Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.870
Filtrar
1.
BMC Res Notes ; 17(1): 129, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725016

RESUMO

OBJECTIVES: The study evaluated sub-microscopic malaria infections in pregnancy using two malaria Rapid Diagnostic Tests (mRDTs), microscopy and RT-PCR and characterized Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and Plasmodium falciparum dihydropteroate synthase (Pfdhps) drug resistant markers in positive samples. METHODS: This was a cross sectional survey of 121 pregnant women. Participants were finger pricked, blood drops were collected for rapid diagnosis with P. falciparum histidine-rich protein 11 rapid diagnostic test kit and the ultra-sensitive Alere Pf malaria RDT, Blood smears for microscopy and dried blood spots on Whatman filter paper for molecular analysis were made. Real time PCR targeting the var acidic terminal sequence (varATS) gene of P. falciparum was carried out on a CFX 96 real time system thermocycler (BioRad) in discriminating malaria infections. For each run, laboratory strain of P. falciparum 3D7 and nuclease free water were used as positive and negative controls respectively. Additionally, High resolution melt analyses was employed for genotyping of the different drug resistance markers. RESULTS: Out of one hundred and twenty-one pregnant women sampled, the SD Bioline™ Malaria Ag P.f HRP2-based malaria rapid diagnostic test (mRDT) detected eight (0.06%) cases, the ultra-sensitive Alere™ malaria Ag P.f rapid diagnostic test mRDT had similar outcome in the same samples as detected by the HRP2-based mRDT. Microscopy and RT-PCR confirmed four out of the eight infections detected by both rapid diagnostic tests as true positive and RT-PCR further detected three false negative samples by the two mRDTs providing a sub-microscopic malaria prevalence of 3.3%. Single nucleotide polymorphism in Pfdhps gene associated with sulphadoxine resistance revealed the presence of S613 mutant genotypes in three of the seven positive isolates and isolates with mixed wild/mutant genotype at codon A613S. Furthermore, four mixed genotypes at the A581G codon were also recorded while the other Pfdhps codons (A436G, A437G and K540E) showed the presence of wild type alleles. In the Pfdhfr gene, there were mutations in 28.6%, 28.6%, and 85.7% at the I51, R59 and N108 codons respectively. Mixed wild and mutant type genotypes were also observed in 28.6% each of the N51I, and C59R codons. For the Pfcrt, two haplotypes CVMNK and CVIET were observed. The SVMNT was altogether absent. Triple mutant CVIET 1(14.3%) and triple mutant + wild genotype CVIET + CVMNK 1(14.3%) were observed. The Pfmdr1 haplotypes were single mutants YYND 1(14.3%); NFND 1(14.3%) and double mutants YFND 4(57.1%); YYDD 1(14.3%).


Assuntos
Malária Falciparum , Plasmodium falciparum , Polimorfismo de Nucleotídeo Único , Feminino , Humanos , Malária Falciparum/parasitologia , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Gravidez , Plasmodium falciparum/genética , Plasmodium falciparum/efeitos dos fármacos , Adulto , Estudos Transversais , Polimorfismo de Nucleotídeo Único/genética , Nigéria/epidemiologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Alelos , Adulto Jovem , Complicações Parasitárias na Gravidez/parasitologia , Complicações Parasitárias na Gravidez/genética , Complicações Parasitárias na Gravidez/diagnóstico , Resistência a Múltiplos Medicamentos/genética , Di-Hidropteroato Sintase/genética , Tetra-Hidrofolato Desidrogenase/genética , Proteínas de Protozoários/genética , Adolescente
2.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731935

RESUMO

Cancer treatment is greatly challenged by drug resistance, highlighting the need for novel drug discoveries. Here, we investigated novel organoarsenic compounds regarding their resistance-breaking and apoptosis-inducing properties in leukemia and lymphoma. Notably, the compound (2,6-dimethylphenyl)arsonic acid (As2) demonstrated significant inhibition of cell proliferation and induction of apoptosis in leukemia and lymphoma cells while sparing healthy leukocytes. As2 reached half of its maximum activity (AC50) against leukemia cells at around 6.3 µM. Further experiments showed that As2 overcomes multidrug resistance and sensitizes drug-resistant leukemia and lymphoma cell lines to treatments with the common cytostatic drugs vincristine, daunorubicin, and cytarabine at low micromolar concentrations. Mechanistic investigations of As2-mediated apoptosis involving FADD (FAS-associated death domain)-deficient or Smac (second mitochondria-derived activator of caspases)/DIABLO (direct IAP binding protein with low pI)-overexpressing cell lines, western blot analysis of caspase-9 cleavage, and measurements of mitochondrial membrane integrity identified the mitochondrial apoptosis pathway as the main mode of action. Downregulation of XIAP (x-linked inhibitor of apoptosis protein) and apoptosis induction independent of Bcl-2 (B-cell lymphoma 2) and caspase-3 expression levels suggest the activation of additional apoptosis-promoting mechanisms. Due to the selective apoptosis induction, the synergistic effects with common anti-cancer drugs, and the ability to overcome multidrug resistance in vitro, As2 represents a promising candidate for further preclinical investigations with respect to refractory malignancies.


