ATG8 is known as main regulator of both bulk and selective autophagy in eucaryotes. Our study indicates that lipid degradation during carbon starvation is achieved via "classical" autophagy in the alga Micrasterias. This process has so far only been very rarely observed in plant cells and seems to allow recruitment of lipids for energy supply on the one hand and elimination of unusable or toxicated lipids on the other hand.


Assuntos
Autofagia , Carbono/metabolismo , Lipólise , Micrasterias/fisiologia , Cloroplastos/metabolismo , Escuridão , Diurona/farmacologia , Herbicidas/farmacologia , Metabolismo dos Lipídeos , Micrasterias/ultraestrutura , Fotossíntese , Espécies Reativas de Oxigênio/metabolismo , Vacúolos/metabolismo
9.
J Evol Biol ; 29(2): 292-305, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26528760

RESUMO

The surface area-to-volume ratio of cells is one of the key factors affecting fundamental biological processes and, thus, fitness of unicellular organisms. One of the general models for allometric increase in surface-to-volume scaling involves fractal-like elaboration of cellular surfaces. However, specific data illustrating this pattern in natural populations of the unicellular organisms have not previously been available. This study shows that unicellular green algae of the genus Micrasterias (Desmidiales) have positive allometric surface-to-volume scaling caused by changes in morphology of individual species, especially in the degree of cell lobulation. This allometric pattern was also detected within most of the cultured and natural populations analysed. Values of the allometric S:V scaling within individual populations were closely correlated to the phylogenetic structure of the clade. In addition, they were related to species-specific cellular morphology. Individual populations differed in their allometric patterns, and their position in the allometric space was strongly correlated with the degree of allometric S:V scaling. This result illustrates that allometric shape patterns are an important correlate of the capacity of individual populations to compensate for increases in their cell volumes by increasing the surface area. However, variation in allometric patterns was not associated with phylogenetic structure. This indicates that the position of the populations in the allometric space was not evolutionarily conserved and might be influenced by environmental factors.


Assuntos
Micrasterias/classificação , Micrasterias/citologia , Tamanho Celular , Micrasterias/genética , Filogenia , RNA Ribossômico 18S/genética , Análise de Regressão
10.
J Microsc ; 263(2): 129-41, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26708415

RESUMO

Stress-induced physiological deficiencies in cells are reflected in structural, morphological and functional reactions of organelles. Although numerous investigations have focused on chloroplasts and mitochondria as main targets of different stressors in plant cells, there is insufficient information on the plant Golgi apparatus as stress sensor. By using the advantages of field emission scanning electron microscopy tomography in combination with classical ultrathin sectioning and transmission electron microscopic analyses, we provide structural evidence for common stress responses of the large and highly stable dictyosomes in the algal model system Micrasterias. Stress is induced by different metals such as manganese and lead, by starvation in 9 weeks of darkness or by inhibiting photosynthesis or glycolysis and by disturbing ionic homeostasis via KCl. For the first time a stress-induced degradation pathway of dictyosomes is described that does not follow "classical" autophagy but occurs by disintegration of cisternae into single membrane balls that seem to be finally absorbed by the endoplasmic reticulum (ER). Comparison of the morphological features that accompany dictyosomal degradation in Micrasterias to similar reactions observed during the same stress application in Nitella indicates an ubiquitous degradation process at least in algae. As the algae investigated belong to the closest relatives of higher land plants these results may also be relevant for understanding dictyosomal stress and degradation responses in the latter phylogenetic group. In addition, this study shows that two-dimensional transmission electron microscopy is insufficient for elucidating complex processes such as organelle degradation, and that information from three-dimensional reconstructions as provided by field emission scanning electron microscopy tomography is absolutely required for a comprehensive understanding of the phenomenon.


