Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.284
Filtrar
1.
Environ Microbiol Rep ; 16(5): e70015, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39356147

RESUMO

Bacterial infections often involve more than one pathogen. While it is well established that polymicrobial infections can impact disease outcomes, we know little about how pathogens interact and affect each other's behaviour and fitness. Here, we used a microscopy approach to explore interactions between Pseudomonas aeruginosa and six human opportunistic pathogens that often co-occur in polymicrobial infections: Acinetobacter baumannii, Burkholderia cenocepacia, Escherichia coli, Enterococcus faecium, Klebsiella pneumoniae, and Staphylococcus aureus. When following growing microcolonies on agarose pads over time, we observed a broad spectrum of species-specific ecological interactions, ranging from mutualism to antagonism. For example, P. aeruginosa engaged in a mutually beneficial interaction with E. faecium but suffered from antagonism by E. coli. While we found little evidence for active directional growth towards or away from cohabitants, we observed that some pathogens increased growth in double layers in response to competition and that physical forces due to fast colony expansion had a major impact on fitness. Overall, our work provides an atlas of pathogen interactions, highlighting the diversity of potential species dynamics that may occur in polymicrobial infections. We discuss possible mechanisms driving pathogen interactions and offer predictions of how the different ecological interactions could affect virulence.


Assuntos
Interações Microbianas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/genética , Humanos , Simbiose , Antibiose , Klebsiella pneumoniae/crescimento & desenvolvimento , Klebsiella pneumoniae/fisiologia , Klebsiella pneumoniae/patogenicidade , Staphylococcus aureus/fisiologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/genética , Enterococcus faecium/fisiologia , Enterococcus faecium/crescimento & desenvolvimento , Escherichia coli/fisiologia , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/genética , Coinfecção/microbiologia , Acinetobacter baumannii/fisiologia , Acinetobacter baumannii/crescimento & desenvolvimento , Infecções Oportunistas/microbiologia , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/fisiologia , Burkholderia cenocepacia/crescimento & desenvolvimento
2.
NPJ Biofilms Microbiomes ; 10(1): 99, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358363

RESUMO

The gut microbiome plays a major role in human health; however, little is known about the structural arrangement of microbes and factors governing their distribution. In this work, we present an in silico agent-based model (ABM) to conceptually simulate the dynamics of gut mucosal bacterial communities. We explored how various types of metabolic interactions, including competition, neutralism, commensalism, and mutualism, affect community structure, through nutrient consumption and metabolite exchange. Results showed that, across scenarios with different initial species abundances, cross-feeding promotes species coexistence. Morphologically, competition and neutralism resulted in segregation, while mutualism and commensalism fostered high intermixing. In addition, cooperative relations resulted in community properties with little sensitivity to the selective uptake of metabolites produced by the host. Moreover, metabolic interactions strongly influenced colonization success following the invasion of newcomer species. These results provide important insights into the utility of ABM in deciphering complex microbiome patterns.


Assuntos
Bactérias , Biofilmes , Microbioma Gastrointestinal , Interações Microbianas , Biofilmes/crescimento & desenvolvimento , Humanos , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Simulação por Computador , Simbiose , Modelos Biológicos , Fenômenos Fisiológicos Bacterianos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo
3.
Ecol Lett ; 27(9): e14507, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39354904

RESUMO

The ability for microbes to enter dormant states is adaptive under resource fluctuations and has been linked to the maintenance of diversity. Nevertheless, the mechanism by which microbial dormancy gives rise to the density-dependent feedbacks required for stable coexistence under resource fluctuations is not well understood. Via analysis of consumer-resource models, we show that the stable coexistence of dormancy and non-dormancy strategists is a consequence of the former benefiting more from resource fluctuations while simultaneously reducing overall resource variability, which sets up the requisite negative frequency dependence. Moreover, we find that dormants can coexist alongside gleaner and opportunist strategies in a competitive-exclusion-defying case of three species coexistence on a single resource. This multi-species coexistence is typically characterised by non-simple assembly rules that cannot be predicted from pairwise competition outcomes. The diversity maintained via this three-way trade-off represents a novel phenomenon that is ripe for further theoretical and empirical inquiry.


