Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38.678
Filtrar
1.
Curr Protoc ; 4(7): e1094, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38966883

RESUMO

Short tandem repeat (STR) expansions are associated with more than 60 genetic disorders. The size and stability of these expansions correlate with the severity and age of onset of the disease. Therefore, being able to accurately detect the absolute length of STRs is important. Current diagnostic assays include laborious lab experiments, including repeat-primed PCR and Southern blotting, that still cannot precisely determine the exact length of very long repeat expansions. Optical genome mapping (OGM) is a cost-effective and easy-to-use alternative to traditional cytogenetic techniques and allows the comprehensive detection of chromosomal aberrations and structural variants >500 bp in length, including insertions, deletions, duplications, inversions, translocations, and copy number variants. Here, we provide methodological guidance for preparing samples and performing OGM as well as running the analysis pipelines and using the specific repeat expansion workflows to determine the exact repeat length of repeat expansions expanded beyond 500 bp. Together these protocols provide all details needed to analyze the length and stability of any repeat expansion with an expected repeat size difference from the expected wild-type allele of >500 bp. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Genomic ultra-high-molecular-weight DNA isolation, labeling, and staining Basic Protocol 2: Data generation and genome mapping using the Bionano Saphyr® System Basic Protocol 3: Manual De Novo Assembly workflow Basic Protocol 4: Local guided assembly workflow Basic Protocol 5: EnFocus Fragile X workflow Basic Protocol 6: Molecule distance script workflow.


Assuntos
Mapeamento Cromossômico , Humanos , Mapeamento Cromossômico/métodos , Expansão das Repetições de DNA/genética , Repetições de Microssatélites/genética , DNA/genética
2.
Sci Rep ; 14(1): 15509, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969683

RESUMO

Polyploidization plays an important role in plant evolution and biodiversity. However, intraspecific polyploidy compared to interspecific polyploidy received less attention. Clintonia udensis (Liliaceae) possess diploid (2n = 2x = 14) and autotetraploid (2n = 4x = 28) cytotypes. In the Hualongshan Mountains, the autotetraploids grew on the northern slope, while the diploids grew on the southern slopes. The clonal growth characteristics and clonal architecture were measured and analyzed by field observations and morphological methods. The diversity level and differentiation patterns for two different cytotypes were investigated using SSR markers. The results showed that the clonal growth parameters, such as the bud numbers of each rhizome node and the ratio of rhizome branches in the autotetraploids were higher than those in the diploids. Both the diploids and autotetraploids appeared phalanx clonal architectures with short internodes between ramets. However, the ramets or genets of the diploids had a relatively scattered distribution, while those of the autotetraploids were relatively clumping. The diploids and autotetraploids all allocated more biomass to their vegetative growth. The diploids had a higher allocation to reproductive organs than that of autotetraploids, which indicated that the tetraploids invested more resources in clonal reproduction than diploids. The clone diversity and genetic diversity of the autotetraploids were higher than that of the diploids. Significant genetic differentiation between two different cytotypes was observed (P < 0.01). During establishment and evolution, C. udensis autotetraploids employed more clumping phalanx clonal architecture and exhibited more genetic variation than the diploids.


Assuntos
Diploide , Variação Genética , Tetraploidia , China , Biodiversidade , Repetições de Microssatélites/genética
3.
BMC Ecol Evol ; 24(1): 87, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951779

RESUMO

Widespread species often experience significant environmental clines over the area they naturally occupy. We investigated a widespread livebearing fish, the Sailfin molly (Poecilia latipinna) combining genetic, life-history, and environmental data, asking how structured populations are. Sailfin mollies can be found in coastal freshwater and brackish habitats from roughly Tampico, Veracruz in Mexico to Wilmington, North Carolina, in the USA. In addition, they are found inland on the Florida peninsula. Using microsatellite DNA, we genotyped 168 individuals from 18 populations covering most of the natural range of the Sailfin molly. We further determined standard life-history parameters for both males and females for these populations. Finally, we measured biotic and abiotic parameters in the field. We found six distinct genetic clusters based on microsatellite data, with very strong indication of isolation by distance. However, we also found significant numbers of migrants between adjacent populations. Despite genetic structuring we did not find evidence of cryptic speciation. The genetic clusters and the migration patterns do not match paleodrainages. Life histories vary between populations but not in a way that is easy to interpret. We suggest a role of humans in migration in the sailfin molly, for example in the form of a ship channel that connects southern Texas with Louisiana which might be a conduit for fish migration.


Assuntos
Repetições de Microssatélites , Poecilia , Animais , Poecilia/genética , Repetições de Microssatélites/genética , Masculino , Feminino , Fenótipo , Variação Genética/genética , Ecossistema , Características de História de Vida
4.
Parasit Vectors ; 17(1): 301, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992704

RESUMO

BACKGROUND: Soft ticks of the genus Ornithodoros are responsible for the maintenance and transmission of the African swine fever (ASF) virus in the sylvatic and domestic viral cycles in Southern Africa. They are also the main vectors of the Borrelia species causing relapsing fevers. Currently, no genetic markers are available for Afrotropical Ornithodoros ticks. As ASF spreads globally, such markers are needed to assess the role of ticks in the emergence of new outbreaks. The aim of this study is to design microsatellite markers that could be used for ticks of the Ornithodoros moubata complex, particularly Ornithodoros phacochoerus, to assess population structure and tick movements in ASF endemic areas. METHODS: A total of 151 markers were designed using the O. moubata and O. porcinus genomes after elimination of repeated sequences in the genomes. All designed markers were tested on O. phacochoerus and O. porcinus DNA to select the best markers. RESULTS: A total of 24 microsatellite markers were genotyped on two populations of O. phacochoerus and on individuals from four other Ornithodoros species. Nineteen markers were selected to be as robust as possible for population genetic studies on O. phacochoerus. CONCLUSIONS: The microsatellite markers developed here represent the first genetic tool to study nidicolous populations of O. phacochoerus.


Assuntos
Repetições de Microssatélites , Ornithodoros , Repetições de Microssatélites/genética , Animais , Ornithodoros/genética , Ornithodoros/microbiologia , Genótipo , Febre Suína Africana/virologia
5.
Sci Rep ; 14(1): 16169, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003391

RESUMO

Populations in isolated and small fragments lose genetic variability very fast and are usually of conservation concern because they are at greater risk of local extinction. The largest native deer in South America, Blastocerus dichotomus (Illiger, 1815), is a Vulnerable species according to the IUCN categorization, which inhabits tropical and subtropical swampy areas. In Argentina, its presence has been restricted to four isolated fragments. Here we examine the genetic diversity and differentiation among three of them, including the three different patches that form the southernmost population, using 18 microsatellite markers genotyped by Amplicon Sequencing of DNA extracted from fecal samples. Genetic diversity was low (HE < 0.45) in all three populations studied. We found three genetic clusters compatible with the geographic location of the samples. We also found a metapopulation dynamics that involves the patches that make up the southernmost population, with evidence of a barrier to gene flow between two of them. Our results point to the creation of a corridor as a necessary and urgent management action. This is the first study, at the population level, employing microsatellite genotyping by Amplicon Sequencing with non-invasive samples in an endangered species.


Assuntos
Cervos , Fezes , Variação Genética , Repetições de Microssatélites , Animais , Cervos/genética , Repetições de Microssatélites/genética , Argentina , Genótipo , Espécies em Perigo de Extinção , Genética Populacional , Fluxo Gênico
6.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(7): 853-857, 2024 Jul 10.
Artigo em Chinês | MEDLINE | ID: mdl-38946372

RESUMO

OBJECTIVE: To analyze a Chinese pedigree with a recombination occurring between the HLA-A/C loci in both parents. METHODS: A patient who was planning to undergo hematopoietic stem cell transplantation due to "aplastic anemia" in February 2022 was selected as the study subject. Peripheral blood samples were collected from the patient, his parents and brother. HLA-A/C/B/DRB1/DQB1 high-resolution typing was carried out by using sequence-based typing and sequence-specific oligonucleotides. The recombination was identified by pedigree analysis. The HLA haplotype of each individual was identified by genealogical analysis. The parentage possibility was determined by short tandem repeat analysis. HLA-A/C/B/DRB1/DRB345/DQA1/DQB1/DPA1/DPB1 were determined with next-generation high-throughput sequence-based typing. The recombination sites were analyzed by family study. RESULTS: The high parentage possibilities of the family was confirmed by short tandem repeat analysis. Recombination was found between the HLA-A*24:02 A*33:03/C*14:03 in the paternally transmitted haplotype, whilst HLA-A*01:01 A*03:01/C*08:02 was found in the maternally transmitted haplotype, which had resulted in two novel HLA haplotypes in the proband. CONCLUSION: A rare case with simultaneous recombination of the paternal and maternal HLA-A/C loci has been discovered, which may facilitate further study of the mechanisms of the HLA recombination.


Assuntos
Povo Asiático , Antígenos HLA-A , Haplótipos , Linhagem , Recombinação Genética , Adulto , Feminino , Humanos , Masculino , Povo Asiático/genética , População do Leste Asiático , Teste de Histocompatibilidade , Antígenos HLA-A/genética , Antígenos HLA-C/genética , Repetições de Microssatélites , Pais
7.
Sci Data ; 11(1): 748, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982074

RESUMO

The broad mite, Polyphagotarsonemus latus (Tarsonemidae: Acari) is a highly polyphagous species that damage plant species spread across 57 different families. This pest has developed high levels of resistance to some commonly used acaricides. In the present investigation, we deciphered the genome information of P. latus by PacBio HiFi sequencing. P. latus is the third smallest arthropod genome sequenced so far with a size of 49.1 Mb. The entire genome was assembled into two contigs. A set of 9,286 protein-coding genes were annotated. Its compact genome size could be credited with multiple features such as very low repeat content (5.1%) due to the lack of proliferation of transposable elements, high gene density (189.1/Mb), more intronless genes (20.3%) and low microsatellite density (0.63%).


Assuntos
Ácaros , Animais , Ácaros/genética , Genoma , Repetições de Microssatélites
8.
Gene ; 927: 148741, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38969246

RESUMO

Rhododendron delavayi, a notable ornamental plant primarily found in regions of China like Yunnan and Guizhou provinces, holds substantial horticultural value. To elucidate the systematic phylogenetic relationships and organelle genomic differences within R. delavayi and related Rhododendron species, we conducted sequencing and assembly of the complete mitochondrial genome of R. delavayi. The full-length mitochondrial genome of it was a singular circular molecule spanning 1,009,263 bp, comprising 53 protein-coding genes, including 18 transfer RNA (tRNA) genes, 3 ribosomal RNA (rRNA) genes, and 32 protein-coding genes. A total of 1,182 simple sequence repeats (SSRs) loci were identified in the R. delavayi mitochondrial genome, primarily consisting of single nucleotide, dinucleotide, and trinucleotide repeats. Nucleotide diversity analysis highlighted five genes (atp6, atp9, cox2, nad1, and rpl10) with the highest diversity within the mitochondrial genomes of Rhododendron genus. Comparative analysis of the mitochondrial genome of R. delavayi with those of four other Rhododendron species indicated complex rearrangements in 21 genes, including rps4, nad6, rps3, atp6, cob, atp9, nad7, among others. The mitochondrial phylogenetic tree revealed a close relationship between R. delavayi and R. decorum, forming a sister clade to R. × pulchrum and R. simsii. Furthermore, 126 plastid-to-mitochondrial gene transfers in R. delavayi were identified, ranging from 30 bp to 19,385 bp. These fragments collectively constituted 47.54 % and 9.52 % of the chloroplast and mitochondrial genomes (202,169 bp), respectively. Complex mitochondrial-to-mitochondrial transfers were also observed, with 843 identified fragments totaling 312,036 bp (30.92 % of the mitochondrial genome). Segments exceeding 10 kb may mediate homologous recombination within the mitochondrial molecules. Remarkably, our study underscores that the mitochondrial genome of R. delavayi was the largest reported within the Rhododendron genus to date. The intricate rearrangements observed in the mitochondrial genomes of Rhododendron species, alone with the identification of five potential molecular marker sites, provided valuable insights for species classification and parentage identification within the Rhododendron genus.