Assuntos
Complexo de Golgi/metabolismo , Micrasterias/citologia , Micrasterias/ultraestrutura , Retículo Endoplasmático/metabolismo , Imageamento Tridimensional , Micrasterias/metabolismo , Microscopia Eletrônica , Filogenia , Tomografia Computadorizada por Raios X
11.
J Eukaryot Microbiol ; 61(5): 509-19, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24961475

RESUMO

Freshwater green microalgae are diverse and widely distributed across the globe, yet the population structuring of these organisms is poorly understood. We assessed the degree of genetic diversity and differentiation of the desmid species, Micrasterias rotata. First, we compared the sequences of four nuclear regions (actin, gapC1, gapC2, and oee1) in 25 strains and selected the gapC1 and actin regions as the most appropriate markers for population structure assessment in this species. Population genetic structure was subsequently analyzed, based on seven populations from the Czech Republic and Ireland. Hudson's Snn statistics indicated that nearest-neighbor sequences occurred significantly more frequently within geographical populations than within the wider panmictic population. Moreover, Irish populations consistently showed higher genetic diversity than the Czech samples. These results are in accordance with the unbalanced distribution of alleles in many land plant species; however, the large genetic diversity in M. rotata differs from levels of genetic diversity found in most land plants.


Assuntos
Núcleo Celular/genética , DNA de Plantas/genética , Marcadores Genéticos , Micrasterias/genética , Biodiversidade , Micrasterias/classificação , Dados de Sequência Molecular , Filogenia
12.
PLoS One ; 9(1): e86247, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465986

RESUMO

It is now clear that whole genome duplications have occurred in all eukaryotic evolutionary lineages, and that the vast majority of flowering plants have experienced polyploidisation in their evolutionary history. However, study of genome size variation in microalgae lags behind that of higher plants and seaweeds. In this study, we have addressed the question whether microalgal phylogeny is associated with DNA content variation in order to evaluate the evolutionary significance of polyploidy in the model genus Micrasterias. We applied flow-cytometric techniques of DNA quantification to microalgae and mapped the estimated DNA content along the phylogenetic tree. Correlations between DNA content and cell morphometric parameters were also tested using geometric morphometrics. In total, DNA content was successfully determined for 34 strains of the genus Micrasterias. The estimated absolute 2C nuclear DNA amount ranged from 2.1 to 64.7 pg; intraspecific variation being 17.4-30.7 pg in M. truncata and 32.0-64.7 pg in M. rotata. There were significant differences between DNA contents of related species. We found strong correlation between the absolute nuclear DNA content and chromosome numbers and significant positive correlation between the DNA content and both cell size and number of terminal lobes. Moreover, the results showed the importance of cell/life cycle studies for interpretation of DNA content measurements in microalgae.


Assuntos
Variações do Número de Cópias de DNA/genética , DNA de Plantas/genética , Tamanho do Genoma/genética , Genoma de Planta/genética , Micrasterias/genética , Estreptófitas/genética , Evolução Biológica , Cromossomos de Plantas/genética , Microalgas/genética , Filogenia
13.
J Plant Physiol ; 171(2): 154-63, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24331431