Assuntos
Modelos Biológicos , Ecossistema , Interações Microbianas , Biodiversidade
4.
Science ; 385(6714): eaab2661, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39265021

RESUMO

Lipids comprise a significant fraction of sinking organic matter in the ocean and play a crucial role in the carbon cycle. Despite this, our understanding of the processes that control lipid degradation is limited. We combined nanolipidomics and imaging to study the bacterial degradation of diverse algal lipid droplets and found that bacteria isolated from marine particles exhibited distinct dietary preferences, ranging from selective to promiscuous degraders. Dietary preference was associated with a distinct set of lipid degradation genes rather than with taxonomic origin. Using synthetic communities composed of isolates with distinct dietary preferences, we showed that lipid degradation is modulated by microbial interactions. A particle export model incorporating these dynamics indicates that metabolic specialization and community dynamics may influence lipid transport efficiency in the ocean's mesopelagic zone.


Assuntos
Bactérias , Metabolismo dos Lipídeos , Oceanos e Mares , Fitoplâncton , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Gotículas Lipídicas/metabolismo , Interações Microbianas , Microbiota , Água do Mar/microbiologia , Água do Mar/química , Fitoplâncton/metabolismo
5.
BMC Microbiol ; 24(1): 322, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237861

RESUMO

BACKGROUND: A previous study highlighted the role of antibiotic-induced dysbiosis in the tick microbiota, facilitating the transstadial transmission of Babesia microti from nymph to adult in Haemaphysalis longicornis. This study builds on previous findings by analyzing sequence data from an earlier study to investigate bacterial interactions that could be linked to enhanced transstadial transmission of Babesia in ticks. The study employed antibiotic-treated (AT) and control-treated (CT) Haemaphysalis longicornis ticks to investigate shifts in microbial community assembly. Network analysis techniques were utilized to assess bacterial interactions, comparing network centrality measures between AT and CT groups, alongside studying network robustness and connectivity loss. Additionally, functional profiling was conducted to evaluate metabolic diversity in response to antibiotic treatment. RESULTS: The analysis revealed notable changes in microbial community assembly in response to antibiotic treatment. Antibiotic-treated (AT) ticks displayed a greater number of connected nodes but fewer correlations compared to control-treated (CT) ticks, indicating a less interactive yet more connected microbial community. Network centrality measures such as degree, betweenness, closeness, and eigenvector centrality, differed significantly between AT and CT groups, suggesting alterations in local network dynamics due to antibiotic intervention. Coxiella and Acinetobacter exhibited disrupted connectivity and roles, with the former showing reduced interactions in AT group and the latter displaying a loss of connected nodes, emphasizing their crucial roles in microbial network stability. Robustness tests against node removal showed decreased stability in AT networks, particularly under directed attacks, confirming a susceptibility of the microbial community to disturbances. Functional profile analysis further indicated a higher diversity and richness in metabolic capabilities in the AT group, reflecting potential shifts in microbial metabolism as a consequence of antimicrobial treatment. CONCLUSIONS: Our findings support that bacterial interaction traits boosting the transstadial transmission of Babesia could be associated with reduced colonization resistance. The disrupted microbial interactions and decreased network robustness in AT ticks suggest critical vulnerabilities that could be targeted for managing tick-borne diseases.


Assuntos
Antibacterianos , Bactérias , Ixodidae , Microbiota , Animais , Antibacterianos/farmacologia , Ixodidae/microbiologia , Ixodidae/efeitos dos fármacos , Ixodidae/parasitologia , Microbiota/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação , Babesia/efeitos dos fármacos , Babesia/genética , Interações Microbianas/efeitos dos fármacos , Babesiose/parasitologia , Babesiose/transmissão , Babesiose/tratamento farmacológico , Babesia microti/efeitos dos fármacos , Babesia microti/genética , Haemaphysalis longicornis
6.
Microbiology (Reading) ; 170(9)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39297874

RESUMO

Model microbial communities are regularly used to test ecological and evolutionary theory as they are easy to manipulate and have fast generation times, allowing for large-scale, high-throughput experiments. A key assumption for most model microbial communities is that they stably coexist, but this is rarely tested experimentally. Here we report the (dis)assembly of a five-species microbial community from a metacommunity of soil microbes that can be used for future experiments. Using reciprocal invasion-from-rare experiments we show that all species can coexist and we demonstrate that the community is stable for a long time (~600 generations). Crucially for future work, we show that each species can be identified by their plate morphologies, even after >1 year in co-culture. We characterise pairwise species interactions and produce high-quality reference genomes for each species. This stable five-species community can be used to test key questions in microbial ecology and evolution.


Assuntos
Bactérias , Microbiota , Microbiologia do Solo , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Ecologia , Evolução Biológica , Interações Microbianas
7.
Environ Microbiol Rep ; 16(5): e70012, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39313864

RESUMO

Chemical compounds that affect microbial interactions have attracted wide interest. In this study, Streptomyces griseus showed enhanced growth when cocultured with the rice blast fungus Pyricularia oryzae on potato dextrose agar (PDA) medium. An improvement in S. griseus growth was observed before contact with P. oryzae, and no growth-promoting effect was observed when the growth medium between the two microorganisms was separated. These results suggested that the chemicals produced by P. oryzae diffused through the medium and were not volatile. A PDA plate supplemented with phenol red showed that the pH of the area surrounding P. oryzae increased. The area with increased pH promoted S. griseus growth, suggesting that the alkaline compounds produced by P. oryzae were involved in this growth stimulation. In contrast, coculture with the soilborne plant pathogen Fusarium oxysporum and entomopathogenic fungus Cordyceps tenuipes did not promote S. griseus growth. Furthermore, DL-α-Difluoromethylornithine, a polyamine biosynthesis inhibitor, prevented the increase in pH and growth promotion of S. griseus by P. oryzae. These results indicated that P. oryzae increased pH by producing a polyamine.


Assuntos
Meios de Cultura , Fusarium , Streptomyces griseus , Streptomyces griseus/crescimento & desenvolvimento , Streptomyces griseus/metabolismo , Concentração de Íons de Hidrogênio , Meios de Cultura/química , Meios de Cultura/metabolismo , Fusarium/crescimento & desenvolvimento , Fusarium/efeitos dos fármacos , Fusarium/metabolismo , Interações Microbianas , Técnicas de Cocultura , Oryza/microbiologia , Oryza/crescimento & desenvolvimento , Planococáceas/crescimento & desenvolvimento , Planococáceas/metabolismo , Planococáceas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Ascomicetos
8.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-39236233

RESUMO

Soil microbial communities host a large number of microbial species that support important ecological functions such as biogeochemical cycling and plant nutrition. The extent and stability of these functions are affected by inter-species interactions among soil microorganisms, yet the different mechanisms underpinning microbial interactions in the soil are not fully understood. Here, we study the extent of nutrient-based interactions among two model, plant-supporting soil microorganisms, the fungi Serendipita indica, and the bacteria Bacillus subtilis. We found that S. indica is unable to grow with nitrate - a common nitrogen source in the soil - but this inability could be rescued, and growth restored in the presence of B. subtilis. We demonstrate that this effect is due to B. subtilis utilising nitrate and releasing ammonia, which can be used by S. indica. We refer to this type of mechanism as ammonia mediated nitrogen sharing (N-sharing). Using a mathematical model, we demonstrated that the pH dependent equilibrium between ammonia (NH3) and ammonium (NH+4) results in an inherent cellular leakiness, and that reduced amonnium uptake or assimilation rates could result in higher levels of leaked ammonia. In line with this model, a mutant B. subtilis - devoid of ammonia uptake - showed higher S. indica growth support in nitrate media. These findings highlight that ammonia based N-sharing can be a previously under-appreciated mechanism underpinning interaction among soil microorganisms and could be influenced by microbial or abiotic alteration of pH in microenvironments.