Assuntos
Apoptose , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Leucemia , Linfoma , Mitocôndrias , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Humanos , Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linfoma/tratamento farmacológico , Linfoma/metabolismo , Linfoma/patologia , Leucemia/metabolismo , Leucemia/tratamento farmacológico , Leucemia/patologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citostáticos/farmacologia , Antineoplásicos/farmacologia
3.
J Med Chem ; 67(10): 8020-8042, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38727048

RESUMO

Promising targeted therapy options to overcome drug resistance and side effects caused by platinum(II) drugs for treatment in hepatocellular carcinoma are urgently needed. Herein, six novel multifunctional platinum(IV) complexes through linking platinum(II) agents and glycyrrhetinic acid (GA) were designed and synthesized. Among them, complex 20 showed superior antitumor activity against tested cancer cells including cisplatin resistance cells than cisplatin and simultaneously displayed good liver-targeting ability. Moreover, complex 20 can significantly cause DNA damage and mitochondrial dysfunction, promote reactive oxygen species generation, activate endoplasmic reticulum stress, and eventually induce apoptosis. Additionally, complex 20 can effectively inhibit cell migration and invasion and trigger autophagy and ferroptosis in HepG-2 cells. More importantly, complex 20 demonstrated stronger tumor inhibition ability than cisplatin or the combo of cisplatin/GA with almost no systemic toxicity in HepG-2 or A549 xenograft models. Collectively, complex 20 could be developed as a potential anti-HCC agent for cancer treatment.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Ácido Glicirretínico , Neoplasias Hepáticas , Humanos , Ácido Glicirretínico/farmacologia , Ácido Glicirretínico/química , Ácido Glicirretínico/síntese química , Ácido Glicirretínico/análogos & derivados , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Animais , Camundongos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Ligantes , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Camundongos Nus , Apoptose/efeitos dos fármacos , Células Hep G2 , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Cisplatino/farmacologia , Compostos Organoplatínicos/farmacologia , Compostos Organoplatínicos/química , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/uso terapêutico , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Int J Mol Sci ; 25(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38791591

RESUMO

Multidrug resistance (MDR) is frequently induced after long-term exposure to reduce the therapeutic effect of chemotherapeutic drugs, which is always associated with the overexpression of efflux proteins, such as P-glycoprotein (P-gp). Nano-delivery technology can be used as an efficient strategy to overcome tumor MDR. In this study, mesoporous silica nanoparticles (MSNs) were synthesized and linked with a disulfide bond and then coated with lipid bilayers. The functionalized shell/core delivery systems (HT-LMSNs-SS@DOX) were developed by loading drugs inside the pores of MSNs and conjugating with D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) and hyaluronic acid (HA) on the outer lipid surface. HT-LMSNs-SS and other carriers were characterized and assessed in terms of various characteristics. HT-LMSNs-SS@DOX exhibited a dual pH/reduction responsive drug release. The results also showed that modified LMSNs had good dispersity, biocompatibility, and drug-loading capacity. In vitro experiment results demonstrated that HT-LMSNs-SS were internalized by cells and mainly by clathrin-mediated endocytosis, with higher uptake efficiency than other carriers. Furthermore, HT-LMSNs-SS@DOX could effectively inhibit the expression of P-gp, increase the apoptosis ratios of MCF-7/ADR cells, and arrest cell cycle at the G0/G1 phase, with enhanced ability to induce excessive reactive oxygen species (ROS) production in cells. In tumor-bearing model mice, HT-LMSNs-SS@DOX similarly exhibited the highest inhibition activity against tumor growth, with good biosafety, among all of the treatment groups. Therefore, the nano-delivery systems developed herein achieve enhanced efficacy towards resistant tumors through targeted delivery and redox-responsive drug release, with broad application prospects.


Assuntos
Doxorrubicina , Resistencia a Medicamentos Antineoplásicos , Bicamadas Lipídicas , Nanopartículas , Oxirredução , Dióxido de Silício , Dióxido de Silício/química , Humanos , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Nanopartículas/química , Camundongos , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Bicamadas Lipídicas/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Sistemas de Liberação de Medicamentos , Apoptose/efeitos dos fármacos , Porosidade , Feminino , Células MCF-7 , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Ácido Hialurônico/química , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Camundongos Nus
5.
Eur J Med Chem ; 272: 116466, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704938

RESUMO

P-glycoprotein (Pgp) modulators are promising agents for overcoming multidrug resistance (MDR) in cancer chemotherapy. In this study, via structural optimization of our lead compound S54 (nonsubstrate allosteric inhibitor of Pgp), 29 novel pyxinol amide derivatives bearing an aliphatic heterocycle were designed, synthesized, and screened for MDR reversal activity in KBV cells. Unlike S54, these active derivatives were shown to transport substrates of Pgp. The most potent derivative 4c exhibited promising MDR reversal activity (IC50 of paclitaxel = 8.80 ± 0.56 nM, reversal fold = 211.8), which was slightly better than that of third-generation Pgp modulator tariquidar (IC50 of paclitaxel = 9.02 ± 0.35 nM, reversal fold = 206.6). Moreover, the cytotoxicity of this derivative was 8-fold lower than that of tariquidar in human normal HK-2 cells. Furthermore, 4c blocked the efflux function of Pgp and displayed high selectivity for Pgp but had no effect on its expression and distribution. Molecular docking revealed that 4c bound preferentially to the drug-binding domain of Pgp. Overall, 4c is a promising lead compound for developing Pgp modulators.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Amidas , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Simulação de Acoplamento Molecular , Humanos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Amidas/química , Amidas/farmacologia , Amidas/síntese química , Relação Estrutura-Atividade , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Estrutura Molecular , Relação Dose-Resposta a Droga , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos
6.
Nurs Health Sci ; 26(2): e13126, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754867

RESUMO

Multidrug-resistant organism infections are a serious health problem globally, and can result in patient mortality and morbidity. In this descriptive study, we produced the first web application for transmission prevention specific to the situation based on nursing experience, knowledge, and practice guidelines and to evaluate web application satisfaction among Thai nurses. The sample comprised 282 Thai registered nurses experienced in caring for patients with multidrug-resistant organisms in a tertiary hospital. A demographic form and knowledge test were completed anonymously online. Data were analyzed using descriptive statistics. The application emphasized crucial topics for which participants had low preliminary knowledge and included tutorial sessions, pictures, video clips, drills, and a post-test. The application was piloted with a random sample of 30 nurses, and an instrument tested their satisfaction with this. Results revealed that preliminary knowledge scores for preventing transmission were moderate, and participants were highly satisfied with the application. Findings suggest the application is suitable for Thai nurses and could be applied to nursing practice elsewhere. However, further testing is recommended before implementing it into nursing practice.


Assuntos
Internet , Humanos , Feminino , Tailândia , Adulto , Masculino , Inquéritos e Questionários , Pessoa de Meia-Idade , Enfermeiras e Enfermeiros/psicologia , Enfermeiras e Enfermeiros/estatística & dados numéricos , Satisfação Pessoal , Resistência a Múltiplos Medicamentos
7.
J Biochem Mol Toxicol ; 38(6): e23732, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38769657

RESUMO

Achieving targeted, customized, and combination therapies with clarity of the involved molecular pathways is crucial in the treatment as well as overcoming multidrug resistance (MDR) in cancer. Nanotechnology has emerged as an innovative and promising approach to address the problem of drug resistance. Developing nano-formulation-based therapies using therapeutic agents poses a synergistic effect to overcome MDR in cancer. In this review, we aimed to highlight the important pathways involved in the progression of MDR in cancer mediated through nanotechnology-based approaches that have been employed to circumvent them in recent years. Here, we also discussed the potential use of marine metabolites to treat MDR in cancer, utilizing active drug-targeting nanomedicine-based techniques to enhance selective drug accumulation in cancer cells. The discussion also provides future insights for developing complex targeted, multistage responsive nanomedical drug delivery systems for effective cancer treatments. We propose more combinational studies and their validation for the possible marine-based nanoformulations for future development.


Assuntos
Produtos Biológicos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Nanotecnologia , Neoplasias , Humanos , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , Produtos Biológicos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Nanotecnologia/métodos , Organismos Aquáticos/química , Animais , Nanomedicina/métodos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Sistemas de Liberação de Medicamentos
8.
Nanoscale ; 16(17): 8434-8446, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38592819

RESUMO

Combination therapy has proven effective in counteracting tumor multidrug resistance (MDR). However, the pharmacokinetic differences among various drugs and inherent water insolubility for most small molecule agents greatly hinder their synergistic effects, which makes the delivery of drugs for combination therapy in vivo a key problem. Herein, we propose a protonated strategy to transform a water-insoluble small molecule drug-inhibitor conjugate into an amphiphilic one, which then self-assembles into nanoparticles for co-delivery in vivo to overcome tumor MDR. Specifically, paclitaxel (PTX) is first coupled with a third-generation P-glycoprotein (P-gp) inhibitor zosuquidar (Zos) through a glutathione (GSH)-responsive disulfide bond to produce a hydrophobic drug-inhibitor conjugate (PTX-ss-Zos). Subsequently treated with hydrochloric acid ethanol solution (HCl/EtOH), PTX-ss-Zos is transformed into the amphiphilic protonated precursor and then forms nanoparticles (PTX-ss-Zos@HCl NPs) in water by molecular self-assembly. PTX-ss-Zos@HCl NPs can be administered intravenously and accumulated specifically at tumor sites. Once internalized by cancer cells, PTX-ss-Zos@HCl NPs can be degraded under the overexpressed GSH to release PTX and Zos simultaneously, which synergistically reverse tumor MDR and inhibit tumor growth. This offers a promising strategy to develop small molecule self-assembled nanoagents to reverse tumor MDR in combination therapy.


Assuntos
Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas , Paclitaxel , Humanos , Paclitaxel/química , Paclitaxel/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Camundongos , Nanopartículas/química , Linhagem Celular Tumoral , Camundongos Nus , Prótons , Camundongos Endogâmicos BALB C , Antineoplásicos/química , Antineoplásicos/farmacologia , Portadores de Fármacos/química , Feminino , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo
9.
Sci Rep ; 14(1): 9259, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649719

RESUMO

Chemotherapy resistance poses clinical challenges in pancreatic cancer treatment. Developing cell lines resistant to chemotherapy is crucial for investigating drug resistance mechanisms and identifying alternative treatment pathways. The genetic and biological attributes of pancreatic cancer depend on its aetiology, racial demographics and anatomical origin, underscoring the need for models that comprehensively represent these characteristics. Here, we introduce PDAC-X2, a pancreatic cancer cell line derived from Chinese patients. We conducted a comprehensive analysis encompassing the immune phenotype, biology, genetics, molecular characteristics and tumorigenicity of the cell line. PDAC-X2 cells displayed epithelial morphology and expressed cell markers (CK7 and CK19) alongside other markers (E-cadherin, Vimentin, Ki-67, CEA and CA19-9). The population doubling time averaged around 69 h. In vivo, PDAC-X2 cells consistently maintained their tumorigenicity, achieving a 100% tumour formation rate. Characterised by a predominantly tetraploid karyotype, this cell line exhibited a complex genetic markup. Notably, PDAC-X2 cells demonstrated resistance to multiple drugs, including gemcitabine, paclitaxel, 5-fluorouracil and oxaliplatin. In conclusion, PDAC-X2 presents an invaluable preclinical model. Its utility lies in facilitating the study of drug resistance mechanisms and the exploration of alternative therapeutic approaches aimed at enhancing the prognosis of this tumour type.


Assuntos
Carcinoma Ductal Pancreático , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Animais , Camundongos , Resistência a Múltiplos Medicamentos/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Masculino , Feminino , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Gencitabina , Povo Asiático , População do Leste Asiático
10.
Open Vet J ; 14(1): 553-563, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633170

RESUMO

Background: Bacterial infections causing digestive problems are among the most serious threats to Egypt's duck industry, owing to their effects on feed utilization and body weight gain. Aim: As a result, the goal of this study was to identify bacterial pathogens causing enteritis in ducks as well as testing their antimicrobials resistance capabilities. Methods: Forty-two duck flocks from different localities at four Egyptian Governorates (El-Sharkia, El-Gharbia, El-Dakahlia, and El-Qaliobia) have been subjected to clinical and postmortem examination as well as bacterial isolation and identification. The liver samples have been collected aseptically from freshly euthanized ducks for bacterial isolation followed by identification using conventional biochemical tests, VITEK 2 system, and confirmatory polymerase chain reaction (PCR) for detection of the uid A gene (beta-glucuronidase enzyme) of Escherichia coli. In addition, antimicrobial sensitivity testing for the isolates against different antimicrobials by the VITEK 2 system was used. Results: Forty-six positive bacterial isolates were identified using conventional methods and the VITEK 2 system including Staphylococcus spp. (52.17%), E. coli (41.30%), and 2.17% for each of Enterococcus casseli lavus, Salmonella enterica subspecies arizonae, and Enterobacter cloacae. PCR was positive for E. coli uid A gene at 556 bp. The antibiogram patterns of isolated pathogens from naturally infected ducks in our work demonstrated 87% multidrug resistance with varying results against different antimicrobial drugs tested. Such findings supported the fact of the upgrading multidrug resistance of Staphylococci and Enterobacteriacae. Conclusion: The most prevalent bacterial pathogens associated with duck enteritis were Staphylococcus spp. and E. coli with the first report of S. enterica subspecies arizonae causing duck enteritis in Egypt.


Assuntos
Salmonella enterica , Animais , Salmonella arizonae , Patos , Egito , Escherichia coli , Antibacterianos/farmacologia , Staphylococcus , Resistência a Múltiplos Medicamentos
11.
Eur J Med Chem ; 270: 116363, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593587

RESUMO

Overcoming multidrug resistance (MDR) is one of the major challenges in cancer therapy. In this respect, Schiff base-related compounds (bearing a R1R2CNR3 bond) gained high interest during the past decades. Schiff bases are considered privileged ligands for various reasons, including the easiness of their preparation and the possibility to form complexes with almost all transition metal ions. Schiff bases and their metal complexes exhibit many types of biological activities and are used for the treatment and diagnosis of various diseases. Until now, 13 Schiff bases have been investigated in clinical trials for cancer treatment and hypoxia imaging. This review represents the first collection of Schiff bases and their complexes which demonstrated MDR-reversal activity. The areas of drug resistance covered in this article involve: 1) Modulation of ABC transporter function, 2) Targeting lysosomal ABCB1 overexpression, 3) Circumvention of ABC transporter-mediated drug efflux by alternative routes of drug uptake, 4) Selective activity against MDR cancer models (collateral sensitivity), 5) Targeting GSH-detoxifying systems, 6) Overcoming apoptosis resistance by inducing necrosis and paraptosis, 7) Reactivation of mutated p53, 8) Restoration of sensitivity to DNA-damaging anticancer therapy, and 9) Overcoming drug resistance through modulation of the immune system. Through this approach, we would like to draw attention to Schiff bases and their metal complexes representing highly interesting anticancer drug candidates with the ability to overcome MDR.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Bases de Schiff/farmacologia , Bases de Schiff/química , Resistência a Múltiplos Medicamentos , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias/tratamento farmacológico
12.
Molecules ; 29(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38611964

RESUMO

Two new phenylspirodrimanes, stachybotrins K and L (1 and 2), together with eight known analogues (3-10), were isolated from deep-sea-derived Stachybotrys sp. MCCC 3A00409. Their structures were determined by extensive NMR data and mass spectroscopic analysis. Absolute configurations of new compounds were determined through a comparison of their circular dichroism (CD) spectra with other reported compounds. The possible reversal effects of all compounds were assayed in the resistant cancer cell lines. Stachybotrysin B (8) can reverse multidrug resistance (MDR) in ABCB1-overexpression cells (KBv200, Hela/VCR) at the non-cytotoxic concentration. Doxorubicin accumulation assay and molecular-docking analysis reveal that the mechanism of its reversal MDR effect may be related to the increase in the intracellular concentration of substrate anticancer drugs.


Assuntos
Stachybotrys , Humanos , Bioensaio , Dicroísmo Circular , Células HeLa , Resistência a Múltiplos Medicamentos
13.
Proc Natl Acad Sci U S A ; 121(15): e2321116121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557176

RESUMO

Multidrug resistance (MDR) is a major factor in the failure of many forms of tumor chemotherapy. Development of a specific ligand for MDR-reversal would enhance the intracellular accumulation of therapeutic agents and effectively improve the tumor treatments. Here, an aptamer was screened against a doxorubicin (DOX)-resistant human hepatocellular carcinoma cell line (HepG2/DOX) via cell-based systematic evolution of ligands by exponential enrichment. A 50 nt truncated sequence termed d3 was obtained with high affinity and specificity for HepG2/DOX cells. Multidrug resistance protein 1 (MDR1) is determined to be a possible recognition target of the selected aptamer. Aptamer d3 binding was revealed to block the MDR of the tumor cells and increase the accumulation of intracellular anticancer drugs, including DOX, vincristine, and paclitaxel, which led to a boost to the cell killing of the anticancer drugs and lowering their survival of the tumor cells. The aptamer d3-mediated MDR-reversal for effective chemotherapy was further verified in an in vivo animal model, and combination of aptamer d3 with DOX significantly improved the suppression of tumor growth by treating a xenograft HepG2/DOX tumor in vivo. This work demonstrates the feasibility of a therapeutic DNA aptamer as a tumor MDR-reversal agent, and combination of the selected aptamer with chemotherapeutic drugs shows great potential for liver cancer treatments.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Animais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistência a Múltiplos Medicamentos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Quimioterapia Combinada , Linhagem Celular Tumoral
14.
Carbohydr Polym ; 332: 121897, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431408

RESUMO

Cancer multidrug resistance (MDR) dramatically hindered the efficiency of standard chemotherapy. Mitochondria are highly involved in the occurrence and development of MDR; thus, inducing its malfunction will be an appealing strategy to treat MDR tumors. In this paper, a natural polysaccharides-based nanoplatform (TDTD@UA/HA micelles) with cell and mitochondria dual-targeting ability was facilely fabricated to co-deliver ursolic acid (UA) and doxorubicin (DOX) for combinatorial MDR therapy. TDTD@UA/HA micelles featured a spherical morphology, narrow size distribution (∼140 nm), as well as favorable drug co-loading capacity (DOX: 8.41 %, UA: 9.06 %). After hyaluronic acid (HA)-mediated endocytosis, the lysosomal hyaluronidase promoted the degradation of HA layer and then the positive triphenylphosphine groups were exposed, which significantly enhanced the mitochondria-accumulation of nano micelles. Subsequently, DOX and UA were specifically released into mitochondria under the trigger of endogenous reactive oxygen species (ROS), followed by severe mitochondrial destruction through generating ROS, exhausting mitochondrial membrane potential, and blocking energy supply, etc.; ultimately contributing to the susceptibility restoration of MCF-7/ADR cells to chemotherapeutic agents. Importantly, TDTD@UA/HA micelles performed potent anticancer efficacy without distinct toxicity on the MDR tumor-bearing nude mice model. Overall, the versatile nanomedicine represented a new therapeutic paradigm and held great promise in overcoming MDR-related cancer.


Assuntos
Micelas , Neoplasias , Humanos , Animais , Camundongos , Ácido Ursólico , Ácido Hialurônico/farmacologia , Dextranos/metabolismo , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo , Resistencia a Medicamentos Antineoplásicos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Resistência a Múltiplos Medicamentos , Polímeros/metabolismo , Células MCF-7 , Mitocôndrias , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico
15.
Mol Biol Rep ; 51(1): 427, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498238

RESUMO

BACKGROUND: Drug resistance is one of the most critical problems in gastric cancer therapy. This study was performed to investigate the valproic acid effects on the proliferation of sensitive and resistant cell lines of human gastric cancer, and to explore the mechanism of the agent on multi drug resistance and apoptosis genes. METHODS: The cytotoxicity effect of valproic acid on the EPG85.257 and EPG85.257RDB cells was assessed by the MTT assay, and the IC50 concentration was evaluated. Apoptosis, genotoxicity, and drug resistance pump activity were evaluated using comet assay, Real-time PCR, and flow cytometry, respectively. Cell proliferation was assayed using a scratch test. RESULTS: Dose-dependent toxicity was recorded after treatment of cells with valproic acid. Valproic acid represented a significant growth inhibition on EPG85.257 cells with IC50 values of 5.84 µM and 4.78 µM after 48 h and 72 h treatment, respectively. In contrast, the drug-resistant counterpart represented 8.7 µM and 7.02 µM IC50 values after the same treatment time. Valproic acid induced PTEN, Bcl2, P53, Bax, P21, and caspase3 expression in EPG85.257 cells, whereas p21, p53, PTEN, and ABCB1 were overexpressed in EPG5.257RDB. Valproic acid hindered cell migration in both cell lines (P < 0.01). Valproate genotoxicity was significantly higher in the parent cells than in their resistant EPG85.257RDB counterparts. Valproate led to a 62% reduction in the daunorubicin efflux of the MDR1 pump activity. CONCLUSIONS: Valproate can affect drug resistance in gastric cancer via a unique mechanism independent of MDR1 expression.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Ácido Valproico/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Proteína Supressora de Tumor p53 , Resistência a Múltiplos Medicamentos/genética , Apoptose , Linhagem Celular Tumoral , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/farmacologia , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/farmacologia , Proteínas de Transporte Vesicular/uso terapêutico
16.
ACS Appl Mater Interfaces ; 16(11): 13509-13524, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38466024

RESUMO

Elesclomol (ES), a copper-binding ionophore, forms an ES-Cu complex with copper ions (Cu(II)). ES-Cu has been proven to induce mitochondrial oxidative stress and copper-dependent cell death (cuprotosis). However, ES-Cu is poorly water-soluble, and its delivery to various cancer cells is a challenge. Herein, we designed a d-α-tocopherol polyethylene glycol 1000 succinate/chondroitin sulfate-cholic acid (TPGS/CS-CA)-based micellar nanoparticle for delivering the ES-Cu complex to various cancer cell lines to demonstrate its efficacy as an anticancer agent. The ES-Cu nanoparticles exerted high encapsulation efficiency and excellent serum stability. The anticancer efficacy of ES-Cu nanoparticles was evaluated in various drug-sensitive cell lines (DU145, PC3, and A549) and drug-resistant cell lines (DU145TXR, PC3TXR, and A549TXR). The results showed that ES-Cu nanoparticles exerted potent anticancer activities in both drug-sensitive and drug-resistant cell lines. The Western blotting, reverse transcription quantitative polymerase chain reaction (RT-qPCR), and molecular docking results suggested that ES-Cu is not a substrate for P glycoprotein (P-gp), which is an efflux transporter potentially causing multidrug resistance (MDR) in cancer cells. ES-Cu nanoparticles could bypass P-gp without compromising their activity, indicating that they may overcome MDR in cancer cells and provide a novel therapeutic strategy. Additionally, the extracellular matrix of ES-Cu nanoparticles-pretreated drug-resistant cells could polarize Raw 264.7 macrophages into the M1 phenotype. Therefore, our TPGS/CS-CA-based ES-Cu nanoparticles provide an effective method of delivering the ES-Cu complex, a promising strategy to overcome MDR in cancer therapy with potential immune response stimulation.


Assuntos
Antineoplásicos , Hidrazinas , Nanopartículas , Neoplasias , Cobre/química , Simulação de Acoplamento Molecular , Antineoplásicos/química , Nanopartículas/química , Resistência a Múltiplos Medicamentos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/farmacologia , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral
17.
BMC Vet Res ; 20(1): 84, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459543

RESUMO

In the present study, Aeromonas hydrophila was isolated from Tilapia zillii and Mugil cephalus samples collected during different seasons from various Suez Canal areas in Egypt. The prevalence of A. hydrophila, virulence genes, and antibiotic resistance profile of the isolates to the commonly used antibiotics in aquaculture were investigated to identify multiple drug resistance (MDR) and extensive drug-resistant (XDR) strains. In addition, a pathogenicity test was conducted using A. hydrophila, which was isolated and selected based on the prevalence of virulence and resistance genes, and morbidity of natural infected fish. The results revealed that A. hydrophila was isolated from 38 of the 120 collected fish samples (31.6%) and confirmed phenotypically and biochemically. Several virulence genes were detected in retrieved A. hydrophila isolates, including aerolysin aerA (57.9%), ser (28.9%), alt (26.3%), ast (13.1%), act (7.9%), hlyA (7.9%), and nuc (18.4%). Detection of antibiotic-resistant genes revealed that all isolates were positive for blapse1 (100%), blaSHV (42.1%), tetA (60.5%), and sul1 (42.1%). 63.1% of recovered isolates were considered MDR, while 28.9% of recovered isolates were considered XDR. Some isolates harbor both virulence and MDR genes; the highest percentage carried 11, followed by isolates harboring 9 virulence and resistance genes. It could be concluded that the high prevalence of A. hydrophila in aquaculture species and their diverse antibiotic resistance and virulence genes suggest the high risk of Aeromonas infection and could have important implications for aquaculture and public health.


Assuntos
Aeromonas hydrophila , Tilápia , Animais , Aeromonas hydrophila/genética , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Resistência a Múltiplos Medicamentos
18.
BMC Microbiol ; 24(1): 74, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454332

RESUMO

OBJECTIVE: Multi-drug resistance (MDR) has notably increased in community acquired uropathogens causing urinary tract infections (UTIs), predominantly Escherichia coli. Uropathogenic E. coli causes 80% of uncomplicated community acquired UTIs, particularly in pre-menopausal women. Considering this high prevalence and the potential to spread antimicrobial resistant genes, the current study was conducted to investigate the presence of clinically important strains of E. coli in Pakistani women having uncomplicated cystitis and pyelonephritis. Women belonging to low-income groups were exclusively included in the study. Seventy-four isolates from urine samples were processed, phylotyped, and screened for the presence of two Single Nucleotide Polymorphisms (SNPs) particularly associated with a clinically important clonal group A of E. coli (CgA) followed by antibiotic susceptibility testing and genome sequence analysis. RESULTS: Phylogroup B2 was most prevalent in patients and 44% of isolates were positive for the presence of CgA specific SNPs in Fumarate hydratase and DNA gyrase subunit B genes. Antibiotic susceptibility testing showed widespread resistance to trimethoprim-sulfamethoxazole and extended-spectrum beta-lactamase production. The infection analysis revealed the phylogroup B2 to be more pathogenic as compared to the other groups. The genome sequence of E. coli strain U17 revealed genes encoding virulence, multidrug resistance, and host colonization mechanisms. CONCLUSIONS: Our research findings not only validate the significant occurrence of multidrug-resistant clonal group A E. coli (CgA) in premenopausal Pakistani women suffering from cystitis and pyelonephritis but also reveal the presence of genes associated withvirulence, and drug efflux pumps. The detection of highly pathogenic, antimicrobial-resistant phylogroup B2 and CgA E. coli strains is likely to help in understanding the epidemiology of the pathogen and may ultimately help to reduce the impact of these strains on human health. Furthermore, the findings of this study will particularly help to reduce the prevalence of uncomplicated UTIs and the cost associated with their treatment in women belonging to low-income groups.


Assuntos
Cistite , Infecções por Escherichia coli , Pielonefrite , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Feminino , Escherichia coli , Infecções por Escherichia coli/diagnóstico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Paquistão/epidemiologia , Infecções Urinárias/diagnóstico , Resistência a Múltiplos Medicamentos , Cistite/tratamento farmacológico
19.
Integr Biol (Camb) ; 162024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38537223

RESUMO

Efflux transporters are a fundamental component of both prokaryotic and eukaryotic cells, play a crucial role in maintaining cellular homeostasis, and represent a key bridge between single cell and population levels. From a biomedical perspective, they play a crucial role in drug resistance (and especially multi-drug resistance, MDR) in a range of systems spanning bacteria and human cancer cells. Typically, multiple efflux transporters are present in these cells, and the efflux transporters transport a range of substrates (with partially overlapping substrates between transporters). Furthermore, in the context of drug resistance, the levels of transporters may be elevated either due to extra or intracellular factors (feedforward regulation) or due to the drug itself (feedback regulation). As a consequence, there is a real need for a transparent systems-level understanding of the collective functioning of a set of transporters and their response to one or more drugs. We develop a systems framework for this purpose and examine the functioning of sets of transporters, their interplay with one or more drugs and their regulation (both feedforward and feedback). Using computational and analytical work, we obtain transparent insights into the systems level functioning of a set of transporters arising from the interplay between the multiplicity of drugs and transporters, different drug-transporter interaction parameters, sequestration and feedback and feedforward regulation. These insights transparently arising from the most basic consideration of a multiplicity of transporters have broad relevance in natural biology, biomedical engineering and synthetic biology. Insight, Innovation, Integration: Innovation: creating a structured systems framework for evaluating the impact of multiple transporters on drug efflux and drug resistance. Systematic analysis allows us to evaluate the effect of multiple transporters on one/more drugs, and dissect associated resistance mechanisms. Integration allows for elucidation of key cause-and-effect relationships and a transparent systems-level understanding of the collective functioning of transporters and their impact on resistance, revealing the interplay of key underlying factors. Systems-level insights include the essentially different behaviour of transporters as part of a group; unintuitive effects of influx; effects of elevated transporter-levels by feedforward and drug-induced mechanisms. Relevance: a systems understanding of efflux, their role in MDR, providing a framework/platform for use in designing treatment, and in synthetic biology design.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Neoplasias , Humanos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/farmacologia , Transportadores de Cassetes de Ligação de ATP/uso terapêutico , Resistência a Múltiplos Medicamentos , Transporte Biológico , Neoplasias/tratamento farmacológico , Homeostase
20.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542082

RESUMO

Intracellular calcium, as a second messenger, is involved in multilevel cellular regulatory pathways and plays a role (among other processes) in switching between survival and initiation of cell death in neoplastic cells. The development of multidrug resistance (MDR) in neoplastic cells is associated with the ability of cells to escape programmed cell death, in which dysregulation of intracellular calcium may play an important role. Therefore, reliable monitoring of intracellular calcium levels is necessary. However, such a role might be limited by a real obstacle since several fluorescent intracellular calcium indicators are substrates of membrane ABC drug transporters. For example, Fluo-3/AM is a substrate of P-glycoprotein (ABCB1 member of the ABC family), whose overexpression is the most frequent cause of MDR. The overexpression of ABCB1 prevents MDR cell variants from retaining this tracer in the intracellular space where it is supposed to detect calcium. The solution is to use a proper inhibitor of P-gp efflux activity to ensure the retention of the tracer inside the cells. The present study showed that Zosuquidar and Tariquidar (P-gp inhibitors) are suitable for monitoring intracellular calcium, either by flow cytometry or confocal microscopy, in cells overexpressing P-gp.


Assuntos
Cálcio , Resistência a Múltiplos Medicamentos , Cálcio/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...