RESUMO

Recent studies have shown that metals such as copper, zinc, aluminum, cadmium, chromium, iron and lead cause severe dose-dependent disturbances in growth, morphogenesis, photosynthetic and respiratory activity as well as on ultrastructure and function of organelles in the algal model system Micrasterias denticulata (Volland et al., 2011, 2012; Andosch et al., 2012). In the present investigation we focus on amelioration of these adverse effects of cadmium, chromium and lead by supplying the cells with different antioxidants and essential micronutrients to obtain insight into metal uptake mechanisms and subcellular metal targets. This seems particularly interesting as Micrasterias is adapted to extremely low-concentrated, oligotrophic conditions in its natural bog environment. The divalent ions of iron, zinc and calcium were able to diminish the effects of the metals cadmium, chromium and lead on Micrasterias. Iron showed most ameliorating effects on cadmium and chromium in short- and long-term treatments and improved cell morphogenesis, ultrastructure, cell division rates and photosynthesis. Analytical transmission electron microscopic (TEM) methods (electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI)) revealed that chromium uptake was decreased when Micrasterias cells were pre-treated with iron, which resulted in no longer detectable intracellular chromium accumulations. Zinc rescued the detrimental effects of chromium on net-photosynthesis, respiration rates and electron transport in PS II. Calcium and gadolinium were able to almost completely compensate the inhibiting effects of lead and cadmium on cell morphogenesis after mitosis, respectively. These results indicate that cadmium is taken up by calcium and iron transporters, whereas chromium appears to enter the algae cells via iron and zinc carriers. It was shown that lead is not taken up into Micrasterias at all but exerts its adverse effects on cell growth by substituting cell wall bound calcium. The antioxidants salicylic acid, ascorbic acid and glutathione were not able to ameliorate any of the investigated metal effects on the green alga Micrasterias when added to the culture medium.


Assuntos
Proteínas de Algas/fisiologia , Antioxidantes/fisiologia , Proteínas de Transporte de Cátions/fisiologia , Metais Pesados/metabolismo , Micrasterias/metabolismo , Ácido Ascórbico , Evolução Biológica , Glutationa , Micrasterias/ultraestrutura , Ácido Salicílico
14.
J Struct Biol ; 184(2): 203-11, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24135121

RESUMO

In the present study we employ FIB/SEM tomography for analyzing 3-D architecture of dictyosomes and formation of multivesicular bodies (MVB) in high pressure frozen and cryo-substituted interphase cells of the green algal model system Micrasterias denticulata. The ability of FIB/SEM of milling very thin 'slices' (5-10 nm), viewing the block face and of capturing cytoplasmic volumes of several hundred µm(3) provides new insight into the close spatial connection of the ER-Golgi machinery in an algal cell particularly in z-direction, complementary to informations obtained by TEM serial sectioning or electron tomography. Our FIB/SEM series and 3-D reconstructions show that interphase dictyosomes of Micrasterias are not only closely associated to an ER system at their cis-side which is common in various plant cells, but are surrounded by a huge "trans-ER" sheath leading to an almost complete enwrapping of dictyosomes by the ER. This is particularly interesting as the presence of a trans-dictyosomal ER system is well known from mammalian secretory cells but not from cells of higher plants to which the alga Micrasterias is closely related. In contrast to findings in plant storage tissue indicating that MVBs originate from the trans-Golgi network or its derivatives our investigations show that MVBs in Micrasterias are in direct spatial contact with both, trans-Golgi cisternae and the trans-ER sheath which provides evidence that both endomembrane compartments are involved in their formation.


Assuntos
Micrasterias/ultraestrutura , Corpos Multivesiculares/ultraestrutura , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Retículo Endoplasmático/ultraestrutura , Imageamento Tridimensional , Microscopia Eletrônica de Varredura , Modelos Biológicos
15.
Chemosphere ; 91(4): 448-54, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23266414

RESUMO

Aquatic environments like peat bogs are affected by anthropogenic metal input into the environment. These ecosystems are inhabited by unicellular green algae of the class Zygnematophyceae. In this study the desmid Micrasterias denticulata was stressed with 600 nM Cd, 10 µM Cr and 300 nM Cu for 3 weeks. GSH levels were measured with HPLC and did not differ between the different treatments or the control. According to the metallo-thiolomics concept, mass spectrometry was used as a method for unambiguous thiol peptide identification. PC2, PC3 and PC4 were clearly identified in the Cd stressed sample with UPLC-MS by their MS spectrum and molecular masses. PC2 and PC3 were determined to be the main thiol compounds, while PC4 was only abundant in traces in Micrasterias. In addition, the identity of PC2 and PC3 was confirmed by MS/MS. No PCs were detected in the Cu stressed algae sample. However, in the Cr stressed sample traces of PC2 were indicated by a peak in UPLC-MS at the retention time of the PC2 standard, but the intensity was too low to acquire reliable MS and MS/MS spectra. In this study PCs have been detected for the first time in a green alga of the division Streptophyta, a close relative to higher plants.