Assuntos
Amônia , Bacillus subtilis , Nitratos , Nitrogênio , Microbiologia do Solo , Amônia/metabolismo , Nitrogênio/metabolismo , Nitratos/metabolismo , Bacillus subtilis/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/genética , Solo/química , Interações Microbianas , Concentração de Íons de Hidrogênio , Compostos de Amônio/metabolismo
9.
Proc Natl Acad Sci U S A ; 121(39): e2403510121, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39288179

RESUMO

Multispecies microbial communities drive most ecosystems on Earth. Chemical and biological interactions within these communities can affect the survival of individual members and the entire community. However, the prohibitively high number of possible interactions within a microbial community has made the characterization of factors that influence community development challenging. Here, we report a Microbial Community Interaction (µCI) device to advance the systematic study of chemical and biological interactions within a microbial community. The µCI creates a combinatorial landscape made up of an array of triangular wells interconnected with circular wells, which each contains either a different chemical or microbial strain, generating chemical gradients and revealing biological interactions. Bacillus cereus UW85 containing green fluorescent protein provided the "target" readout in the triangular wells, and antibiotics or microorganisms in adjacent circular wells are designated the "variables." The µCI device revealed that gentamicin and vancomycin are antagonistic to each other in inhibiting the target B. cereus UW85, displaying weaker inhibitory activity when used in combination than alone. We identified three-member communities constructed with isolates from the plant rhizosphere that increased or decreased the growth of B. cereus. The µCI device enables both strain-level and community-level insight. The scalable geometric design of the µCI device enables experiments with high combinatorial efficiency, thereby providing a simple, scalable platform for systematic interrogation of three-factor interactions that influence microorganisms in solitary or community life.


Assuntos
Bacillus cereus , Interações Microbianas/fisiologia , Microbiota/fisiologia , Antibacterianos/farmacologia , Vancomicina/farmacologia , Rizosfera , Gentamicinas/farmacologia , Dispositivos Lab-On-A-Chip , Proteínas de Fluorescência Verde/metabolismo
10.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-39244747

RESUMO

Microbial chemoautotroph-heterotroph interactions may play a pivotal role in the cycling of carbon in the deep ocean, reminiscent of phytoplankton-heterotroph associations in surface waters. Nitrifiers are the most abundant chemoautotrophs in the global ocean, yet very little is known about nitrifier metabolite production, release, and transfer to heterotrophic microbial communities. To elucidate which organic compounds are released by nitrifiers and potentially available to heterotrophs, we characterized the exo- and endometabolomes of the ammonia-oxidizing archaeon Nitrosopumilus adriaticus CCS1 and the nitrite-oxidizing bacterium Nitrospina gracilis Nb-211. Nitrifier endometabolome composition was not a good predictor of exometabolite availability, indicating that metabolites were predominately released by mechanisms other than cell death/lysis. Although both nitrifiers released labile organic compounds, N. adriaticus preferentially released amino acids, particularly glycine, suggesting that its cell membranes might be more permeable to small, hydrophobic amino acids. We further initiated co-culture systems between each nitrifier and a heterotrophic alphaproteobacterium, and compared exometabolite and transcript patterns of nitrifiers grown axenically to those in co-culture. In particular, B vitamins exhibited dynamic production and consumption patterns in nitrifier-heterotroph co-cultures. We observed an increased production of vitamin B2 and the vitamin B12 lower ligand dimethylbenzimidazole by N. adriaticus and N. gracilis, respectively. In contrast, the heterotroph likely produced vitamin B5 in co-culture with both nitrifiers and consumed the vitamin B7 precursor dethiobiotin when grown with N. gracilis. Our results indicate that B vitamins and their precursors could play a particularly important role in governing specific metabolic interactions between nitrifiers and heterotrophic microbes in the ocean.


Assuntos
Nitrificação , Água do Mar , Água do Mar/microbiologia , Oceanos e Mares , Nitritos/metabolismo , Processos Heterotróficos , Interações Microbianas , Metaboloma , Técnicas de Cocultura , Amônia/metabolismo
11.
NPJ Biofilms Microbiomes ; 10(1): 91, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39341797

RESUMO

Biofilms in nature often exist as communities. In this study, an experimental mixed-species community consisting of Pseudomonas aeruginosa, Pseudomonas protegens and Klebsiella pneumoniae was used to investigate how AI-2 transporters affect interspecies interactions and composition. The K. pneumoniae lsrB/lsrD deletion mutants had a 10-25-fold higher concentration of extracellular AI-2 compared to the wild-type. Although these deletion mutants produced monospecies biofilms of similar biomass, the substitution of these mutants for the parental strain significantly altered composition. Dual-species biofilm assays demonstrated that the changes in composition were due to the cumulative effect of pairwise interactions. It was further revealed that K. pneumoniae being present physically in the consortium was important in AI-2 mediating composition in the consortium, and that AI-2 transporters were crucial in achieving maximum biomass in the community. In conclusion, these findings demonstrate that AI-2 transporters mediate interspecies interactions and is important in maintaining the compositional equilibrium of the community.


Assuntos
Proteínas de Bactérias , Biofilmes , Klebsiella pneumoniae , Pseudomonas aeruginosa , Biofilmes/crescimento & desenvolvimento , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Interações Microbianas , Homosserina/análogos & derivados , Homosserina/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Deleção de Genes , Biomassa , Lactonas
12.
Nat Commun ; 15(1): 8166, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289365

RESUMO

Microbial communities exhibit intricate interactions underpinned by metabolic dependencies. To elucidate these dependencies, we present a workflow utilizing random matrix theory on metagenome-assembled genomes to construct co-occurrence and metabolic complementarity networks. We apply this approach to a temperature gradient hot spring, unraveling the interplay between thermal stress and metabolic cooperation. Our analysis reveals an increase in the frequency of metabolic interactions with rising temperatures. Amino acids, coenzyme A derivatives, and carbohydrates emerge as key exchange metabolites, forming the foundation for syntrophic dependencies, in which commensalistic interactions take a greater proportion than mutualistic ones. These metabolic exchanges are most prevalent between phylogenetically distant species, especially archaea-bacteria collaborations, as a crucial adaptation to harsh environments. Furthermore, we identify a significant positive correlation between basal metabolite exchange and genome size disparity, potentially signifying a means for streamlined genomes to leverage cooperation with metabolically richer partners. This phenomenon is also confirmed by another composting system which has a similar wide range of temperature fluctuations. Our workflow provides a feasible way to decipher the metabolic complementarity mechanisms underlying microbial interactions, and our findings suggested environmental stress regulates the cooperative strategies of thermophiles, while these dependencies have been potentially hardwired into their genomes during co-evolutions.


Assuntos
Archaea , Bactérias , Redes e Vias Metabólicas , Metagenoma , Microbiota , Redes e Vias Metabólicas/genética , Archaea/genética , Archaea/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Metagenoma/genética , Fontes Termais/microbiologia , Filogenia , Interações Microbianas , Temperatura Alta
13.
Cell Syst ; 15(9): 787-789, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39299216

RESUMO

Understanding microbial interactions in native habitats has been difficult given the complexity of such environments. Using state-of-the-art microfluidics to examine >100,000 cultures of algae and bacteria across hundreds of media conditions, a study published in this issue of Cell Systems1 found that environmental pH and buffering capacity are critical modulators of phototroph-heterotroph interactions.


Assuntos
Bactérias , Concentração de Íons de Hidrogênio , Bactérias/metabolismo , Soluções Tampão , Interações Microbianas/fisiologia
14.
Cell Syst ; 15(9): 838-853.e13, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39236710

RESUMO

Interactions between photosynthetic and heterotrophic microbes play a key role in global primary production. Understanding phototroph-heterotroph interactions remains challenging because these microbes reside in chemically complex environments. Here, we leverage a massively parallel droplet microfluidic platform that enables us to interrogate interactions between photosynthetic algae and heterotrophic bacteria in >100,000 communities across ∼525 environmental conditions with varying pH, carbon availability, and phosphorus availability. By developing a statistical framework to dissect interactions in this complex dataset, we reveal that the dependence of algae-bacteria interactions on nutrient availability is strongly modulated by pH and buffering capacity. Furthermore, we show that the chemical identity of the available organic carbon source controls how pH, buffering capacity, and nutrient availability modulate algae-bacteria interactions. Our study reveals the previously underappreciated role of pH in modulating phototroph-heterotroph interactions and provides a framework for thinking about interactions between phototrophs and heterotrophs in more natural contexts.


Assuntos
Fotossíntese , Bactérias/metabolismo , Carbono/metabolismo , Concentração de Íons de Hidrogênio , Processos Heterotróficos/fisiologia , Fósforo/metabolismo , Interações Microbianas/fisiologia
15.
Biotechnol Adv ; 76: 108420, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39128577

RESUMO

Microorganisms co-exist and co-evolve in nature, forming intricate ecological communities. The interspecies cross-talk within these communities creates and sustains their great biosynthetic potential, making them an important source of natural medicines and high-value-added chemicals. However, conventional investigations into microbial metabolites are typically carried out in pure cultures, resulting in the absence of specific activating factors and consequently causing a substantial number of biosynthetic gene clusters to remain silent. This, in turn, hampers the in-depth exploration of microbial biosynthetic potential and frequently presents researchers with the challenge of rediscovering compounds. In response to this challenge, the coculture strategy has emerged to explore microbial biosynthetic capabilities and has shed light on the study of cross-talk mechanisms. These elucidated mechanisms will contribute to a better understanding of complex biosynthetic regulations and offer valuable insights to guide the mining of secondary metabolites. This review summarizes the research advances in microbial cross-talk mechanisms, with a particular focus on the mechanisms that activate the biosynthesis of secondary metabolites. Additionally, the instructive value of these mechanisms for developing strategies to activate biosynthetic pathways is discussed. Moreover, challenges and recommendations for conducting in-depth studies on the cross-talk mechanisms are presented.


Assuntos
Metabolismo Secundário , Vias Biossintéticas/genética , Bactérias/metabolismo , Bactérias/genética , Interações Microbianas , Família Multigênica
16.
J Microbiol Methods ; 225: 107027, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39214401

RESUMO

There is interest in studying microbes that colonize maize silks (style tissue, critical for reproduction) including the fungal pathogen Fusarium graminearum (Fg) and its interactions with the microbiome and biocontrol agents. In planta imaging of these interactions on living silks using confocal fluorescence microscopy would provide key insights. However, newly discovered microbes have unknown effects on human health, and there are regulatory requirements to prevent the release of fluorescently tagged microbes into the environment. Therefore, the microbe infection, colonization, and interaction stages on silks prior to microscopy must be contained. At the same time, silk viability must be maintained and experiments conducted that are biologically relevant (e.g. silks should remain attached to the cob), yet the silk tissue must be accessible to the researcher (i.e. not within husk leaves) and allow for multiple replicates. Here we present methods that meet these five contrasting criteria. We tested these methods using Fg and four silk-derived bacterial endophytes. The endophytes were previously known to have anti-Fg activity in vitro, but in planta observations were lacking. In Method 1, a portion of the tip of a cob was dissected, and silks remained attached to the cob in a Petri dish. The cob was placed on a water agar disc to maintain hydration. DsRed-tagged bacteria and GFP-tagged Fg were inoculated onto the silks and incubated, allowing the two microbes to grow towards one another before staining with propidium iodide for confocal microscopy. A variation of the protocol was presented in Method 2, where detached silk segments were placed directly on water agar where they were inoculated with bacteria and Fg to promote dense colonization, and to allow for many replicates and interventions such as silk wounding. The bacterial endophytes were successfully observed colonizing Fg hyphae, silk trichomes, and entering silks via cut ends and wounds. These protocols can be used to study other silk-associated microbes including several globally important fungal pathogens that enter maize grain through silks.


Assuntos
Fusarium , Microscopia de Fluorescência , Zea mays , Fusarium/patogenicidade , Zea mays/microbiologia , Microscopia de Fluorescência/métodos , Microbiota , Interações Microbianas , Endófitos/metabolismo , Microscopia Confocal/métodos , Doenças das Plantas/microbiologia , Bactérias/genética
17.
Bioprocess Biosyst Eng ; 47(11): 1833-1848, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39180547

RESUMO

To explore the impact of microbial interactions on outcomes from three prevalent algorithms (Flux Balance Analysis (FBA), community FBA (cFBA), and SteadyCom) analyzing microbial community metabolic networks, five toy community models representing common microbial interactions were designed. These include commensalism, mutualism, competition, mutualism-competition, and commensalism-competition. Various scenarios, considering different biomass yields and substrate constraints, were examined for each type. In commensal communities, all algorithms consistently produced similar results. However, changes in biomass yields and substrate constraints led to variable abundances (0.33-0.8) and community growth rates (2-5 1/h) within a broad range. For competitive communities, all algorithms predicted growth of fastest-growing member. To comply with the natural coexistence of members, suboptimal solutions over optimal point are recommended. FBA faced challenges in modeling mutualism, consistently predicting growth of only one member. Although cFBA and SteadyCom resulted in a lower community growth rate, coexistence of both members were satisfied. In toy models with dual interactions, more realistic outcomes were achieved contrary to purely competitive model as the dependency fosters the coexistence which was missing in the competitive only scenarios. These findings emphasize the importance of algorithm choice based on specific microbial interaction types for reliable community behavior predictions.​.


Assuntos
Algoritmos , Modelos Biológicos , Interações Microbianas , Biomassa
18.
BMC Microbiol ; 24(1): 302, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39134973

RESUMO

BACKGROUND: Compost-bedded pack barns (CBP) are getting huge attention as an alternative housing system for dairy cows due to their beneficial impact on animal welfare. Effective microorganisms (EM) inoculums are believed to enhance compost quality, improve soil structure and benefit the environment. However, little information is available on the impact of incubation with external EM combinations on the barn environment, compost quality and microbial diversity in CBP. This experiment was carried out to investigate the effect of inoculating different combinations of EM [Lactobacillus plantarum (L), Compound Bacillus (B) and Saccharomyces cerevisiae (S)] on compost quality and microbial communities of CBP products, as well as the relationship with the heifers' barn environment. CBP barns were subjected to the following four treatments: CON with no EM inoculum, LB/LS/LBS were Incubated with weight ratios of 1:2 (L: B), 1:2 (L: S), 1:1:1 (L: B: S), respectively. RESULTS: The EM inoculation (LB, LS, LBS) reduced the concentration of respirable particulate matter (PM10 and PM2.5) in the CBP, and decreased the serum total protein and total cholesterol levels in heifers. Notably, LBS achieved the highest content of high-density lipoprotein compared to other treatments. Microbiome results revealed that EM inoculation reduced the bacterial abundance (Chao1 index) and fungal diversity (Shannon & Simpson indexes), while increasing the relative abundance of various bacterial genera (Pseudomonas, Paracoccus, Aequorivita) and fungi (Pestalotiopsis), which are associated with cellulose decomposition that ultimately resulted in accelerating organic matter degradation and humification. Furthermore, high nutrient elements (TK&TP) and low mycotoxin content were obtained with EM inoculation, with LBS showing a particularly pronounced effect. Meanwhile, LBS contributed to a decline in the proportion of fungal pathogen categories but also led to an increase in fungal saprotroph categories. CONCLUSION: Generally, EM inoculation positively impacted compost product quality as organic fertilizer and barn environment by modifying the abundance of cellulolytic bacteria and fungi, while inhibiting the reproduction of pathogenic microbes, especially co-supplementing with L, B and S achieved an amplifying effect.


Assuntos
Bactérias , Compostagem , Fungos , Animais , Bovinos , Compostagem/métodos , Fungos/classificação , Bactérias/classificação , Bactérias/isolamento & purificação , Abrigo para Animais , Interações Microbianas , Feminino , Microbiologia do Solo , Microbiota
19.
mBio ; 15(9): e0095624, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39105585

RESUMO

Chronic polymicrobial infections involving Pseudomonas aeruginosa and Staphylococcus aureus are prevalent, difficult to eradicate, and associated with poor health outcomes. Therefore, understanding interactions between these pathogens is important to inform improved treatment development. We previously demonstrated that P. aeruginosa is attracted to S. aureus using type IV pili (TFP)-mediated chemotaxis, but the impact of attraction on S. aureus growth and physiology remained unknown. Using live single-cell confocal imaging to visualize microcolony structure, spatial organization, and survival of S. aureus during coculture, we found that interspecies chemotaxis provides P. aeruginosa a competitive advantage by promoting invasion into and disruption of S. aureus microcolonies. This behavior renders S. aureus susceptible to P. aeruginosa antimicrobials. Conversely, in the absence of TFP motility, P. aeruginosa cells exhibit reduced invasion of S. aureus colonies. Instead, P. aeruginosa builds a cellular barrier adjacent to S. aureus and secretes diffusible, bacteriostatic antimicrobials like 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) into the S. aureus colonies. Reduced invasion leads to the formation of denser and thicker S. aureus colonies with increased HQNO-mediated lactic acid fermentation, a physiological change that could complicate treatment strategies. Finally, we show that P. aeruginosa motility modifications of spatial structure enhance competition against S. aureus. Overall, these studies expand our understanding of how P. aeruginosa TFP-mediated interspecies chemotaxis facilitates polymicrobial interactions, highlighting the importance of spatial positioning in mixed-species communities. IMPORTANCE: The polymicrobial nature of many chronic infections makes their eradication challenging. Particularly, coisolation of Pseudomonas aeruginosa and Staphylococcus aureus from airways of people with cystic fibrosis and chronic wound infections is common and associated with severe clinical outcomes. The complex interplay between these pathogens is not fully understood, highlighting the need for continued research to improve management of chronic infections. Our study unveils that P. aeruginosa is attracted to S. aureus, invades into neighboring colonies, and secretes anti-staphylococcal factors into the interior of the colony. Upon inhibition of P. aeruginosa motility and thus invasion, S. aureus colony architecture changes dramatically, whereby S. aureus is protected from P. aeruginosa antagonism and responds through physiological alterations that may further hamper treatment. These studies reinforce accumulating evidence that spatial structuring can dictate community resilience and reveal that motility and chemotaxis are critical drivers of interspecies competition.


Assuntos
Quimiotaxia , Pseudomonas aeruginosa , Staphylococcus aureus , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Staphylococcus aureus/efeitos dos fármacos , Interações Microbianas , Antibiose , Antibacterianos/farmacologia , Humanos , Infecções Estafilocócicas/microbiologia , Técnicas de Cocultura , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/fisiologia , Hidroxiquinolinas
20.
Microb Pathog ; 195: 106866, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39159773

RESUMO

Hospital associated infections or healthcare associated infections (HAIs) are a major threat to healthcare and medical management, mostly because of their recalcitrant nature. The primary cause of these HAIs is bacterial associations, especially the interspecies interactions. In interspecies interactions, more than one species co-exists in a common platform of extracellular polymeric substances (EPS), establishing a strong interspecies crosstalk and thereby lead to the formation of mixed species biofilms. In this process, the internal microenvironment and the surrounding EPS matrix of the biofilms ensure the protection of the microorganisms and allow them to survive under antagonistic conditions. The communications between the biofilm members as well as the interactions between the bacterial cells and the matrix polymers, also aid in the rigidity of the biofilm structure and allow the microorganisms to evade both the host immune response and a wide range of anti-microbials. Therefore, to design a treatment protocol for HAIs is difficult and it has become a growing point of concern. This review therefore first aims to discuss the role of microenvironment, molecular structure, cell-cell communication, and metabolism of mixed species biofilms in manifestation of HAIs. In addition, we discuss the electrochemical properties of mixed-species biofilms and their mechanism in developing drug resistance. Then we focus on the most dreaded bacterial HAI including oral and gut multi-species infections, catheter-associated urinary tract infections, surgical site infections, and ventilator-associated pneumonia. Further, we highlight the challenges to eradication of the mixed species biofilms and the current and prospective future strategies for the treatment of mixed species-associated HAI. Together, the review presents a comprehensive understanding of mixed species biofilm-mediated infections in clinical scenario, and summarizes the current challenge and prospect of therapeutic strategies against HAI.


Assuntos
Biofilmes , Infecção Hospitalar , Biofilmes/crescimento & desenvolvimento , Humanos , Infecção Hospitalar/microbiologia , Bactérias/classificação , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Interações Microbianas , Matriz Extracelular de Substâncias Poliméricas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA