Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43.479
Filtrar
1.
Bioinformatics ; 40(Supplement_1): i418-i427, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940145

RESUMO

MOTIVATION: Mutations are the crucial driving force for biological evolution as they can disrupt protein stability and protein-protein interactions which have notable impacts on protein structure, function, and expression. However, existing computational methods for protein mutation effects prediction are generally limited to single point mutations with global dependencies, and do not systematically take into account the local and global synergistic epistasis inherent in multiple point mutations. RESULTS: To this end, we propose a novel spatial and sequential message passing neural network, named DDAffinity, to predict the changes in binding affinity caused by multiple point mutations based on protein 3D structures. Specifically, instead of being on the whole protein, we perform message passing on the k-nearest neighbor residue graphs to extract pocket features of the protein 3D structures. Furthermore, to learn global topological features, a two-step additive Gaussian noising strategy during training is applied to blur out local details of protein geometry. We evaluate DDAffinity on benchmark datasets and external validation datasets. Overall, the predictive performance of DDAffinity is significantly improved compared with state-of-the-art baselines on multiple point mutations, including end-to-end and pre-training based methods. The ablation studies indicate the reasonable design of all components of DDAffinity. In addition, applications in nonredundant blind testing, predicting mutation effects of SARS-CoV-2 RBD variants, and optimizing human antibody against SARS-CoV-2 illustrate the effectiveness of DDAffinity. AVAILABILITY AND IMPLEMENTATION: DDAffinity is available at https://github.com/ak422/DDAffinity.


Assuntos
Mutação Puntual , SARS-CoV-2 , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Biologia Computacional/métodos , Conformação Proteica , Humanos , Redes Neurais de Computação , Ligação Proteica , COVID-19/virologia , Proteínas/química , Proteínas/metabolismo , Algoritmos
2.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928408

RESUMO

Trueperella pyogenes is an important opportunistic pathogenic bacterium widely distributed in the environment. Pyolysin (PLO) is a primary virulence factor of T. pyogenes and capable of lysing many different cells. PLO is a member of the cholesterol-dependent cytolysin (CDC) family of which the primary structure only presents a low level of homology with other members from 31% to 45%. By deeply studying PLO, we can understand the overall pathogenic mechanism of CDC family proteins. This study established a mouse muscle tissue model infected with recombinant PLO (rPLO) and its single-point mutations, rPLO N139K and rPLO F240A, and explored its mechanism of causing inflammatory damage. The inflammatory injury abilities of rPLO N139K and rPLO F240A are significantly reduced compared to rPLO. This study elaborated on the inflammatory mechanism of PLO by examining its unit point mutations in detail. Our data also provide a theoretical basis and practical significance for future research on toxins and bacteria.


Assuntos
Proteínas de Bactérias , Proteínas Hemolisinas , Proteína 3 que Contém Domínio de Pirina da Família NLR , Mutação Puntual , Animais , Camundongos , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Inflamação/metabolismo , Inflamação/genética , Potássio/metabolismo , Transdução de Sinais , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Inflamassomos/metabolismo , Humanos
3.
J Gen Virol ; 105(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38921821

RESUMO

Schmallenberg virus (SBV) belongs to the Simbu serogroup within the family Peribunyaviridae, genus Orthobunyavirus and is transmitted by Culicoides biting midges. Infection of naïve ruminants in a critical phase of gestation may lead to severe congenital malformations. Sequence analysis from viremic animals revealed a very high genome stability. In contrast, sequence variations are frequently described for SBV from malformed fetuses. In addition to S segment mutations, especially within the M segment encoding the major immunogen Gc, point mutations or genomic deletions are also observed. Analysis of the SBV_D281/12 isolate from a malformed fetus revealed multiple point mutations in all three genome segments. It also has a large genomic deletion in the antigenic domain encoded by the M segment compared to the original SBV reference strain 'BH80/11' isolated from viremic blood in 2011. Interestingly, SBV_D281/12 showed a marked replication deficiency in vitro in Culicoides sonorensis cells (KC cells), but not in standard baby hamster kidney cells (BHK-21). We therefore generated a set of chimeric viruses of rSBV_D281/12 and wild-type rSBV_BH80/11 by reverse genetics, which were characterized in both KC and BHK-21 cells. It could be shown that the S segment of SBV_D281/12 is responsible for the replication deficit and that it acts independently from the large deletion within Gc. In addition, a single point mutation at position 111 (S to N) of the nucleoprotein was identified as the critical mutation. Our results suggest that virus variants found in malformed fetuses and carrying characteristic genomic mutations may have a clear 'loss of fitness' for their insect hosts in vitro. It can also be concluded that such mutations lead to virus variants that are no longer part of the natural transmission cycle between mammalian and insect hosts. Interestingly, analysis of a series of SBV sequences confirmed the S111N mutation exclusively in samples of malformed fetuses and not in blood from viremic animals. The characterization of these changes will allow the definition of protein functions that are critical for only one group of hosts.


Assuntos
Infecções por Bunyaviridae , Ceratopogonidae , Genoma Viral , Orthobunyavirus , Animais , Orthobunyavirus/genética , Orthobunyavirus/classificação , Orthobunyavirus/isolamento & purificação , Infecções por Bunyaviridae/virologia , Infecções por Bunyaviridae/veterinária , Ceratopogonidae/virologia , Cricetinae , Linhagem Celular , Replicação Viral , Mutação Puntual , Bovinos , Ovinos , Filogenia , RNA Viral/genética
4.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 831-835, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-38926975

RESUMO

OBJECTIVE: To analyze thalassemia genotypes and distribution of children in Wuzhou Guangxi, and evaluate the diagnostic value of HbA2 in children's thalassemia screening, so as to provide scientific evidence for the prevention and control strategies of thalassemia. METHODS: Four hundred and fifty-eight children suspected with thalassemia in Wuzhou were enrolled from March 2017 to June 2022. The level of HbA2 was detected using Bio-Rad VARIANT II Hb analysis system. The deletion of α-thalassemia was measured with gap-PCR assay, and the point mutation of α- and ß-thalassemia was tested with DNA reverse dot blot hybridization assay. The receiver operating characteristic (ROC) curve was used to analyze the diagnostic value of HbA2 for children's thalassemia. RESULTS: A total of 304 thalassemia carriers were detected in 458 children, accounting for 66.38%. One hundred and seventy-five cases were defined to be α-thalassemia, with the main type of --SEA/αα (54.86%). Thirty-six cases were defined to be intermediate α-thalassemia, with the main type of -α3.7/--SEA (9.72%). In 108 cases with ß-thalassemia, ßCD41-42/ßN was the main type, accounting for 49.07%, followed by ßIVS-Ⅱ-654 /ßN (14.81%). Seven cases were moderate/severe ß-thalassemia (predominantly ß-28/ß-28 and ßCD41-42/ßCD17/). Twenty-one genotypes of α- and ß-thalassemia were found in the children. There was significant difference of HbA2 level between the children with different types of thalassemia and healthy controls (all P < 0.001). ROC curve analysis showed that the sensitivities of HbA2 for α-thalassemia, ß-thalassemia and αß-thalassemia were 74.3%, 82.4% and 85.7%, with the optimal cut-off values of 2.60%, 3.60% and 3.70%, respectively, the specificities were 64.3%, 96.1% and 96.8%, and the area under the curve were 0.690, 0.887 and 0.916, respectively. CONCLUSION: The thalassemia genotypes of children in Wuzhou are diverse. It is necessary to further strengthen the prevention and control measure of thalassemia to reduce birth defects and improve birth quality.


Assuntos
Genótipo , Hemoglobina A2 , Talassemia alfa , Talassemia beta , Humanos , China , Criança , Talassemia alfa/genética , Talassemia beta/genética , Mutação Puntual , Masculino
5.
Virulence ; 15(1): 2366874, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38869140

RESUMO

Recombinant Muscovy duck parvovirus (rMDPV) is a product of genetic recombination between classical Muscovy duck parvovirus (MDPV) and goose parvovirus (GPV). The recombination event took place within a 1.1-kb DNA segment located in the middle of the VP3 gene, and a 187-bp sequence extending from the P9 promoter to the 5' initiation region of the Rep1 ORF. This resulted in the alteration of five amino acids within VP3. Despite these genetic changes, the precise influence of recombination and amino acid mutations on the pathogenicity of rMDPV remains ambiguous. In this study, based on the rMDPV strain ZW and the classical MDPV strain YY, three chimeric viruses (rZW-mP9, rZW-mPR187, and rYY-rVP3) and the five amino acid mutations-introduced mutants (rZW-g5aa and rYY-5aa(ZW)) were generated using reverse genetic technology. When compared to the parental virus rZW, rZW-g5aa exhibited a prolonged mean death time (MDT) and a decreased median lethal dose (ELD50) in embryonated duck eggs. In contrast, rYY-5aa(ZW) did not display significant differences in MDT and ELD50 compared to rYY. In 2-day-old Muscovy ducklings, infection with rZW-g5aa and rYY-5aa(ZW) resulted in mortality rates of only 20% and 10%, respectively, while infections with the three chimeric viruses (rZW-mP9, rZW-mPR187, rYY-rVP3) and rZW still led to 100% mortality. Notably, rYY-rVP3, containing the VP3 region from strain ZW, exhibited 50% mortality in 6-day-old Muscovy ducklings and demonstrated significant horizontal transmission. Collectively, our findings indicate that recombination and consequent amino acid changes in VP3 have a synergistic impact on the heightened virulence of rMDPV in Muscovy ducklings.


Assuntos
Proteínas do Capsídeo , Patos , Infecções por Parvoviridae , Mutação Puntual , Doenças das Aves Domésticas , Recombinação Genética , Animais , Virulência , Infecções por Parvoviridae/virologia , Infecções por Parvoviridae/veterinária , Doenças das Aves Domésticas/virologia , Proteínas do Capsídeo/genética , Parvovirinae/genética , Parvovirinae/patogenicidade
6.
Sci Rep ; 14(1): 12669, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830918

RESUMO

Dermatophytes show a wide geographic distribution and are the main causative agents of skin fungal infections in many regions of the world. Recently, their resistance to antifungal drugs has led to an obstacle to effective treatment. To address the lack of dermatophytosis data in Iraq, this study was designed to investigate the distribution and prevalence of dermatophytes in the human population and single point mutations in squalene epoxidase gene (SQLE) of terbinafine resistant isolates. The identification of 102 dermatophytes isolated from clinical human dermatophytosis was performed through morphological and microscopic characteristics followed by molecular analysis based on ITS and TEF-1α sequencing. Phylogeny was achieved through RAxML analysis. CLSI M38-A2 protocol was used to assess antifungal susceptibility of the isolates to four major antifungal drugs. Additionally, the presence of point mutations in SQLE gene, which are responsible for terbinafine resistance was investigated. Tinea corporis was the most prevalent clinical manifestation accounting for 37.24% of examined cases of dermatophytosis. Based on ITS, T. indotineae (50.98%), T. mentagrophytes (19.61%), and M. canis (29.41%) was identified as an etiologic species. T. indotineae and T. mentagrophytes strains were identified as T. interdigitale based on TEF-1α. Terbinafine showed the highest efficacy among the tested antifungal drugs. T. indotineae and T. mentagrophytes showed the highest resistance to antifungal drugs with MICs of 2-4 and 4 µg/mL, while M. canis was the most susceptible species. Three of T. indotineae isolates showed mutations in SQLE gene Phe397Leu substitution. A non-previously described point mutation, Phe311Leu was identified in T. indotineae and mutations Lys276Asn, Phe397Leu and Leu419Phe were diagnosed in T. mentagrophytes XVII. The results of mutation analysis showed that Phe397Leu was a destabilizing mutation; protein stability has decreased with variations in pH, and point mutations affected the interatomic interaction, resulting in bond disruption. These results could help to control the progression of disease effectively and make decisions regarding the selection of appropriate drugs for dermatophyte infections.


Assuntos
Antifúngicos , Arthrodermataceae , Farmacorresistência Fúngica , Testes de Sensibilidade Microbiana , Mutação Puntual , Esqualeno Mono-Oxigenase , Tinha , Humanos , Antifúngicos/farmacologia , Iraque/epidemiologia , Tinha/microbiologia , Tinha/epidemiologia , Tinha/tratamento farmacológico , Farmacorresistência Fúngica/genética , Masculino , Arthrodermataceae/genética , Arthrodermataceae/efeitos dos fármacos , Arthrodermataceae/patogenicidade , Arthrodermataceae/isolamento & purificação , Feminino , Esqualeno Mono-Oxigenase/genética , Adulto , Filogenia , Terbinafina/farmacologia , Terbinafina/uso terapêutico , Pessoa de Meia-Idade , Adolescente , Adulto Jovem , Criança , Proteínas Fúngicas/genética , Idoso
7.
Pestic Biochem Physiol ; 202: 105900, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879291

RESUMO

The phytopathogenic oomycete Phytophthora litchii is the culprit behind the devastating disease known as "litchi downy blight", which causes large losses in litchi production. Although fluopimomide exhibits strong inhibitory efficacy against P. litchii, the exact mechanism of resistance is still unknown. The sensitivity of 137 P. litchii isolates to fluopimomide was assessed, and it was discovered that the median effective concentration (EC50) of the fungicide had a unimodal frequency distribution with a mean value of 0.763 ± 0.922 µg/mL. Comparing the resistant mutants to the equivalent parental isolates, the resistance mutants' survival fitness was much lower. While there was no cross-resistance between fluopimomide and other oomycete inhibitors, there is a notable positive cross-resistance between fluopimomide and fluopicolide. According to the thorough investigation, P. litchii had a moderate chance of developing fluopimomide resistance. The point mutations N771S and K847N in the VHA-a of P. litchii (PlVHA-a) were present in the fluopimomide-resistant mutants, and the two point mutations in PlVHA-a conferring fluopimomide resistance were verified by site-directed mutagenesis in the sensitive P. capsici isolate BYA5 and molecular docking.


Assuntos
Fungicidas Industriais , Phytophthora , Mutação Puntual , Phytophthora/efeitos dos fármacos , Phytophthora/genética , Fungicidas Industriais/farmacologia , Morfolinas/farmacologia , Benzamidas , Piridinas
8.
Nat Commun ; 15(1): 4946, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862540

RESUMO

Genomic aberrations are a critical impediment for the safe medical use of iPSCs and their origin and developmental mechanisms remain unknown. Here we find through WGS analysis of human and mouse iPSC lines that genomic mutations are de novo events and that, in addition to unmodified cytosine base prone to deamination, the DNA methylation sequence CpG represents a significant mutation-prone site. CGI and TSS regions show increased mutations in iPSCs and elevated mutations are observed in retrotransposons, especially in the AluY subfamily. Furthermore, increased cytosine to thymine mutations are observed in differentially methylated regions. These results indicate that in addition to deamination of cytosine, demethylation of methylated cytosine, which plays a central role in genome reprogramming, may act mutagenically during iPSC generation.


Assuntos
Ilhas de CpG , Citosina , Metilação de DNA , Células-Tronco Pluripotentes Induzidas , Mutação Puntual , Células-Tronco Pluripotentes Induzidas/metabolismo , Citosina/metabolismo , Animais , Humanos , Camundongos , Reprogramação Celular/genética , Retroelementos/genética , Linhagem Celular
9.
Int J Med Microbiol ; 315: 151624, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838390

RESUMO

Staphylococcus aureus is a notorious pathogen responsible for various severe diseases. Due to the emergence of drug-resistant strains, the prevention and treatment of S. aureus infections have become increasingly challenging. Vancomycin is considered to be one of the last-resort drugs for treating most methicillin-resistant S. aureus (MRSA), so it is of great significance to further reveal the mechanism of vancomycin resistance. VraFG is one of the few important ABC (ATP-binding cassette) transporters in S. aureus that can form TCS (two-component systems)/ABC transporter modules. ABC transporters can couple the energy released from ATP hydrolysis to translocate solutes across the cell membrane. In this study, we obtained a strain with decreased vancomycin susceptibility after serial passaging and selection. Subsequently, whole-genome sequencing was performed on this laboratory-derived strain MWA2 and a novel single point mutation was discovered in vraF gene, leading to decreased sensitivity to vancomycin and daptomycin. Furthermore, the mutation reduces autolysis of S. aureus and downregulates the expression of lytM, isaA, and atlA. Additionally, we observed that the mutant has a less net negative surface charge than wild-type strain. We also noted an increase in the expression of the dlt operon and mprF gene, which are associated with cell surface charge and serve to hinder the binding of cationic peptides by promoting electrostatic repulsion. Moreover, this mutation has been shown to enhance hemolytic activity, expand subcutaneous abscesses, reflecting an increased virulence. This study confirms the impact of a point mutation of VraF on S. aureus antibiotic resistance and virulence, contributing to a broader understanding of ABC transporter function and providing new targets for treating S. aureus infections.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Antibacterianos , Proteínas de Bactérias , Infecções Estafilocócicas , Staphylococcus aureus , Vancomicina , Virulência/genética , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Vancomicina/farmacologia , Animais , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/metabolismo , Testes de Sensibilidade Microbiana , Resistência a Vancomicina/genética , Sequenciamento Completo do Genoma , Daptomicina/farmacologia , Camundongos , Autólise , Humanos , Mutação Puntual , Mutação , Feminino
10.
World J Microbiol Biotechnol ; 40(7): 230, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829459

RESUMO

ß-Carotene is an attractive compound and that its biotechnological production can be achieved by using engineered Saccharomyces cerevisiae. In a previous study, we developed a technique for the efficient establishment of diverse mutants through the introduction of point and structural mutations into the yeast genome. In this study, we aimed to improve ß-carotene production by applying this mutagenesis technique to S. cerevisiae strain that had been genetically engineered for ß-carotene production. Point and structural mutations were introduced into ß-carotene-producing engineered yeast. The resulting mutants showed higher ß-carotene production capacity than the parental strain. The top-performing mutant, HP100_74, produced 37.6 mg/L of ß-carotene, a value 1.9 times higher than that of the parental strain (20.1 mg/L). Gene expression analysis confirmed an increased expression of multiple genes in the glycolysis, mevalonate, and ß-carotene synthesis pathways. In contrast, expression of ERG9, which functions in the ergosterol pathway competing with ß-carotene production, was decreased in the mutant strain. The introduction of point and structural mutations represents a simple yet effective method for achieving mutagenesis in yeasts. This technique is expected to be widely applied in the future to produce chemicals via metabolic engineering of S. cerevisiae.


Assuntos
Engenharia Metabólica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , beta Caroteno , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , beta Caroteno/biossíntese , beta Caroteno/metabolismo , Engenharia Metabólica/métodos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Mutação , Regulação Fúngica da Expressão Gênica , Carotenoides/metabolismo , Mutagênese , Mutação Puntual , Ácido Mevalônico/metabolismo , Vias Biossintéticas/genética , Farnesil-Difosfato Farnesiltransferase
11.
HLA ; 103(6): e15557, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837671

RESUMO

The novel KIR2DL3*00112 allele differs from the closest allele KIR2DL3*00101 by a single same sense mutation.


Assuntos
Alelos , Éxons , Receptores KIR2DL3 , Humanos , Receptores KIR2DL3/genética , Sequência de Bases , Análise de Sequência de DNA/métodos , Teste de Histocompatibilidade , Polimorfismo de Nucleotídeo Único , Mutação Puntual , Alinhamento de Sequência
12.
Genesis ; 62(3): e23602, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38721990

RESUMO

Cilia play a key role in the regulation of signaling pathways required for embryonic development, including the proper formation of the neural tube, the precursor to the brain and spinal cord. Forward genetic screens were used to generate mouse lines that display neural tube defects (NTD) and secondary phenotypes useful in interrogating function. We describe here the L3P mutant line that displays phenotypes of disrupted Sonic hedgehog signaling and affects the initiation of cilia formation. A point mutation was mapped in the L3P line to the gene Rsg1, which encodes a GTPase-like protein. The mutation lies within the GTP-binding pocket and disrupts the highly conserved G1 domain. The mutant protein and other centrosomal and IFT proteins still localize appropriately to the basal body of cilia, suggesting that RSG1 GTPase activity is not required for basal body maturation but is needed for a downstream step in axonemal elongation.


Assuntos
Cílios , Tubo Neural , Animais , Camundongos , Cílios/metabolismo , Cílios/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Tubo Neural/embriologia , Tubo Neural/metabolismo , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , Mutação Puntual , Transdução de Sinais
13.
J Phys Chem B ; 128(22): 5293-5309, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38808573

RESUMO

Given the fact that the cellular interior is crowded by many different kinds of macromolecules, it is important that in vitro studies be carried out in the presence of mixed crowder systems. In this regard, we have used binary crowders formed by the combination of some of the commonly used crowding agents, namely, Ficoll 70, Dextran 70, Dextran 40, and PEG 8000 (PEG 8), to study how these affect enzyme activity, dynamics, and crowder diffusion. The enzyme chosen is AK3L1, an isoform of adenylate kinase. To investigate its dynamics, we have carried out three single point mutations (A74C, A132C, and A209C) with the cysteine residues being labeled with a coumarin-based solvatochromic probe [CPM: (7-diethylamino-3-(4-maleimido-phenyl)-4-methylcoumarin)]. Both enzyme activity and dynamics decreased in the binary mixtures as compared with the sum of the individual crowders, suggesting a reduction in excluded volume (in the mixture). To gain deeper insights into the binary mixtures, fluorescence correlation spectroscopy studies were carried out using fluorescein isothiocyanate-labeled Dextran 70 and tetramethylrhodamine-labeled AK3L1 as the diffusion probes. Diffusion in binary mixtures was observed to be much more constrained (relative to the sum of the individual crowders) for the labeled enzyme as compared to the labeled crowder showing different environments being faced by the two species. This was further confirmed during imaging of the phase-separated droplets formed in the binary mixtures having PEG as one of the crowding agents. The interior of these droplets was found to be rich in crowders and densely packed, as shown by confocal and digital holographic microscopy images, with the enzymes predominantly residing outside these droplets, that is, in the relatively less crowded regions. Taken together, our data provide important insights into various aspects of the simplest form of mixed crowding, that is, composed of just two components, and also hint at the enhanced complexity that the cellular interior presents toward having a detailed and comprehensive understanding of the same.


Assuntos
Adenilato Quinase , Polietilenoglicóis , Difusão , Adenilato Quinase/metabolismo , Adenilato Quinase/química , Adenilato Quinase/genética , Polietilenoglicóis/química , Ficoll/química , Dextranos/química , Dextranos/metabolismo , Espectrometria de Fluorescência , Mutação Puntual , Cumarínicos/química , Cumarínicos/metabolismo
14.
Analyst ; 149(13): 3537-3546, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38758167

RESUMO

Single nucleotide variants (SNVs) play a crucial role in understanding genetic diseases, cancer development, and personalized medicine. However, existing ligase-based amplification and detection techniques, such as Rolling Circle Amplification and Ligase Detection Reaction, suffer from low efficiency and difficulties in product detection. To address these limitations, we propose a novel approach that combines Ligase Chain Reaction (LCR) with acoustic detection using highly dissipative liposomes. In our study, we are using LCR combined with biotin- and cholesterol-tagged primers to produce amplicons also modified at each end with a biotin and cholesterol molecule. We then apply the LCR mix without any purification directly on a neutravidin modified QCM device Au-surface, where the produced amplicons can bind specifically through the biotin end. To improve sensitivity, we finally introduce liposomes as signal enhancers. For demonstration, we used the detection of the BRAF V600E point mutation versus the wild-type allele, achieving an impressive detection limit of 220 aM of the mutant target in the presence of the same amount of the wild type. Finally, we combined the assay with a microfluidic fluidized bed DNA extraction technology, offering the potential for semi-automated detection of SNVs in patients' crude samples. Overall, our LCR/acoustic method outperforms other LCR-based approaches and surface ligation biosensing techniques in terms of detection efficiency and time. It effectively overcomes challenges related to DNA detection, making it applicable in diverse fields, including genetic disease and pathogen detection.


Assuntos
Reação em Cadeia da Ligase , Limite de Detecção , Lipossomos , Lipossomos/química , Humanos , Reação em Cadeia da Ligase/métodos , Proteínas Proto-Oncogênicas B-raf/genética , Polimorfismo de Nucleotídeo Único , Biotina/química , Acústica , Avidina/química , Técnicas de Microbalança de Cristal de Quartzo/métodos , Ouro/química , DNA/genética , DNA/química , Colesterol , Mutação Puntual
15.
PLoS One ; 19(5): e0302692, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38722893

RESUMO

Tobacco vein necrosis (TVN) is a complex phenomenon regulated by different genetic determinants mapped in the HC-Pro protein (amino acids N330, K391 and E410) and in two regions of potato virus Y (PVY) genome, corresponding to the cytoplasmic inclusion (CI) protein and the nuclear inclusion protein a-protease (NIa-Pro), respectively. A new determinant of TVN was discovered in the MK isolate of PVY which, although carried the HC-Pro determinants associated to TVN, did not induce TVN. The HC-Pro open reading frame (ORF) of the necrotic infectious clone PVY N605 was replaced with that of the non-necrotic MK isolate, which differed only by one amino acid at position 392 (T392 instead of I392). The cDNA clone N605_MKHCPro inoculated in tobacco induced only weak mosaics at the systemic level, demostrating that the amino acid at position 392 is a new determinant for TVN. No significant difference in accumulation in tobacco was observed between N605 and N605_MKHCPro. Since phylogenetic analyses showed that the loss of necrosis in tobacco has occurred several times independently during PVY evolution, these repeated evolutions strongly suggest that tobacco necrosis is a costly trait in PVY.


Assuntos
Nicotiana , Filogenia , Doenças das Plantas , Potyvirus , Proteínas Virais , Sequência de Aminoácidos , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Dados de Sequência Molecular , Necrose , Nicotiana/virologia , Fases de Leitura Aberta/genética , Doenças das Plantas/virologia , Mutação Puntual , Potyvirus/genética , Potyvirus/patogenicidade , Proteínas Virais/genética , Proteínas Virais/metabolismo
16.
Sci Adv ; 10(22): eadn2208, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820156

RESUMO

PR65 is the HEAT repeat scaffold subunit of the heterotrimeric protein phosphatase 2A (PP2A) and an archetypal tandem repeat protein. Its conformational mechanics plays a crucial role in PP2A function by opening/closing substrate binding/catalysis interface. Using in silico saturation mutagenesis, we identified PR65 "hinge" residues whose substitutions could alter its conformational adaptability and thereby PP2A function, and selected six mutations that were verified to be expressed and soluble. Molecular simulations and nanoaperture optical tweezers revealed consistent results on the specific effects of the mutations on the structure and dynamics of PR65. Two mutants observed in simulations to stabilize extended/open conformations exhibited higher corner frequencies and lower translational scattering in experiments, indicating a shift toward extended conformations, whereas another displayed the opposite features, confirmed by both simulations and experiments. The study highlights the power of single-molecule nanoaperture-based tweezers integrated with in silico approaches for exploring the effect of mutations on protein structure and dynamics.


Assuntos
Simulação de Dinâmica Molecular , Pinças Ópticas , Mutação Puntual , Conformação Proteica , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/química , Proteína Fosfatase 2/metabolismo , Humanos
17.
Proc Natl Acad Sci U S A ; 121(20): e2321260121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38722807

RESUMO

Protein capsids are a widespread form of compartmentalization in nature. Icosahedral symmetry is ubiquitous in capsids derived from spherical viruses, as this geometry maximizes the internal volume that can be enclosed within. Despite the strong preference for icosahedral symmetry, we show that simple point mutations in a virus-like capsid can drive the assembly of unique symmetry-reduced structures. Starting with the encapsulin from Myxococcus xanthus, a 180-mer bacterial capsid that adopts the well-studied viral HK97 fold, we use mass photometry and native charge detection mass spectrometry to identify a triple histidine point mutant that forms smaller dimorphic assemblies. Using cryoelectron microscopy, we determine the structures of a precedented 60-mer icosahedral assembly and an unexpected 36-mer tetrahedron that features significant geometric rearrangements around a new interaction surface between capsid protomers. We subsequently find that the tetrahedral assembly can be generated by triple-point mutation to various amino acids and that even a single histidine point mutation is sufficient to form tetrahedra. These findings represent a unique example of tetrahedral geometry when surveying all characterized encapsulins, HK97-like capsids, or indeed any virus-derived capsids reported in the Protein Data Bank, revealing the surprising plasticity of capsid self-assembly that can be accessed through minimal changes in the protein sequence.


Assuntos
Proteínas do Capsídeo , Capsídeo , Microscopia Crioeletrônica , Mutação Puntual , Capsídeo/metabolismo , Capsídeo/química , Capsídeo/ultraestrutura , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Modelos Moleculares
18.
BMC Pediatr ; 24(1): 330, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741052

RESUMO

BACKGROUND: Thalassemias represent some of the most common monogenic diseases worldwide and are caused by variations in human hemoglobin genes which disrupt the balance of synthesis between the alpha and beta globin chains. Thalassemia gene detection technology is the gold standard to achieve accurate detection of thalassemia, but in clinical practice, most of the tests are only for common genotypes, which can easily lead to missing or misdiagnosis of rare thalassemia genotypes. CASE PRESENTATION: We present the case of an 18-year-old Chinese female with abnormal values of routine hematological indices who was admitted for genetic screening for thalassemia. Genomic DNA was extracted and used for the genetic assays. Gap polymerase chain reaction and agarose gel electrophoresis were performed to detect HBA gene deletions, while PCR-reverse dot blot hybridization was used to detect point mutations in the HBA and HBB genes. Next-generation sequencing and third-generation sequencing (TGS) were used to identify known and potentially novel genotypes of thalassemia. We identified a novel complex variant αHb WestmeadαHb Westmeadαanti3.7/-α3.7 in a patient with rare alpha-thalassemia. CONCLUSIONS: Our study identified a novel complex variant that expands the thalassemia gene variants spectrum. Meanwhile, the study suggests that TGS could effectively improve the specificity of thalassemia gene detection, and has promising potential for the discovery of novel thalassemia genotypes, which could also improve the accuracy of genetic counseling. Couples who are thalassemia carriers have the opportunity to reduce their risk of having a child with thalassemia.


Assuntos
Talassemia alfa , Humanos , Talassemia alfa/genética , Talassemia alfa/diagnóstico , Feminino , Adolescente , Sequenciamento de Nucleotídeos em Larga Escala , Genótipo , Testes Genéticos/métodos , Mutação Puntual , Hemoglobinas Anormais/genética
19.
Int J Biol Macromol ; 271(Pt 1): 132247, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750847

RESUMO

Protein engineering by directed evolution is time-consuming. Hence, in silico techniques like FoldX-Yasara for ∆∆G calculation, and SNPeffect for predicting propensity for aggregation, amyloid formation, and chaperone binding are employed to design proteins. Here, we used in silico techniques to engineer BDNF-NTF3 interaction and validated it using mutations with known functional implications for NGF dimer. The structures of three mutants representing a positive, negative, or neutral ∆∆G involving two interface residues in BDNF and two mutations representing a neutral and positive ∆∆G in NGF, which is aligned with BDNF, were selected for molecular dynamics (MD) simulation. Our MD results conclude that the secondary structure of individual protomers of the positive and negative mutants displayed a similar or different conformation from the NTF3 monomer, respectively. The positive mutants showed fewer hydrophobic interactions and higher hydrogen bonds compared to the wild-type, negative, and neutral mutants with similar SASA, suggesting solvent-mediated disruption of hydrogen-bonded interactions. Similar results were obtained for mutations with known functional implications for NGF and BDNF. The results suggest that mutations with known effects in homologous proteins could help in validation, and in silico directed evolution experiments could be a viable alternative to the experimental technique used for protein engineering.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Simulação de Dinâmica Molecular , Mutação Puntual , Engenharia de Proteínas , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/química , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Engenharia de Proteínas/métodos , Ligação de Hidrogênio , Humanos , Ligação Proteica , Termodinâmica , Interações Hidrofóbicas e Hidrofílicas , Fator de Crescimento Neural/química , Fator de Crescimento Neural/genética
20.
Hum Cell ; 37(4): 1184-1193, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38573494

RESUMO

A human ovarian clear cell carcinoma cell line was established from a 46-year-old Japanese woman. That line, designated MTC-22, has proliferated continuously for over 6 months in conventional RPMI 1640 medium supplemented with 10% foetal bovine serum and has been passaged over 50 times. MTC-22 doubling-time is ~ 18 h, which is much shorter than most ovarian clear cell carcinoma lines reported to date. Morphologically, MTC-22 cells exhibit polygonal shapes and proliferate to form a monolayer in a jigsaw puzzle-like arrangement without contact inhibition. Ultrastructurally, cells exhibit numerous intracytoplasmic glycogen granules and well-developed mitochondria. G-band karyotype analysis indicated that cells have a complex karyotype close to tetraploid. We observed that the expression pattern of a series of ovarian carcinoma-related molecules in MTC-22 cells was identical to that seen in the patient's tumour tissue. Notably, MTC-22 cells, and the patient's carcinoma tissue, expressed low-sulphated keratan sulphate recognised by R-10G and 294-1B1 monoclonal antibodies, a hallmark of non-mucinous ovarian carcinoma, and particularly of clear cell ovarian carcinoma. Moreover, characteristic point mutations-one in ARID1A, which encodes the AT-rich interaction domain containing protein 1A, and the other in PIK3CB, which encodes the catalytic subunit of phosphoinositide 3-kinase-were seen in the patient's tumour tissue and retained in MTC-22 cells. Collectively, these findings indicate that MTC-22 cells could serve as a valuable tool for investigating the pathophysiology of ovarian clear cell carcinoma, particularly that harbouring PIK3CB mutations, and for developing and validating new diagnostic and therapeutic approaches to this life-threatening malignancy.


Assuntos
Adenocarcinoma de Células Claras , Classe I de Fosfatidilinositol 3-Quinases , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Classe I de Fosfatidilinositol 3-Quinases/genética , Linhagem Celular Tumoral , Adenocarcinoma de Células Claras/genética , Adenocarcinoma de Células Claras/patologia , Pessoa de Meia-Idade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mutação/genética , Mutação Puntual/genética , Proliferação de Células/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...