Assuntos
Cádmio/toxicidade , Micrasterias/efeitos dos fármacos , Fitoquelatinas/metabolismo , Poluentes Químicos da Água/toxicidade , Glutationa/metabolismo , Micrasterias/fisiologia
16.
J Plant Physiol ; 169(15): 1489-500, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22762790

RESUMO

Cadmium is a highly toxic heavy metal pollutant arising mainly from increasing industrial disposal of electronic components. Due to its high solubility it easily enters soil and aquatic environments. Via its similarity to calcium it may interfere with different kinds of Ca dependent metabolic or developmental processes in biological systems. In the present study we investigate primary cell physiological, morphological and ultrastructural responses of Cd on the unicellular freshwater green alga Micrasterias which has served as a cell biological model system since many years and has proved to be highly sensitive to any kind of abiotic stress. Our results provide evidence that the severe Cd effects in Micrasterias such as unidirectional disintegration of dictyosomes, occurrence of autophagy, decline in photosystem II activity and oxygen production as well as marked structural damage of the chloroplast are based on a disturbance of Ca homeostasis probably by displacement of Ca by Cd. This is indicated by the fact that physiological and structural cadmium effects could be prevented in Micrasterias by pre-treatment with Ca. Additionally, thapsigargin an inhibitor of animal and plant Ca(2+)-ATPase mimicked the adverse Cd induced morphological and functional effects on dictyosomes. Recovery experiments indicated rapid repair mechanisms after Cd stress.


Assuntos
Cádmio/metabolismo , Cádmio/toxicidade , Cálcio/farmacologia , Cloroplastos/ultraestrutura , Micrasterias/fisiologia , Micrasterias/ultraestrutura , Fotossíntese/fisiologia , Adaptação Fisiológica , Água Doce , Modelos Biológicos , Estresse Fisiológico
17.
Aquat Toxicol ; 109: 59-69, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22204989

RESUMO

Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essential anions, while the cation Cr III seems to be taken up inactively. Micrasterias denticulata, an unicellular green alga of the family Desmidiaceae is a well-studied cell biological model organism. Cr III and VI had inhibiting effects on its cell development, while cell division rates were only impaired by Cr VI. Transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization, condensed cytoplasm and dark precipitations in the cell wall after 3 weeks of Cr VI treatment. Electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) were applied to measure intracellular chromium distribution. Chromium was only detected after 3 weeks of 10 µM Cr VI treatment in electron dense precipitations found in bag-like structures along the inner side of the cell walls together with iron and elevated levels of oxygen, pointing toward an accumulation respectively extrusion of chromium in form of an iron-oxygen compound. Atomic emission spectroscopy (EMS) revealed that Micrasterias cells are able to accumulate considerable amounts of chromium and iron. During chromium treatment the Cr:Fe ratio shifted in favor of chromium, which implied that chromium may be taken up instead of iron. Significant and rapid increase of ROS production within the first 5 min of treatment confirms an active Cr VI uptake. SOD and CAT activity after Cr VI treatment did not show a response, while the glutathione pool determined by immuno-TEM decreased significantly in chromium treated cells, showing that glutathione is playing a major role in intracellular ROS and chromium detoxification.


Assuntos
Cromo/metabolismo , Cromo/toxicidade , Micrasterias/efeitos dos fármacos , Micrasterias/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Micrasterias/enzimologia , Microscopia Eletrônica de Transmissão , Microscopia Eletrônica de Transmissão por Filtração de Energia , Oxirredutases/metabolismo , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio/análise , Espectroscopia de Perda de Energia de Elétrons
18.
BMC Plant Biol ; 11: 128, 2011 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-21943227

RESUMO

BACKGROUND: Streptophyte green algae share several characteristics of cell growth and cell wall formation with their relatives, the embryophytic land plants. The multilobed cell wall of Micrasterias denticulata that rebuilds symmetrically after cell division and consists of pectin and cellulose, makes this unicellular streptophyte alga an interesting model system to study the molecular controls on cell shape and cell wall formation in green plants. RESULTS: Genome-wide transcript expression profiling of synchronously growing cells identified 107 genes of which the expression correlated with the growth phase. Four transcripts showed high similarity to expansins that had not been examined previously in green algae. Phylogenetic analysis suggests that these genes are most closely related to the plant EXPANSIN A family, although their domain organization is very divergent. A GFP-tagged version of the expansin-resembling protein MdEXP2 localized to the cell wall and in Golgi-derived vesicles. Overexpression phenotypes ranged from lobe elongation to loss of growth polarity and planarity. These results indicate that MdEXP2 can alter the cell wall structure and, thus, might have a function related to that of land plant expansins during cell morphogenesis. CONCLUSIONS: Our study demonstrates the potential of M. denticulata as a unicellular model system, in which cell growth mechanisms have been discovered similar to those in land plants. Additionally, evidence is provided that the evolutionary origins of many cell wall components and regulatory genes in embryophytes precede the colonization of land.


Assuntos
Perfilação da Expressão Gênica , Micrasterias/citologia , Micrasterias/crescimento & desenvolvimento , Micrasterias/genética , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Parede Celular/metabolismo , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , RNA de Plantas/genética , Análise de Sequência de DNA
19.
Mol Phylogenet Evol ; 61(3): 933-43, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21911067

RESUMO

Micrasterias, the name of which is derived from the Greek for 'little star', comprises possibly the most spectacularly shaped desmids (Desmidiales, Streptophyta). Presently, the genus Micrasterias includes about 60 traditional species, the majority of which were described in the early 19th century. We used a comprehensive multigene dataset (including SSU rDNA, psaA, and coxIII loci) of 34 Micrasterias taxa to assess the relationships between individual morphological species. The resulting phylogeny was used to assess the patterns characterizing the morphological evolution of this genus. The phylogenetic analysis led to the recognition of eight well-resolved lineages that could be characterized by selected morphological features. Apart from the members of Micrasterias, three species belonged to different traditional desmid genera (Cosmarium, Staurodesmus, and Triploceras) and were inferred to be nested within the genus. Morphological comparisons of these species with their relatives revealed an accelerated rate of morphological evolution. Mapping morphological diversification of the genus on the phylogenetic tree revealed profound differences in the phylogenetic signal of selected phenotypic features. Whereas the branching pattern of the cells clearly correlated with the phylogeny, cell complexity possibly reflected rather their adaptive morphological responses to environmental conditions. Finally, ancestral reconstruction of distribution patterns indicated potential origin of the genus in North America, with additional speciation events occurring in the Indo-Malaysian region.


Assuntos
Loci Gênicos/genética , Micrasterias/anatomia & histologia , Micrasterias/genética , Filogenia , Teorema de Bayes , DNA Ribossômico/genética , Bases de Dados Genéticas , Modelos Genéticos , Filogeografia , Subunidades Ribossômicas Menores/genética
20.
Anal Chem ; 82(21): 8757-65, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20839782

RESUMO

Advanced analytical capabilities of synchrotron IR spectromicroscopy meet the demands of modern biological research for studying molecular reactions in individual living cells. (To listen to a podcast about this article, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html.).


Assuntos
Microscopia/instrumentação , Espectrofotometria Infravermelho/instrumentação , Síncrotrons/instrumentação , Bactérias/química , Bactérias/citologia , Chlamydomonas/química , Chlamydomonas/citologia , Desenho de Equipamento , Ligação de Hidrogênio , Micrasterias/química , Micrasterias/citologia , Técnicas Analíticas Microfluídicas/instrumentação , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...