Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.535
Filtrar
1.
Food Res Int ; 183: 114185, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760122

RESUMO

Low- and no-calorie sweeteners reduce the amount of carbohydrates in foods and beverages. However, concerns about taste perception surrounding the role of non-nutritive sweeteners in the oral cavity remain unanswered. One of the parameters that influences taste perception is the diffusion coefficient of the sweetener molecules inside the mucin layer lining the mouth. This study investigated the impact of diffusion coefficients of common high-intensity sweeteners on taste perception focusing on the sweeteners' diffusion through mucin. Transwell Permeable Support well plates were used to measure diffusion coefficients of samples that were collected at specific intervals to estimate the coefficients based on concentration measurements. The diffusion coefficients of acesulfame-K, aspartame, rebaudioside M, sucralose, and sucrose with and without NaCl were compared. We found that different sweeteners show different diffusion behavior through mucin and that the presence of salt enhances the diffusion. These findings contribute insights into the diffusion of high-intensity sweeteners, offer a way to evaluate diffusion coefficients in real-time, and inform the development of products with improved taste profiles.


Assuntos
Mucinas , Sacarose , Edulcorantes , Difusão , Mucinas/metabolismo , Sacarose/análogos & derivados , Percepção Gustatória , Humanos , Tiazinas
2.
Front Cell Infect Microbiol ; 14: 1391758, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716194

RESUMO

Campylobacter jejuni, a Gram-negative bacterium, is one of the most common causes of foodborne illness worldwide. Its adhesion mechanism is mediated by several bacterial factors, including flagellum, protein adhesins, lipooligosaccharides, proteases, and host factors, such as surface glycans on epithelial cells and mucins. Fungal lectins, specialized carbohydrate-binding proteins, can bind to specific glycans on host and bacterial cells and thus influence pathogenesis. In this study, we investigated the effects of fungal lectins and protease inhibitors on the adhesion of C. jejuni to model biotic surfaces (mucin, fibronectin, and collagen) and Caco-2 cells as well as the invasion of Caco-2 cells. The lectins Marasmius oreades agglutinin (MOA) and Laccaria bicolor tectonin 2 (Tec2) showed remarkable efficacy in all experiments. In addition, different pre-incubations of lectins with C. jejuni or Caco-2 cells significantly inhibited the ability of C. jejuni to adhere to and invade Caco-2 cells, but to varying degrees. Pre-incubation of Caco-2 cells with selected lectins reduced the number of invasive C. jejuni cells the most, while simultaneous incubation showed the greatest reduction in adherent C. jejuni cells. These results suggest that fungal lectins are a promising tool for the prevention and treatment of C. jejuni infections. Furthermore, this study highlights the potential of fungi as a rich reservoir for novel anti-adhesive agents.


Assuntos
Aderência Bacteriana , Campylobacter jejuni , Lectinas , Inibidores de Proteases , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/fisiologia , Campylobacter jejuni/metabolismo , Humanos , Células CACO-2 , Aderência Bacteriana/efeitos dos fármacos , Lectinas/metabolismo , Lectinas/farmacologia , Inibidores de Proteases/farmacologia , Inibidores de Proteases/metabolismo , Fungos/efeitos dos fármacos , Mucinas/metabolismo , Células Epiteliais/microbiologia , Fibronectinas/metabolismo
3.
Food Res Int ; 184: 114246, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609225

RESUMO

Food-derived mucins are glycoproteins rich in sialic acid, but their digestive properties and potential health benefits for humans have been scarcely investigated. In this work, ovomucin (OVM, rich in N-acetylneuraminic acid, about 3 %), porcine small intestinal mucin (PSIM, rich in N-glycolylneuraminic acid, about 1 %), the desialylated OVM (AOVM) and the desialylated PSIM (APSIM) were selected to examine their digestion and their impact on the gut microbiota of elderly individuals. The results shown that, the proportion of low-molecular-weight proteins increased after simulated digestion of these four mucins, with concomitant comparable antioxidant activity observed. Desialylation markedly increased the degradation and digestion rate of mucins. In vitro fecal fermentation was conducted with these mucins using fecal samples from individuals of different age groups: young, low-age and high-age elderly. Fecal fermentation with mucin digestive solution stimulated the production of organic acids in the group with fecal sample of the elderly individuals. Among them, the OVM group demonstrated the most favorable outcomes. The OVM and APSIM groups elevated the relative abundance of beneficial bacteria such as Lactobacillus and Bifidobacterium, while diminishing the presence of pathogenic bacteria such as Klebsiella. Conversely, the probiotic effects of AOVM and PSIM were attenuated or even exhibited adverse effects. Hence, mucins originating from different sources and possessing distinct glycosylation patterns exhibit diverse biological functions. Our findings can offer valuable insights for developing a well-balanced and nutritious diet tailored to the elderly population.


Assuntos
Microbioma Gastrointestinal , Mucinas , Humanos , Idoso , Animais , Suínos , Dieta , Alimentos , Bifidobacterium
4.
J Phys Chem A ; 128(15): 3015-3023, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38593044

RESUMO

Respiratory viruses, such as influenza and severe acute respiratory syndrome coronavirus 2, represent a substantial public health burden and are largely transmitted through respiratory droplets and aerosols. Environmental factors such as relative humidity (RH) and temperature impact virus transmission rates, and a precise mechanistic understanding of the connection between these environmental factors and virus transmission would improve efforts to mitigate respiratory disease transmission. Previous studies on supermicrometer particles observed RH-dependent phase transitions and linked particle phase state to virus viability. Phase transitions in atmospheric aerosols are dependent on size in the submicrometer range, and actual respiratory particles are expelled over a large size range, including submicrometer aerosols that can transmit diseases over long distances. Here, we directly investigated the phase transitions of submicrometer model respiratory aerosols. A probe molecule, Nile red, was added to particle systems including multiple mucin/salt mixtures, a growth medium, and simulated lung fluid. For each system, the polarity-dependent fluorescence emission was measured following RH conditioning. Notably, the fluorescence measurements of mucin/NaCl and Dulbecco's modified Eagle's medium particles indicated that liquid-liquid phase separation (LLPS) also occurs in submicron particles, suggesting that LLPS can also impact the viability of viruses in submicron particles and thus affect aerosol virus transmission. Furthermore, the utility of fluorescence-based measurements to study submicrometer respiratory particle physicochemical properties in situ is demonstrated.


Assuntos
Mucinas , Aerossóis e Gotículas Respiratórios , Umidade , Aerossóis/química
5.
Vet Q ; 44(1): 1-18, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38606662

RESUMO

Complex respiratory diseases are a significant challenge for the livestock industry worldwide. These diseases considerably impact animal health and welfare and cause severe economic losses. One of the first lines of pathogen defense combines the respiratory tract mucus, a highly viscous material primarily composed of mucins, and a thriving multi-kingdom microbial ecosystem. The microbiome-mucin interplay protects from unwanted substances and organisms, but its dysfunction may enable pathogenic infections and the onset of respiratory disease. Emerging evidence also shows that noncoding regulatory RNAs might modulate the structure and function of the microbiome-mucin relationship. This opinion paper unearths the current understanding of the triangular relationship between mucins, the microbiome, and noncoding RNAs in the context of respiratory infections in animals of veterinary interest. There is a need to look at these molecular underpinnings that dictate distinct health and disease outcomes to implement effective prevention, surveillance, and timely intervention strategies tailored to the different epidemiological contexts.


Assuntos
Microbiota , Doenças Respiratórias , Animais , Mucinas/química , Gado , Doenças Respiratórias/veterinária
6.
Zhonghua Bing Li Xue Za Zhi ; 53(4): 351-357, 2024 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-38556818

RESUMO

Objective: To investigate the clinicopathological and molecular genetic characteristics of Crohn's disease (CD). Methods: A retrospective analysis was conducted on 52 CD patients who underwent surgical resection at the First Affiliated Hospital of Nanjing Medical University between January 2014 and June 2023. Clinical presentations and histopathological features were assessed. Whole-genome sequencing was performed on 17 of the samples, followed by sequencing and pathway enrichment analyses. Immunohistochemistry was used to assess the expression of frequently mutated genes. Results: Among the 52 patients, 34 were males and 18 were females, male-to-female ratio was 1.9∶1.0, with a median age of 45 years at surgery and 35 years at diagnosis. According to the Montreal classification, A3 (51.9%,27/52), B2 (61.5%, 32/52), and L3 (50.0%,26/52) subtypes were the most predominant. Abdominal pain and diarrhea were the common symptoms. Histopathological features seen in all 52 patients included transmural inflammation, disruption of cryptal architecture, lymphoplasmacytic infiltration, varying degrees of submucosal fibrosis and thickening, increased enteric nerve fibers and neuronal proliferation. Mucosal defects, fissure ulcers, abscesses, pseudopolyps, and adenomatous proliferation were also observed in 51 (98.1%), 38 (73.1%), 28 (53.8%), 45 (86.5%), and 28 (53.8%) cases, respectively. Thirty-one (59.6%) cases had non-caseating granulomas, and 3 (5.8%) cases had intestinal mucosal glandular epithelial dysplasia. Molecular analysis showed that 12/17 CD patients exhibited mutations in at least one mucin family gene (MUC2, MUC3A, MUC4, MUC6, MUC12, MUC17), and MUC4 was the most frequently mutated in 7/17 of cases. Immunohistochemical stains showed reduced MUC4 expression in epithelial cells, with increased MUC4 expression in the epithelial surface, particularly around areas of inflammatory cell aggregation; and minimal expression in the lower half of the epithelium. Conclusions: CD exhibits diverse clinical and pathological features, necessitating a comprehensive multidimensional analysis for diagnosis. Mutations and expression alterations in mucin family genes, particularly MUC4, may play crucial roles in the pathogenesis of CD.


Assuntos
Doença de Crohn , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Doença de Crohn/genética , Doença de Crohn/diagnóstico , Doença de Crohn/patologia , Estudos Retrospectivos , Mucinas , Células Epiteliais/patologia , Biologia Molecular
7.
Nutrients ; 16(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612988

RESUMO

The goblet cells of the gastrointestinal tract (GIT) produce glycoproteins called mucins that form a protective barrier from digestive contents and external stimuli. Recent evidence suggests that the milk fat globule membrane (MFGM) and its milk phospholipid component (MPL) can benefit the GIT through improving barrier function. Our objective was to compare the effects of two digested MFGM ingredients with or without dextran sodium sulfate (DSS)-induced barrier stress on mucin proteins. Co-cultured Caco-2/HT29-MTX intestinal cells were treated with in vitro digests of 2%, 5%, and 10% (w/v) MFGM or MPL alone for 6 h or followed by challenge with 2.5% DSS (6 h). Transepithelial electrical resistance and fluorescein isothiocyanate (FITC)-dextran (FD4) permeability measurements were used to measure changes in barrier integrity. Mucin characterization was performed using a combination of slot blotting techniques for secreted (MUC5AC, MUC2) and transmembrane (MUC3A, MUC1) mucins, scanning electron microscopy (SEM), and periodic acid Schiff (PAS)/Alcian blue staining. Digested MFGM and MPL prevented a DSS-induced reduction in secreted mucins, which corresponded to the prevention of DSS-induced increases in FD4 permeability. SEM and PAS/Alcian blue staining showed similar visual trends for secreted mucin production. A predictive bioinformatic approach was also used to identify potential KEGG pathways involved in MFGM-mediated mucosal maintenance under colitis conditions. This preliminary in silico evidence, combined with our in vitro findings, suggests the role of MFGM in inducing repair and maintenance of the mucosal barrier.


Assuntos
Dextranos , Fluoresceína-5-Isotiocianato/análogos & derivados , Glicolipídeos , Glicoproteínas , Gotículas Lipídicas , Humanos , Células CACO-2 , Azul Alciano , Glicoproteínas/farmacologia , Células Epiteliais , Mucinas
8.
mSystems ; 9(5): e0024624, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38564708

RESUMO

Dietary fiber deprivation is linked to probiotic extinction, mucus barrier dysbiosis, and the overgrowth of mucin-degrading bacteria. However, whether and how mucin could rescue fiber deprivation-induced intestinal barrier defects remains largely unexplored. Here, we sought to investigate the potential role and mechanism by which exogenous mucin maintains the gut barrier function. The results showed that dietary mucin alleviated fiber deprivation-induced disruption of colonic barrier integrity and reduced spermine production in vivo. Importantly, we highlighted that microbial-derived spermine production, but not host-produced spermine, increased significantly after mucin supplementation, with a positive association with upgraded colonic Lactobacillus abundance. After employing an in vitro model, the microbial-derived spermine was consistently dominated by both mucin and Lactobacillus spp. Furthermore, Limosilactobacillus mucosae was identified as an essential spermine-producing Lactobacillus spp., and this isolated strain was responsible for spermine accumulation, especially after adhering to mucin in vitro. Specifically, the mucin-supplemented bacterial supernatant of Limosilactobacillus mucosae was verified to promote intestinal barrier functions through the increased spermine production with a dependence on enhanced arginine metabolism. Overall, these findings collectively provide evidence that mucin-modulated microbial arginine metabolism bridged the interplay between microbes and gut barrier function, illustrating possible implications for host gut health. IMPORTANCE: Microbial metabolites like short-chain fatty acids produced by dietary fiber fermentation have been demonstrated to have beneficial effects on intestinal health. However, it is essential to acknowledge that certain amino acids entering the colon can be metabolized by microorganisms to produce polyamines. The polyamines can promote the renewal of intestinal epithelial cell and maintain host-microbe homeostasis. Our study highlighted the specific enrichment by mucin on promoting the arginine metabolism in Limosilactobacillus mucosae to produce spermine, suggesting that microbial-derived polyamines support a significant enhancement on the goblet cell proliferation and barrier function.


Assuntos
Arginina , Colo , Microbioma Gastrointestinal , Mucosa Intestinal , Mucinas , Espermina , Espermina/metabolismo , Mucinas/metabolismo , Arginina/metabolismo , Arginina/farmacologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Animais , Microbioma Gastrointestinal/fisiologia , Colo/microbiologia , Colo/metabolismo , Masculino , Camundongos , Lactobacillus/metabolismo , Humanos , Fibras na Dieta/metabolismo , Camundongos Endogâmicos C57BL
9.
J Theor Biol ; 587: 111824, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38604595

RESUMO

The human gut microbiota relies on complex carbohydrates (glycans) for energy and growth, primarily dietary fiber and host-derived mucins. We introduce a mathematical model of a glycan generalist and a mucin specialist in a two-compartment chemostat model of the human colon. Our objective is to characterize the influence of dietary fiber and mucin supply on the abundance of mucin-degrading species within the gut ecosystem. Current mathematical gut reactor models that include the enzymatic degradation of glycans do not differentiate between glycan types and their degraders. The model we present distinguishes between a generalist that can degrade both dietary fiber and mucin, and a specialist species that can only degrade mucin. The integrity of the colonic mucus barrier is essential for overall human health and well-being, with the mucin specialist Akkermanisa muciniphila being associated with a healthy mucus layer. Competition, particularly between the specialist and generalists like Bacteroides thetaiotaomicron, may lead to mucus layer erosion, especially during periods of dietary fiber deprivation. Our model treats the colon as a gut reactor system, dividing it into two compartments that represent the lumen and the mucus of the gut, resulting in a complex system of ordinary differential equations with a large and uncertain parameter space. To understand the influence of model parameters on long-term behavior, we employ a random forest classifier, a supervised machine learning method. Additionally, a variance-based sensitivity analysis is utilized to determine the sensitivity of steady-state values to changes in model parameter inputs. By constructing this model, we can investigate the underlying mechanisms that control gut microbiota composition and function, free from confounding factors.


Assuntos
Fibras na Dieta , Microbioma Gastrointestinal , Modelos Biológicos , Mucinas , Muco , Mucinas/metabolismo , Fibras na Dieta/metabolismo , Humanos , Microbioma Gastrointestinal/fisiologia , Muco/metabolismo , Colo/metabolismo , Colo/microbiologia , Polissacarídeos/metabolismo
10.
Nat Microbiol ; 9(5): 1176-1188, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38684911

RESUMO

Matching donor and recipient blood groups based on red blood cell (RBC) surface ABO glycans and antibodies in plasma is crucial to avoid potentially fatal reactions during transfusions. Enzymatic conversion of RBC glycans to the universal group O is an attractive solution to simplify blood logistics and prevent ABO-mismatched transfusions. The gut symbiont Akkermansia muciniphila can degrade mucin O-glycans including ABO epitopes. Here we biochemically evaluated 23 Akkermansia glycosyl hydrolases and identified exoglycosidase combinations which efficiently transformed both A and B antigens and four of their carbohydrate extensions. Enzymatic removal of canonical and extended ABO antigens on RBCs significantly improved compatibility with group O plasmas, compared to conversion of A or B antigens alone. Finally, structural analyses of two B-converting enzymes identified a previously unknown putative carbohydrate-binding module. This study demonstrates the potential utility of mucin-degrading gut bacteria as valuable sources of enzymes for production of universal blood for transfusions.


Assuntos
Sistema ABO de Grupos Sanguíneos , Akkermansia , Glicosídeo Hidrolases , Sistema ABO de Grupos Sanguíneos/imunologia , Humanos , Glicosídeo Hidrolases/metabolismo , Mucinas/metabolismo , Eritrócitos/imunologia , Polissacarídeos/metabolismo , Microbioma Gastrointestinal , Antígenos de Grupos Sanguíneos/metabolismo , Antígenos de Grupos Sanguíneos/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/imunologia
11.
J Exp Clin Cancer Res ; 43(1): 68, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38439082

RESUMO

BACKGROUND: Proteasome inhibitors (PIs) are one of the most important classes of drugs for the treatment of multiple myeloma (MM). However, almost all patients with MM develop PI resistance, resulting in therapeutic failure. Therefore, the mechanisms underlying PI resistance in MM require further investigation. METHODS: We used several MM cell lines to establish PI-resistant MM cell lines. We performed RNA microarray and EccDNA-seq in MM cell lines and collected human primary MM samples to explore gene profiles. We evaluated the effect of MUC20 on cuproptosis of PI-resistant MM cells using Co-immunoprecipitation (Co-IP), Seahorse bioenergetic profiling and in vivo assay. RESULTS: This study revealed that the downregulation of Mucin 20 (MUC20) could predict PI sensitivity and outcomes in MM patients. Besides, MUC20 attenuated PI resistance in MM cells by inducing cuproptosis via the inhibition of cyclin-dependent kinase inhibitor 2 A expression (CDKN2A), which was achieved by hindering MET proto-oncogene, receptor tyrosine kinase (MET) activation. Moreover, MUC20 suppressed MET activation by repressing insulin-like growth factor receptor-1 (IGF-1R) lactylation in PI-resistant MM cells. This study is the first to perform extrachromosomal circular DNA (eccDNA) sequencing for MM, and it revealed that eccDNA induced PI resistance by amplifying kinesin family member 3 C (KIF3C) to reduce MUC20 expression in MM. CONCLUSION: Our findings indicated that MUC20 regulated by eccDNA alleviates PI resistance of MM by modulating cuproptosis, which would provide novel strategies for the treatment of PI-resistant MM.


Assuntos
Mieloma Múltiplo , Inibidores de Proteassoma , Humanos , Inibidores de Proteassoma/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Oncogenes , Citoplasma , Antivirais , DNA , DNA Circular , Cinesinas , Mucinas
12.
J Ovarian Res ; 17(1): 59, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481236

RESUMO

OBJECTIVE: To investigate the clinical and magnetic resonance imaging (MRI) features for preoperatively discriminating  primary ovarian mucinous malignant tumors (POMTs) and metastatic mucinous carcinomas involving the ovary (MOMCs). METHODS: This retrospective multicenter study enrolled 61 patients with 22 POMTs and 49 MOMCs, which were pathologically proved between November 2014 to Jane 2023. The clinical and MRI features were evaluated and compared between POMTs and MOMCs. Univariate and multivariate analyses were performed to identify the significant variables between the two groups, which were then incorporated into a predictive nomogram, and ROC curve analysis was subsequently carried out to evaluate diagnostic performance. RESULTS: 35.9% patients with MOMCs were discovered synchronously with the primary carcinomas; 25.6% patients with MOMCs were bilateral, and all of the patients with POMTs were unilateral. The biomarker CEA was significantly different between the two groups (p = 0.002). There were significant differences in the following MRI features: tumor size, configuration, enhanced pattern, the number of cysts, honeycomb sign, stained-glass appearance, ascites, size diversity ratio, signal diversity ratio. The locular size diversity ratio (p = 0.005, OR = 1.31), and signal intensity diversity ratio (p = 0.10, OR = 4.01) were independent predictors for MOMCs. The combination of above independent criteria yielded the largest area under curve of 0.922 with a sensitivity of 82.3% and specificity of 88.9%. CONCLUSIONS: Patients with MOMCs were more commonly bilaterally and having higher levels of CEA, but did not always had a malignant tumor history. For ovarian mucin-producing tumors, the uniform locular sizes and signal intensities were more predict MOMCs.


Assuntos
Adenocarcinoma Mucinoso , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/cirurgia , Carcinoma Epitelial do Ovário/diagnóstico , Adenocarcinoma Mucinoso/diagnóstico por imagem , Adenocarcinoma Mucinoso/cirurgia , Mucinas , Diagnóstico Diferencial
13.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473795

RESUMO

Sudden cardiac death due to ventricular fibrillation (VF) during ST-elevation acute myocardial infarction (STEAMI) significantly contributes to cardiovascular-related deaths. Although VF has been linked to genetic factors, variations in copy number variation (CNV), a significant source of genetic variation, have remained largely unexplored in this context. To address this knowledge gap, this study performed whole exome sequencing analysis on a cohort of 39 patients with STEAMI who experienced VF, aiming to elucidate the role of CNVs in this pathology. The analysis revealed CNVs in the form of duplications in the PARP2 and TTC5 genes as well as CNVs in the form of deletions in the MUC15 and PPP6R1 genes, which could potentially serve as risk indicators for VF during STEAMI. The analysis also underscores notable CNVs with an average gene copy number equal to or greater than four in DEFB134, FCGR2C, GREM1, PARM1, SCG5, and UNC79 genes. These findings provide further insight into the role of CNVs in VF in the context of STEAMI.


Assuntos
Infarto do Miocárdio com Supradesnível do Segmento ST , Fibrilação Ventricular , Humanos , Variações do Número de Cópias de DNA , Fatores de Risco , Morte Súbita Cardíaca , Mucinas/genética , Fatores de Transcrição/genética
14.
J Nucl Med ; 65(4): 580-585, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38485271

RESUMO

Aberrantly expressed glycans on mucins such as mucin-16 (MUC16) are implicated in the biology that promotes ovarian cancer (OC) malignancy. Here, we investigated the theranostic potential of a humanized antibody, huAR9.6, targeting fully glycosylated and hypoglycosylated MUC16 isoforms. Methods: In vitro and in vivo targeting of the diagnostic radiotracer [89Zr]Zr-DFO-huAR9.6 was investigated via binding experiments, immuno-PET imaging, and biodistribution studies on OC mouse models. Ovarian xenografts were used to determine the safety and efficacy of the therapeutic version, [177Lu]Lu-CHX-A″-DTPA-huAR9.6. Results: In vivo uptake of [89Zr]Zr-DFO-huAR9.6 supported in vitro-determined expression levels: high uptake in OVCAR3 and OVCAR4 tumors, low uptake in OVCAR5 tumors, and no uptake in OVCAR8 tumors. Accordingly, [177Lu]Lu-CHX-A″-DTPA-huAR9.6 displayed strong antitumor effects in the OVCAR3 model and improved overall survival in the OVCAR3 and OVCAR5 models in comparison to the saline control. Hematologic toxicity was transient in both models. Conclusion: PET imaging of OC xenografts showed that [89Zr]Zr-DFO-huAR9.6 delineated MUC16 expression levels, which correlated with in vitro results. Additionally, we showed that [177Lu]Lu-CHX-A″-DTPA-huAR9.6 displayed strong antitumor effects in highly MUC16-expressing tumors. These findings demonstrate great potential for 89Zr- and 177Lu-labeled huAR9.6 as theranostic tools for the diagnosis and treatment of OC.


Assuntos
Anticorpos Monoclonais Humanizados , Antígeno Ca-125 , Mucinas , Neoplasias Ovarianas , Animais , Feminino , Humanos , Camundongos , Apoptose , Antígeno Ca-125/imunologia , Linhagem Celular Tumoral , Proteínas de Membrana/imunologia , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/terapia , Ácido Pentético , Medicina de Precisão , Distribuição Tecidual , Anticorpos Monoclonais Humanizados/uso terapêutico , Mucinas/imunologia
15.
BMC Vet Res ; 20(1): 105, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493097

RESUMO

The aim of this study was to examine the effects of salt addition on the skin gene expression of Mucin, Antimicrobial peptides, cortisol, and glucose in Oreochromis niloticus after 5-hour transportation in water. Three groups were compared: Control, post-transport without salt (PT-S), and post-transport with 5 g salt-1(PT + S), with a stocking density of 28.6 gL-1, 20 fish for each experimental group. The results showed that the PT-S group had more significant changes in gene expression than the PT + S group, suggesting that salt alleviated the stress and immune responses of O. niloticus. The PT-S group had higher expression of mucin- 2(MUC + 2) (7.58 folds) and mucin-5AC (MUC5-AC) (6.29 folds) than the PT + S group (3.30 folds and 4.16 folds, respectively). The PT-S group also had lower expression of ß-defensin-1 (Dß1) (0.42 folds), ß-defensin-2 (Dß2) (0.29 folds), and Cath1 (0.16 folds) than the PT + S group (0.82 folds, 0.69 folds, and 0.75 folds, respectively). The skin morphology of the PT-S group revealed some white patches with no goblet cell openings, while the PT + S group had better preservation of skin features with some goblet cell openings and slight white patches. This study indicates that O. niloticus can benefit from sodium chloride during transportation, as it helps to reduce stress and inflammation, balance mineral levels, enhance health and immunity, and regulate mucous secretion.


Assuntos
Ciclídeos , Doenças dos Peixes , beta-Defensinas , Animais , Cloreto de Sódio , beta-Defensinas/genética , Água , Mucinas , Ração Animal/análise , Dieta
16.
PLoS One ; 19(3): e0297292, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483964

RESUMO

Inflammatory bowel disease (IBD) is characterized by chronic intestinal inflammation resulting from an inappropriate inflammatory response to intestinal microbes in a genetically susceptible host. Reactive oxygen species (ROS) generated by NADPH oxidases (NOX) provide antimicrobial defense, redox signaling and gut barrier maintenance. NADPH oxidase mutations have been identified in IBD patients, and mucus layer disruption, a critical aspect in IBD pathogenesis, was connected to NOX inactivation. To gain insight into ROS-dependent modification of epithelial glycosylation the colonic and ileal mucin O-glycome of mice with genetic NOX inactivation (Cyba mutant) was analyzed. O-glycans were released from purified murine mucins and analyzed by hydrophilic interaction ultra-performance liquid chromatography in combination with exoglycosidase digestion and mass spectrometry. We identified five novel glycans in ileum and found minor changes in O-glycans in the colon and ileum of Cyba mutant mice. Changes included an increase in glycans with terminal HexNAc and in core 2 glycans with Fuc-Gal- on C3 branch, and a decrease in core 3 glycans in the colon, while the ileum showed increased sialylation and a decrease in sulfated glycans. Our data suggest that NADPH oxidase activity alters the intestinal mucin O-glycans that may contribute to intestinal dysbiosis and chronic inflammation.


Assuntos
Doenças Inflamatórias Intestinais , Mucinas , Humanos , Camundongos , Animais , Espécies Reativas de Oxigênio , Mucinas/química , Inflamação , Polissacarídeos/química , NADPH Oxidases/genética , Mucosa Intestinal/química
17.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38544331

RESUMO

AIMS: Indole and mucin are compounds found in the host environment as they are produced by the host or by the host-associated microbiota. This study investigated whether indole and mucin impact Clostridium perfringens growth and sporulation, as well as enterotoxin production and biofilm formation. METHODS AND RESULTS: There was no impact on growth of Cl. perfringens for up to 400 µM indole and 240 mg/l mucin, and neither indole nor mucin affected sporulation. Reverse-transcriptase qPCR showed that mucin strongly upregulated the expression of Cl. perfringens enterotoxin (up to 121-fold increase), whereas indole had a much more modest effect (2-fold). This was also reflected in increased Cl. perfringens enterotoxin levels in mucin-treated Cl. perfringens (as assessed by a reversed passive latex agglutination assay). Finally, mucin and indole significantly increased biofilm formation of Cl. perfringens, although the effect size was relatively small (less than 1.5 fold). CONCLUSION: These results indicate that Cl. perfringens can sense its presence in a host environment by responding to mucin, and thereby markedly increased enterotoxin production.


Assuntos
Clostridium perfringens , Enterotoxinas , Clostridium perfringens/genética , Enterotoxinas/genética , Mucinas/metabolismo , Esporos Bacterianos , Biofilmes
18.
J Cosmet Dermatol ; 23(4): 1113-1121, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429932

RESUMO

BACKGROUND: Snail mucin is becoming increasingly popular for its wide range of ingredients and potential benefits. Snail extract's widespread appearance in cosmetic formulations encourages an investigation into the medical and cosmetic benefits. AIMS: This study aims to explore current literature on the variety of snail mucin applications. Specifically, we present a review of the uses, global market estimates and projects, and limitations to snail mucin. METHODS: A literature search was conducted on PubMed reviewing snail mucin and their application in medical and dermatologic fields examining their uses. Economic reports were also investigated for Global Market estimates. RESULTS: The therapeutic use of snail mucin in medical fields has been studied as antimicrobial agents, drug delivery vehicles, antitumor agents, wound healing agents, and biomaterial coatings among others. Additionally, the use in cosmetic fields includes antiaging, hydrating, anti-acne, scarring, and hyperpigmentation treatments. It is important to highlight that most studies conducted were preclinical or small clinical studies, stressing the need for additional large-scale clinical trials to support these claims. Investigations into the global market found estimates ranging from $457 million to $1.2 billion with upward projections in the upcoming decade. Limitations include ethical habitats for collection, allergy investigation, and missing clinical studies. CONCLUSIONS: The findings presented here emphasize the expanding uses of snail mucin and its ingredients alongside a growing market cosmetic industry should consider. We also emphasize the need for appropriate clinical trials into the stated benefits of snail mucin to ensure consumer safety and ethical extraction of mucin.


Assuntos
Cosméticos , Mucinas , Pele , Humanos , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , Cicatriz/tratamento farmacológico , Cosméticos/química , Mucinas/uso terapêutico , Pele/efeitos dos fármacos , Caramujos/química
19.
Nat Commun ; 15(1): 2611, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521783

RESUMO

The dense O-glycosylation of mucins plays an important role in the defensive properties of the mucus hydrogel. Aberrant glycosylation is often correlated with inflammation and pathology such as COPD, cancer, and Crohn's disease. The inherent complexity of glycans and the diversity in the O-core structure constitute fundamental challenges for the analysis of mucin-type O-glycans. Due to coexistence of multiple isomers, multidimensional workflows such as LC-MS are required. To separate the highly polar carbohydrates, porous graphitized carbon is often used as a stationary phase. However, LC-MS workflows are time-consuming and lack reproducibility. Here we present a rapid alternative for separating and identifying O-glycans released from mucins based on trapped ion mobility mass spectrometry. Compared to established LC-MS, the acquisition time is reduced from an hour to two minutes. To test the validity, the developed workflow was applied to sputum samples from cystic fibrosis patients to map O-glycosylation features associated with disease.


Assuntos
Mucinas , Espectrometria de Massas em Tandem , Humanos , Mucinas/metabolismo , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes , Polissacarídeos/química , Glicosilação
20.
Sci Rep ; 14(1): 6954, 2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521809

RESUMO

Mucin protein glycosylation is important in determining biological properties of mucus gels, which form protective barriers at mucosal surfaces of the body such as the intestine. Ecological factors including: age, sex, and diet can change mucus barrier properties by modulating mucin glycosylation. However, as our understanding stems from controlled laboratory studies in house mice, the combined influence of ecological factors on mucin glycosylation in real-world contexts remains limited. In this study, we used histological staining with 'Alcian Blue, Periodic Acid, Schiff's' and 'High-Iron diamine' to assess the acidic nature of mucins stored within goblet cells of the intestine, in a wild mouse population (Mus musculus). Using statistical models, we identified sex as among the most influential ecological factors determining the acidity of intestinal mucin glycans in wild mice. Our data from wild mice and experiments using laboratory mice suggest estrogen signalling associates with an increase in the relative abundance of sialylated mucins. Thus, estrogen signalling may underpin sex differences observed in the colonic mucus of wild and laboratory mice. These findings highlight the significant influence of ecological parameters on mucosal barrier sites and the complementary role of wild populations in augmenting standard laboratory studies in the advancement of mucus biology.


Assuntos
Colo , Mucinas , Camundongos , Feminino , Masculino , Animais , Mucinas/metabolismo , Colo/patologia , Células Caliciformes/metabolismo , Intestinos , Estrogênios/metabolismo , Mucina-2/metabolismo , Mucosa Intestinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...