Assuntos
Genoma Mitocondrial , Filogenia , Rhododendron , Rhododendron/genética , Rhododendron/classificação , Repetições de Microssatélites/genética , RNA de Transferência/genética , Variação Genética
9.
Mol Genet Genomics ; 299(1): 67, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980527

RESUMO

India's rich diversity encompasses individuals from varied geographical, cultural, and ethnic backgrounds. In the field of population genetics, comprehending the genetic diversity across distinct populations plays a crucial role. This study presents significant findings from genetic data obtained from the Sikkimese population of India. Autosomal markers were crucial for evaluating forensic parameters, with a combined paternity index of 1 × 109. Notably, Penta E emerged as a distinguishing marker for individual identification in the Sikkim population. Fst genetic distance values revealed insights into genetic isolation among different groups, enhancing our understanding of population dynamics in the central Himalayan region. The NJ-based phylogenetic tree highlighted close genetic relationships, of the Sikkim population with the Nepalese population surrounding neighbouring Himalayan populations providing glimpses into common ancestry. In summary, this study contributes valuable data to population genetics and underscores the importance of genetic variation in comprehending population dynamics and forensic applications.


Assuntos
Variação Genética , Genética Populacional , Filogenia , Dinâmica Populacional , Humanos , Índia , Siquim , Masculino , Repetições de Microssatélites/genética , Etnicidade/genética , Feminino
10.
Sci Rep ; 14(1): 15755, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977809

RESUMO

Guava (Psidium guajava L.) is a semi-domesticated fruit tree of moderate importance in the Neotropics, utilized for millennia due to its nutritional and medicinal benefits, but its origin of domestication remains unknown. In this study, we examine genetic diversity and population structure in 215 plants from 11 countries in Mesoamerica, the Andes, and Amazonia using 25 nuclear microsatellite loci to propose an origin of domestication. Genetic analyses reveal one gene pool in Mesoamerica (Mexico) and four in South America (Brazilian Amazonia, Peruvian Amazonia and Andes, and Colombia), indicating greater differentiation among localities, possibly due to isolation between guava populations, particularly in the Amazonian and Andean regions. Moreover, Mesoamerican populations show high genetic diversity, with moderate genetic structure due to gene flow from northern South American populations. Dispersal scenarios suggest that Brazilian Amazonia is the probable origin of guava domestication, spreading from there to the Peruvian Andes, northern South America, Central America, and Mexico. These findings present the first evidence of guava domestication in the Americas, contributing to a deeper understanding of its evolutionary history.


Assuntos
Domesticação , Variação Genética , Repetições de Microssatélites , Psidium , Psidium/genética , Repetições de Microssatélites/genética , América do Sul , Fluxo Gênico , Genética Populacional , Brasil
11.
Parasit Vectors ; 17(1): 292, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978086

RESUMO

BACKGROUND: The Aedes albopictus mosquito is of medical concern due to its ability to transmit viral diseases, such as dengue and chikungunya. Aedes albopictus originated in Asia and is now present on all continents, with the exception of Antarctica. In Mozambique, Ae. albopictus was first reported in 2015 within the capital city of Maputo, and by 2019, it had become established in the surrounding area. It was suspected that the mosquito population originated in Madagascar or islands of the Western Indian Ocean (IWIO). The aim of this study was to determine its origin. Given the risk of spreading insecticide resistance, we also examined relevant mutations in the voltage-sensitive sodium channel (VSSC). METHODS: Eggs of Ae. albopictus were collected in Matola-Rio, a municipality adjacent to Maputo, and reared to adults in the laboratory. Cytochrome c oxidase subunit I (COI) sequences and microsatellite loci were analyzed to estimate origins. The presence of knockdown resistance (kdr) mutations within domain II and III of the VSSC were examined using Sanger sequencing. RESULTS: The COI network analysis denied the hypothesis that the Ae. albopictus population originated in Madagascar or IWIO; rather both the COI network and microsatellites analyses showed that the population was genetically similar to those in continental Southeast Asia and Hangzhou, China. Sanger sequencing determined the presence of the F1534C knockdown mutation, which is widely distributed among Asian populations, with a high allele frequency (46%). CONCLUSIONS: These results do not support the hypothesis that the Mozambique Ae. albopictus population originated in Madagascar or IWIO. Instead, they suggest that the origin is continental Southeast Asia or a coastal town in China.


Assuntos
Aedes , Resistência a Inseticidas , Mosquitos Vetores , Animais , Moçambique , Resistência a Inseticidas/genética , Aedes/genética , Aedes/efeitos dos fármacos , Mosquitos Vetores/genética , Mosquitos Vetores/efeitos dos fármacos , Mutação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Inseticidas/farmacologia , Madagáscar , Repetições de Microssatélites/genética , Feminino , Canais de Sódio Disparados por Voltagem/genética
12.
J Korean Med Sci ; 39(27): e198, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39015000

RESUMO

BACKGROUND: Relatives share more genomic regions than unrelated individuals, with closer relatives sharing more regions. This concept, paired with the increased availability of high-throughput single nucleotide polymorphism (SNP) genotyping technologies, has made it feasible to measure the shared chromosomal regions between individuals to assess their level of relation to each other. However, such techniques have remained in the conceptual rather than practical stages in terms of applying measures or indices. Recently, we developed an index called "genetic distance-based index of chromosomal sharing (GD-ICS)" utilizing large-scale SNP data from Korean family samples and demonstrated its potential for practical applications in kinship determination. In the current study, we present validation results from various real cases demonstrating the utility of this method in resolving complex familial relationships where information obtained from traditional short tandem repeats (STRs) or lineage markers is inconclusive. METHODS: We obtained large-scale SNP data through microarray analysis from Korean individuals involving 13 kinship cases and calculated GD-ICS values using the method described in our previous study. Based on the GD-ICS reference constructed for Korean families, each disputed kinship was evaluated and validated using a combination of traditional STRs and lineage markers. RESULTS: The cases comprised those A) that were found to be inconclusive using the traditional approach, B) for which it was difficult to apply traditional testing methods, and C) that were more conclusively resolved using the GD-ICS method. This method has overcome the limitations faced by traditional STRs in kinship testing, particularly in a paternity case with STR mutational events and in confirming distant kinship where the individual of interest is unavailable for testing. It has also been demonstrated to be effective in identifying various relationships without specific presumptions and in confirming a lack of genetic relatedness between individuals. CONCLUSION: This method has been proven effective in identifying familial relationships across diverse complex and practical scenarios. It is not only useful when traditional testing methods fail to provide conclusive results, but it also enhances the resolution of challenging kinship cases, which suggests its applicability in various types of practical casework.


Assuntos
Linhagem , Polimorfismo de Nucleotídeo Único , Feminino , Humanos , Masculino , Cromossomos Humanos/genética , Genótipo , Repetições de Microssatélites/genética , República da Coreia , População do Leste Asiático/genética
13.
PLoS Biol ; 22(7): e3002698, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38950062

RESUMO

The fitness effects of new mutations determine key properties of evolutionary processes. Beneficial mutations drive evolution, yet selection is also shaped by the frequency of small-effect deleterious mutations, whose combined effect can burden otherwise adaptive lineages and alter evolutionary trajectories and outcomes in clonally evolving organisms such as viruses, microbes, and tumors. The small effect sizes of these important mutations have made accurate measurements of their rates difficult. In microbes, assessing the effect of mutations on growth can be especially instructive, as this complex phenotype is closely linked to fitness in clonally evolving organisms. Here, we perform high-throughput time-lapse microscopy on cells from mutation-accumulation strains to precisely infer the distribution of mutational effects on growth rate in the budding yeast, Saccharomyces cerevisiae. We show that mutational effects on growth rate are overwhelmingly negative, highly skewed towards very small effect sizes, and frequent enough to suggest that deleterious hitchhikers may impose a significant burden on evolving lineages. By using lines that accumulated mutations in either wild-type or slippage repair-defective backgrounds, we further disentangle the effects of 2 common types of mutations, single-nucleotide substitutions and simple sequence repeat indels, and show that they have distinct effects on yeast growth rate. Although the average effect of a simple sequence repeat mutation is very small (approximately 0.3%), many do alter growth rate, implying that this class of frequent mutations has an important evolutionary impact.


Assuntos
Aptidão Genética , Repetições de Microssatélites , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Repetições de Microssatélites/genética , Mutação/genética , Acúmulo de Mutações
14.
Biol Lett ; 20(7): 20240158, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39044630

RESUMO

Drift and gene flow affect genetic diversity. Given that the strength of genetic drift increases as population size decreases, management activities have focused on increasing population size through preserving habitats to preserve genetic diversity. Few studies have empirically evaluated the impacts of drift and gene flow on genetic diversity. Kryptolebias marmoratus, henceforth 'rivulus', is a small killifish restricted to fragmented New World mangrove forests with gene flow primarily associated with ocean currents. Rivulus form distinct populations across patches, making them a well-suited system to test the extent to which habitat area, fragmentation and connectivity are associated with genetic diversity. Using over 1000 individuals genotyped at 32 microsatellite loci, high-resolution landcover data and oceanographic simulations with graph theory, we demonstrate that centrality (connectivity) to the metapopulation is more strongly associated with genetic diversity than habitat area or fragmentation. By comparing models with and without centrality standardized by the source population's genetic diversity, our results suggest that metapopulation centrality is critical to genetic diversity regardless of the diversity of adjacent populations. While we find evidence that habitat area and fragmentation are related to genetic diversity, centrality is always a significant predictor with a larger effect than any measure of habitat configuration.


Assuntos
Ecossistema , Fundulidae , Variação Genética , Animais , Fundulidae/genética , Fluxo Gênico , Repetições de Microssatélites , Densidade Demográfica , Dinâmica Populacional
15.
Mol Biol Rep ; 51(1): 765, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874834

RESUMO

BACKGROUND: The combination of the increasing demand of freshwater crayfish exports, the reduced population sizes due to overfishing, the crayfish plague epidemics and the habitat degradation, have led to unrecorded translocations of Pontastacus leptodactylus in Greek lakes. METHODS AND RESULTS: In the present study, the genetics of five narrow clawed crayfish (P. leptodactylus) populations were studied, namely three translocated populations inhabiting in Northern Greece, one native Greek population from Evros river and one potential progeny source population from Turkey. Nine microsatellite loci previously designed for the specific species were investigated, in order to assess the levels of genetic diversity and further to confirm the origin of these translocated populations some decades after the translocation events. Our results confirmed that the source population for the translocated Greek population is the Turkish lake Egirdir. Further, despite the low values of the number of alleles, heterozygosity, and FST the populations were generally diverse, providing evidence for local adaptation. CONCLUSIONS: The low values of FIS for the translocated populations in combination with the high values of gene flow, possibly indicate the existence of re-introducing events. Apart from the translocated populations, high levels of genetic diversity and heterozygosity were observed in Evros population, suggesting it as a possible unit for future conservation purposes both as a donor population for reintroduction purposes as well as a unique gene pool protection source. To the best of our knowledge this is the first study dealing with the genetic composition of Greek P. leptodactylus populations from Nothern Greece, operating as a first step towards the development of proper management practices for restocking events and monitoring of translocated populations.


Assuntos
Astacoidea , Variação Genética , Genética Populacional , Repetições de Microssatélites , Animais , Repetições de Microssatélites/genética , Turquia , Grécia , Genética Populacional/métodos , Variação Genética/genética , Astacoidea/genética , Espécies Introduzidas , Fluxo Gênico , Alelos
16.
Forensic Sci Int Genet ; 71: 103064, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38833777

RESUMO

SE33 or ACTBP2 is the most polymorphic locus in many national DNA databases and in the commercial STR kits used to type both crime scene samples and reference samples to populate these databases. We describe the molecular reason for a three band pattern of SE33 seen in several samples. A SNP in the flanking SE33 region causes the binding of the unlabelled D3S1358 primer. As a result, a "chimeric" PCR product of the labelled SE33 primer and the D3S1358 primer is generated that is smaller than the regular SE33 amplicon. We call this "Type 3 three band pattern" as the genetic base differs from the Type 1 three band pattern caused by somatic mosaicism and the Type 2 that results from copy number variation.


Assuntos
Repetições de Microssatélites , Reação em Cadeia da Polimerase , Humanos , Polimorfismo de Nucleotídeo Único , Impressões Digitais de DNA , Primers do DNA , Variações do Número de Cópias de DNA
17.
Forensic Sci Int Genet ; 71: 103067, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38833778

RESUMO

Significant variation exists in the molecular structure of compact and trabecular bone. In compact bone full dissolution of the bone powder is required to efficiently release the DNA from hydroxyapatite. In trabecular bone where soft tissues are preserved, we assume that full dissolution of the bone powder is not required to release the DNA from collagen. To investigate this issue, research was performed on 45 Second World War diaphysis (compact bone)-epiphysis (trabecular bone) femur pairs, each processed with a full dissolution (FD) and partial dissolution (PD) extraction method. DNA quality and quantity were assessed using qPCR PowerQuant analyses, and autosomal STRs were typed to confirm the authenticity of isolated DNA. Our results support different mechanisms of DNA preservation in compact and trabecular bone because FD method was more efficient than PD method only in compact bone, and no difference in DNA yield was observed in trabecular bone, showing no need for full dissolution of the bone powder when trabecular bone tissue is processed. In addition, a significant difference in DNA yield was observed between compact and trabecular bone when PD was applied, with more DNA extracted from trabecular bone than compact bone. High suitability of trabecular bone processed with PD method is also supported by the similar quantities of DNA isolated by FD method when applied to both compact and trabecular bone. Additionally similar quantities of DNA were isolated when compact bone was extracted with FD method and trabecular bone was extracted with PD method. Processing trabecular bone with PD method in routine identification of skeletonized human remains shortens the extraction procedure and simplifies the grinding process.


Assuntos
Osso Esponjoso , DNA , Fêmur , Repetições de Microssatélites , Humanos , DNA/genética , Fêmur/química , Impressões Digitais de DNA , Reação em Cadeia da Polimerase , Masculino , Reação em Cadeia da Polimerase em Tempo Real
18.
PLoS One ; 19(6): e0305608, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38885253

RESUMO

The blue shark, Prionace glauca, is the most abundant pelagic shark in the open ocean but its vulnerability remains poorly understood while being one of the most fecund sharks. In the Mediterranean Sea, the blue shark is listed as Critically Endangered (CR) by the International Union for Conservation of Nature. The species is facing a strong decline due to fishing, and scientific data regarding its genetic structure and vulnerability are still lacking. Here, we investigated the genetic diversity, demographic history, and population structure of the blue shark within the Mediterranean Sea, from samples of the Gulf of Lion and Malta, using sequences of the mtDNA control region and 22 microsatellite markers. We also compared our mitochondrial data to previous studies to examine the Atlantic-Mediterranean population structure. We assessed the blue shark's genetic vulnerability in the Mediterranean basin by modelling its effective population size. Our results showed a genetic differentiation between the Atlantic and the Mediterranean basins, with limited gene flow between the two areas, and distinct demographic histories making the Mediterranean population an independent management unit. Within the Mediterranean Sea, no sign of population structure was detected, suggesting a single population across the Western and Central parts of the sea. The estimated effective population size was low and highlighted the high vulnerability of the Mediterranean blue shark population, as the estimated size we calculated might not be sufficient to ensure the long-term persistence of the population. Our data also provide additional evidence that the Gulf of Lion area acts as a nursery for P. glauca, where protection is essential for the conservation strategy of the species in the Mediterranean.


Assuntos
DNA Mitocondrial , Espécies em Perigo de Extinção , Variação Genética , Densidade Demográfica , Tubarões , Animais , Tubarões/genética , Mar Mediterrâneo , DNA Mitocondrial/genética , Repetições de Microssatélites/genética , Genética Populacional , Conservação dos Recursos Naturais/métodos
19.
Sci Rep ; 14(1): 13940, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886463

RESUMO

Perilla frutescens (L.) Britton, a member of the Lamiaceae family, stands out as a versatile plant highly valued for its unique aroma and medicinal properties. Additionally, P. frutescens seeds are rich in Îs-linolenic acid, holding substantial economic importance. While the nuclear and chloroplast genomes of P. frutescens have already been documented, the complete mitochondrial genome sequence remains unreported. To this end, the sequencing, annotation, and assembly of the entire Mitochondrial genome of P. frutescens were hereby conducted using a combination of Illumina and PacBio data. The assembled P. frutescens mitochondrial genome spanned 299,551 bp and exhibited a typical circular structure, involving a GC content of 45.23%. Within the genome, a total of 59 unique genes were identified, encompassing 37 protein-coding genes, 20 tRNA genes, and 2 rRNA genes. Additionally, 18 introns were observed in 8 protein-coding genes. Notably, the codons of the P. frutescens mitochondrial genome displayed a notable A/T bias. The analysis also revealed 293 dispersed repeat sequences, 77 simple sequence repeats (SSRs), and 6 tandem repeat sequences. Moreover, RNA editing sites preferentially produced leucine at amino acid editing sites. Furthermore, 70 sequence fragments (12,680 bp) having been transferred from the chloroplast to the mitochondrial genome were identified, accounting for 4.23% of the entire mitochondrial genome. Phylogenetic analysis indicated that among Lamiaceae plants, P. frutescens is most closely related to Salvia miltiorrhiza and Platostoma chinense. Meanwhile, inter-species Ka/Ks results suggested that Ka/Ks < 1 for 28 PCGs, indicating that these genes were evolving under purifying selection. Overall, this study enriches the mitochondrial genome data for P. frutescens and forges a theoretical foundation for future molecular breeding research.


Assuntos
Uso do Códon , Genoma Mitocondrial , Perilla frutescens , Edição de RNA , Edição de RNA/genética , Perilla frutescens/genética , Filogenia , Repetições de Microssatélites/genética , RNA de Transferência/genética , Composição de Bases , Anotação de Sequência Molecular
20.
PeerJ ; 12: e17554, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938610

RESUMO

Background: Gymnospermium kiangnanense is the only species distributed in the subtropical region within the spring ephemeral genus Gymnospermium. Extensive human exploitation and habitat destruction have resulted in a rapid shrink of G. kiangnanense populations. This study utilizes microsatellite markers to analyze the genetic diversity and structure and to deduce historical population events of extant populations of G. kiangnanense. Methods: A total of 143 individuals from eight extant populations of G. kiangnanense, including two populations from Anhui Province and six populations from Zhejiang Province, were analyzed with using 21 pairs of microsatellite markers. Genetic diversity indices were calculated using Cervus, GENEPOP, GenALEX. Population structure was assessed using genetic distance (UPGMA), principal coordinate analysis (PCoA), Bayesian clustering method (STRUCTURE), and molecular variation analysis of variance (AMOVA). Population history events were inferred using DIYABC. Results: The studied populations of G. kiangnanense exhibited a low level of genetic diversity (He = 0.179, I = 0.286), but a high degree of genetic differentiation (FST = 0.521). The mean value of gene flow (Nm ) among populations was 1.082, indicating prevalent gene exchange via pollen dispersal. Phylogeographic analyses suggested that the populations of G. kiangnanense were divided into two lineages, Zhejiang (ZJ) and Anhui (AH). These two lineages were separated by the Huangshan-Tianmu Mountain Range. AMOVA analysis revealed that 36.59% of total genetic variation occurred between the two groups. The ZJ lineage was further divided into the Hangzhou (ZJH) and Zhuji (ZJZ) lineages, separated by the Longmen Mountain and Fuchun River. DIYABC analyses suggested that the ZJ and AH lineages were separated at 5.592 ka, likely due to the impact of Holocene climate change and human activities. Subsequently, the ZJZ lineage diverged from the ZJH lineage around 2.112 ka. Given the limited distribution of G. kiangnanense and the significant genetic differentiation among its lineages, both in-situ and ex-situ conservation strategies should be implemented to protect the germplasm resources of G. kiangnanense.


Assuntos
Cycadopsida , Fluxo Gênico , Variação Genética , Repetições de Microssatélites , China , Repetições de Microssatélites/genética , Variação Genética/genética , Cycadopsida/genética , Teorema de Bayes , Genética Populacional , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA