Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48.298
Filtrar
1.
J Mol Neurosci ; 74(3): 63, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967861

RESUMO

High-grade gliomas (HGG) comprising WHO grades 3 and 4 have a poor overall survival (OS) that has not improved in the past decade. Herein, markers representing four components of the tumor microenvironment (TME) were identified to define their linked expression in TME and predict the prognosis in HGG, namely, interleukin6 (IL6, inflammation), inducible nitric oxide synthase(iNOS), heat shock protein-70 (HSP70, hypoxia), vascular endothelial growth receptor (VEGF), and endothelin1 (ET1) (angiogenesis) and matrix metalloprotease-14 (MMP14) and intercellular adhesion molecule1 (ICAM1, extracellular matrix). To establish a non-invasive panel of biomarkers for precise prognostication in HGG. Eighty-six therapy-naive HGG patients with 45 controls were analyzed for the defined panel. Systemic expression of extracellular/secretory biomarkers was screened dot-immune assay (DIA), quantified by ELISA, and validated by immunocytochemistry (ICC). Expression of iNOS, HSP70, IL-6, VEGF, ET1, MMP14, and ICAM1 was found to be positively associated with grade. Quantification of circulating levels of the markers by ELISA and ICC presented a similar result. The biomarkers were observed to negatively correlate with OS (p < 0.0001). Cox-regression analysis yielded all biomarkers as good prognostic indicators and independent of confounders. On applying combination statistics, the biomarker panel achieved higher sensitivity than single markers to define survival. The intra-association of all seven biomarkers was significant, hinting of a cross-talk between the TME components and a hypoxia driven systemic inflammation upregulating the expression of other components. This is a first ever experimental study of a marker panel that can distinguish between histopathological grades and also delineate differential survival using liquid biopsy, suggesting that markers of hypoxia can be a cornerstone for personalized therapy. The panel of biomarkers of iNOS, HSP70, IL-6, VEGF, ET1, MMP14, and ICAM1 holds promise for prognostication in HGG.


Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas , Glioma , Proteínas de Choque Térmico HSP70 , Neovascularização Patológica , Óxido Nítrico Sintase Tipo II , Microambiente Tumoral , Humanos , Glioma/metabolismo , Glioma/patologia , Feminino , Masculino , Pessoa de Meia-Idade , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/sangue , Biomarcadores Tumorais/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Adulto , Neovascularização Patológica/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/sangue , Interleucina-6/metabolismo , Interleucina-6/sangue , Metaloproteinase 14 da Matriz/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/sangue , Endotelina-1/metabolismo , Endotelina-1/sangue , Idoso , Hipóxia Tumoral , Prognóstico , Angiogênese
2.
Gen Physiol Biophys ; 43(4): 301-312, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38953570

RESUMO

Vascular endothelial growth factor A (VEGFA) is an important regulator for non-small cell lung cancer (NSCLC). Our study aimed to reveal its upstream pathway to provide new ideas for developing the therapeutic targets of NSCLC. The mRNA and protein levels of VEGFA, ubiquitin-specific peptidase 35 (USP35), and FUS were determined by quantitative real-time PCR and Western blot. Cell proliferation, apoptosis, invasion and angiogenesis were detected using CCK8 assay, EdU assay, flow cytometry, transwell assay and tube formation assay. The interaction between USP35 and VEGFA was assessed by Co-IP assay and ubiquitination assay. Animal experiments were performed to assess USP35 and VEGFA roles in vivo. VEGFA had elevated expression in NSCLC tissues and cells. Interferences of VEGFA inhibited NSCLC cell proliferation, invasion, angiogenesis, and increased apoptosis. USP35 could stabilize VEGFA protein level by deubiquitination, and USP35 knockdown suppressed NSCLC cell growth, invasion and angiogenesis via reducing VEGFA expression. FUS interacted with USP35 to promote its mRNA stability, thereby positively regulating VEGFA expression. Also, USP35 silencing could reduce NSCLC tumorigenesis by downregulating VEGFA. FUS-stabilized USP35 facilitated NSCLC cell growth, invasion and angiogenesis through deubiquitinating VEGFA, providing a novel idea for NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Neoplasias Pulmonares , Invasividade Neoplásica , Neovascularização Patológica , Proteína FUS de Ligação a RNA , Ubiquitinação , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Proteína FUS de Ligação a RNA/metabolismo , Proteína FUS de Ligação a RNA/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proliferação de Células/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/genética , Invasividade Neoplásica/genética , Linhagem Celular Tumoral , Camundongos , Animais , Proteases Específicas de Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/genética , Camundongos Nus , Angiogênese
3.
Oncotarget ; 15: 424-438, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953895

RESUMO

Single-agent TAS102 (trifluridine/tipiracil) and regorafenib are FDA-approved treatments for metastatic colorectal cancer (mCRC). We previously reported that regorafenib combined with a fluoropyrimidine can delay disease progression in clinical case reports of multidrug-resistant mCRC patients. We hypothesized that the combination of TAS102 and regorafenib may be active in CRC and other gastrointestinal (GI) cancers and may in the future provide a treatment option for patients with advanced GI cancer. We investigated the therapeutic effect of TAS102 in combination with regorafenib in preclinical studies employing cell culture, colonosphere assays that enrich for cancer stem cells, and in vivo. TAS102 in combination with regorafenib has synergistic activity against multiple GI cancers in vitro including colorectal and gastric cancer, but not liver cancer cells. TAS102 inhibits colonosphere formation and this effect is potentiated by regorafenib. In vivo anti-tumor effects of TAS102 plus regorafenib appear to be due to anti-proliferative effects, necrosis and angiogenesis inhibition. Growth inhibition by TAS102 plus regorafenib occurs in xenografted tumors regardless of p53, KRAS or BRAF mutations, although more potent tumor suppression was observed with wild-type p53. Regorafenib significantly inhibits TAS102-induced angiogenesis and microvessel density in xenografted tumors, as well inhibits TAS102-induced ERK1/2 activation regardless of RAS or BRAF status in vivo. TAS102 plus regorafenib is a synergistic drug combination in preclinical models of GI cancer, with regorafenib suppressing TAS102-induced increase in microvessel density and p-ERK as contributing mechanisms. The TAS102 plus regorafenib drug combination may be further tested in gastric and other GI cancers.


Assuntos
Combinação de Medicamentos , Sinergismo Farmacológico , Neoplasias Gastrointestinais , Mutação , Células-Tronco Neoplásicas , Neovascularização Patológica , Compostos de Fenilureia , Proteínas Proto-Oncogênicas B-raf , Proteínas Proto-Oncogênicas p21(ras) , Piridinas , Pirrolidinas , Fator de Transcrição STAT3 , Timina , Trifluridina , Uracila , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Trifluridina/farmacologia , Compostos de Fenilureia/farmacologia , Animais , Piridinas/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/patologia , Neoplasias Gastrointestinais/metabolismo , Uracila/farmacologia , Uracila/análogos & derivados , Camundongos , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Timina/farmacologia , Linhagem Celular Tumoral , Pirrolidinas/farmacologia , Pirrolidinas/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Angiogênese
4.
Cell Mol Biol Lett ; 29(1): 93, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956502

RESUMO

BACKGROUND: Anti-angiogenic therapy has become one of the effective treatment methods for tumors. Long noncoding RNAs (lncRNAs) are emerging as important regulators of tumorigenesis and angiogenesis in EC. However, the underlying mechanisms of lncRNA TRPM2-AS in EC are still not clear. METHODS: We screened the differently expressed lncRNAs that were highly associated with poor prognosis and angiogenesis of EC by bioinformatics analysis, and constructed a ceRNA network based on the prognostic lncRNAs. The subcellular localization of TRPM2-AS was determined by fluorescence in situ hybridization (FISH) and nuclear cytoplasmic fractionation assay. CCK-8, EdU, transwell, western blot, qRT-PCR and endothelial tube formation assay were used to evaluate the effects of TRPM2-AS on the proliferation, invasion, migration of EC cells and angiogenesis. The targeted microRNA (miRNA) of TRPM2-AS was predicted by bioinformatic methods. The interaction between TRPM2-AS and miR497-5p, miR497-5p and SPP1 were analyzed by RNA immunoprecipitation and dual-luciferase reporter assay. A subcutaneous tumor model was used to explore TRPM2-AS's function in vivo. CIBERSORT was used to analyze the correlation between TRPM2-AS and immune cell immersion in EC. RESULTS: We found that the expression of TRPM2-AS and SPP1 was aberrantly upregulated, while miR-497-5p expression was significantly downregulated in EC tissues and cells. TRPM2-AS was closely correlated with the angiogenesis and poor prognosis in EC patients. Mechanistically, TRPM2-AS could sponge miR-497-5p to release SPP1, thus promoting the proliferation, invasion and migration of EC cells and angiogenesis of HUVECs. Knockdown of TRPM2-AS in xenograft mouse model inhibited tumor proliferation and angiogenesis in vivo. In addition, TRPM2-AS plays a vital role in regulating the tumor immune microenvironment of EC, overexpression of TRPM2-AS in EC cells stimulated the polarization of M2 macrophages and angiogenesis through secreting SPP1 enriched exosomes. CONCLUSION: The depletion of TRPM2-AS inhibits the oncogenicity of EC by targeting the miR-497-5p/SPP1 axis. This study offers a better understanding of TRPM2-AS's role in regulating angiogenesis and provides a novel target for EC treatment.


Assuntos
Movimento Celular , Proliferação de Células , Neoplasias do Endométrio , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Neovascularização Patológica , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neovascularização Patológica/genética , Feminino , Animais , Proliferação de Células/genética , Linhagem Celular Tumoral , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Neoplasias do Endométrio/metabolismo , Movimento Celular/genética , Camundongos , Progressão da Doença , Camundongos Nus , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Camundongos Endogâmicos BALB C , Prognóstico , Angiogênese
5.
Front Immunol ; 15: 1405597, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983846

RESUMO

Endometriosis (EM) is defined as the engraftment and proliferation of functional endometrial-like tissue outside the uterine cavity, leading to a chronic inflammatory condition. While the precise etiology of EM remains elusive, recent studies have highlighted the crucial involvement of a dysregulated immune system. The complement system is one of the predominantly altered immune pathways in EM. Owing to its involvement in the process of angiogenesis, here, we have examined the possible role of the first recognition molecule of the complement classical pathway, C1q. C1q plays seminal roles in several physiological and pathological processes independent of complement activation, including tumor growth, placentation, wound healing, and angiogenesis. Gene expression analysis using the publicly available data revealed that C1q is expressed at higher levels in EM lesions compared to their healthy counterparts. Immunohistochemical analysis confirmed the presence of C1q protein, being localized around the blood vessels in the EM lesions. CD68+ macrophages are the likely producer of C1q in the EM lesions since cultured EM cells did not produce C1q in vitro. To explore the underlying reasons for increased C1q expression in EM, we focused on its established pro-angiogenic role. Employing various angiogenesis assays on primary endothelial endometriotic cells, such as migration, proliferation, and tube formation assays, we observed a robust proangiogenic effect induced by C1q on endothelial cells in the context of EM. C1q promoted angiogenesis in endothelial cells isolated from EM lesions (as well as healthy ovary that is also rich in C1q). Interestingly, endothelial cells from EM lesions seem to overexpress the receptor for the globular heads of C1q (gC1qR), a putative C1q receptor. Experiments with siRNA to silence gC1qR resulted in diminished capacity of C1q to perform its angiogenic functions, suggesting that C1q is likely to engage gC1qR in the pathophysiology of EM. gC1qR can be a potential therapeutic target in EM patients that will disrupt C1q-mediated proangiogenic activities in EM.


Assuntos
Complemento C1q , Endometriose , Neovascularização Patológica , Endometriose/metabolismo , Endometriose/imunologia , Endometriose/patologia , Endometriose/genética , Complemento C1q/genética , Complemento C1q/metabolismo , Humanos , Feminino , Neovascularização Patológica/genética , Neovascularização Patológica/imunologia , Células Endoteliais/metabolismo , Células Endoteliais/imunologia , Endométrio/imunologia , Endométrio/metabolismo , Endométrio/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Células Cultivadas , Adulto , Proliferação de Células
6.
J Cancer Res Clin Oncol ; 150(7): 345, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981872

RESUMO

BACKGROUND: Endometrial cancer (EC) is the sixth most frequent cancer in women worldwide and has higher fatality rates. The pathophysiology of EC is complex, and there are currently no reliable methods for diagnosing and treating the condition. Long non-coding RNA (lncRNA), according to mounting evidence, is vital to the pathophysiology of EC. HOTAIR is regarded as a significant prognostic indicator of EC. ZBTB7A decreased EC proliferation and migration, according to recent studies, however the underlying mechanism still needs to be clarified. METHODS: The research utilized RT-qPCR to measure HOTAIR expression in clinical EC tissues and various EC cell lines. Kaplan-Meier survival analysis was employed to correlate HOTAIR levels with patient prognosis. Additionally, the study examined the interaction between ZBTB7A and HOTAIR using bioinformatics tools and ChIP assays. The experimental approach also involved manipulating the expression levels of HOTAIR and ZBTB7A in EC cell lines and assessing the impact on various cellular processes and gene expression. RESULTS: The study found significantly higher levels of HOTAIR in EC tissues compared to adjacent normal tissues, with high HOTAIR expression correlating with poorer survival rates and advanced cancer characteristics. EC cell lines like HEC-1 A and KLE showed higher HOTAIR levels compared to normal cells. Knockdown of HOTAIR in these cell lines reduced proliferation, angiogenesis, and migration. ZBTB7A was found to be inversely correlated with HOTAIR, and its overexpression led to a decrease in HOTAIR levels and a reduction in malignant cell behaviors. The study also uncovered that HOTAIR interacts with ELAVL1 to regulate SOX17, which in turn activates the Wnt/ß-catenin pathway, promoting malignant behaviors in EC cells. CONCLUSION: HOTAIR is a critical regulator in EC, contributing to tumor growth and poor prognosis. Its interaction with ZBTB7A and regulation of SOX17 via the Wnt/ß-catenin pathway underlines its potential as a therapeutic target.


Assuntos
Proliferação de Células , Proteína Semelhante a ELAV 1 , Neoplasias do Endométrio , RNA Longo não Codificante , Fatores de Transcrição SOXF , Humanos , RNA Longo não Codificante/genética , Feminino , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Neoplasias do Endométrio/metabolismo , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 1/genética , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Prognóstico , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Animais , Camundongos , Pessoa de Meia-Idade , Via de Sinalização Wnt/genética , Angiogênese
8.
World J Gastroenterol ; 30(23): 2927-2930, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38946872

RESUMO

In this editorial, we focus specifically on the mechanisms by which pancreatic inflammation affects pancreatic cancer. Cancer of the pancreas remains one of the deadliest cancer types. The highest incidence and mortality rates of pancreatic cancer are found in developed countries. Trends of pancreatic cancer incidence and mortality vary considerably worldwide. A better understanding of the etiology and identification of the risk factors is essential for the primary prevention of this disease. Pancreatic tumors are characterized by a complex microenvironment that orchestrates metabolic alterations and supports a milieu of interactions among various cell types within this niche. In this editorial, we highlight the foundational studies that have driven our understanding of these processes. In our experimental center, we have carefully studied the mechanisms of that link pancreatic inflammation and pancreatic cancer. We focused on the role of mast cells (MCs). MCs contain pro-angiogenic factors, including tryptase, that are associated with increased angiogenesis in various tumors. In this editorial, we address the role of MCs in angiogenesis in both pancreatic ductal adenocarcinoma tissue and adjacent normal tissue. The assessment includes the density of c-Kit receptor-positive MCs, the density of tryptase-positive MCs, the area of tryptase-positive MCs, and angiogenesis in terms of microvascularization density.


Assuntos
Mastócitos , Neovascularização Patológica , Neoplasias Pancreáticas , Microambiente Tumoral , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/imunologia , Mastócitos/metabolismo , Mastócitos/imunologia , Microambiente Tumoral/imunologia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/metabolismo , Pâncreas/patologia , Pâncreas/imunologia , Pâncreas/metabolismo , Animais , Pancreatite/metabolismo , Pancreatite/patologia , Pancreatite/imunologia , Fatores de Risco , Mediadores da Inflamação/metabolismo , Triptases/metabolismo , Inflamação/metabolismo
9.
Int J Nanomedicine ; 19: 6485-6497, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38946886

RESUMO

Angiogenesis is a physiological process of forming new blood vessels that has pathological importance in seemingly unrelated illnesses like cancer, diabetes, and various inflammatory diseases. Treatment targeting angiogenesis has shown promise for these types of diseases, but current anti-angiogenic agents have critical limitations in delivery and side-effects. This necessitates exploration of alternative approaches like biomolecule-based drugs. Proteins, lipids, and oligonucleotides have recently become popular in biomedicine, specifically as biocompatible components of therapeutic drugs. Their excellent bioavailability and potential bioactive and immunogenic properties make them prime candidates for drug discovery or drug delivery systems. Lipid-based liposomes have become standard vehicles for targeted nanoparticle (NP) delivery, while protein and nucleotide NPs show promise for environment-sensitive delivery as smart NPs. Their therapeutic applications have initially been hampered by short circulation times and difficulty of fabrication but recent developments in nanofabrication and NP engineering have found ways to circumvent these disadvantages, vastly improving the practicality of biomolecular NPs. In this review, we are going to briefly discuss how biomolecule-based NPs have improved anti-angiogenesis-based therapy.


Assuntos
Inibidores da Angiogênese , Neovascularização Patológica , Nanomedicina Teranóstica , Humanos , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/administração & dosagem , Nanomedicina Teranóstica/métodos , Neovascularização Patológica/tratamento farmacológico , Animais , Lipossomos/química , Nanoestruturas/química , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Oligonucleotídeos/química , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/farmacocinética , Oligonucleotídeos/farmacologia , Proteínas/química , Proteínas/administração & dosagem , Lipídeos/química , Nanopartículas/química
10.
Oncol Res ; 32(7): 1163-1172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948019

RESUMO

Background: Osteosarcoma is the most common malignant primary bone tumor. The prognosis for patients with disseminated disease remains very poor despite recent advancements in chemotherapy. Moreover, current treatment regimens bear a significant risk of serious side effects. Thus, there is an unmet clinical need for effective therapies with improved safety profiles. Taurolidine is an antibacterial agent that has been shown to induce cell death in different types of cancer cell lines. Methods: In this study, we examined both the antineoplastic and antiangiogenic effects of taurolidine in animal models of osteosarcoma. K7M2 murine osteosarcoma cells were injected, both intramuscular and intraperitoneal, into 60 BALB/c mice on day zero. Animals were then randomized to receive treatment with taurolidine 2% (800 mg/kg), taurolidine 1% (400 mg/kg), or NaCl 0.9% control for seven days by intravenous or intraperitoneal administration. Results: After 35 days, mice were euthanized, and the tumors were harvested for analysis. Eighteen mice were excluded from the analysis due to complications. Body weight was significantly lower in the 2% taurolidine intraperitoneal treatment group from day 9 to 21, consistent with elevated mortality in this group. Intraperitoneal tumor weight was significantly lower in the 1% (p = 0.003) and 2% (p = 0.006) intraperitoneal taurolidine treatment groups compared to the control. No antineoplastic effects were observed on intramuscular tumors or for intravenous administration of taurolidine. There were no significant differences in microvessel density or mitotic rate between treatment groups. Reduced body weight and elevated mortality in the 2% taurolidine intraperitoneal group suggest that the lower 1% dose is preferable. Conclusions: In conclusion, there is no evidence of antiangiogenic activity, and the antitumor effects of taurolidine on osteosarcoma observed in this study are limited. Moreover, its toxic profile grants further evaluation. Given these observations, further research is necessary to refine the use of taurolidine in osteosarcoma treatment.


Assuntos
Neoplasias Ósseas , Modelos Animais de Doenças , Osteossarcoma , Taurina , Tiadiazinas , Carga Tumoral , Animais , Taurina/análogos & derivados , Taurina/farmacologia , Taurina/uso terapêutico , Tiadiazinas/farmacologia , Tiadiazinas/uso terapêutico , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Osteossarcoma/irrigação sanguínea , Camundongos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Carga Tumoral/efeitos dos fármacos , Densidade Microvascular/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Humanos , Neovascularização Patológica/tratamento farmacológico
11.
Theranostics ; 14(9): 3509-3525, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948065

RESUMO

Rationale: Current treatments for ocular angiogenesis primarily focus on blocking the activity of vascular endothelial growth factor (VEGF), but unfavorable side effects and unsatisfactory efficacy remain issues. The identification of novel targets for anti-angiogenic treatment is still needed. Methods: We investigated the role of tsRNA-1599 in ocular angiogenesis using endothelial cells, a streptozotocin (STZ)-induced diabetic model, a laser-induced choroidal neovascularization model, and an oxygen-induced retinopathy model. CCK-8 assays, EdU assays, transwell assays, and matrigel assays were performed to assess the role of tsRNA-1599 in endothelial cells. Retinal digestion assays, Isolectin B4 (IB4) staining, and choroidal sprouting assays were conducted to evaluate the role of tsRNA-1599 in ocular angiogenesis. Transcriptomic analysis, metabolic analysis, RNA pull-down assays, and mass spectrometry were utilized to elucidate the mechanism underlying angiogenic effects mediated by tsRNA-1599. Results: tsRNA-1599 expression was up-regulated in experimental ocular angiogenesis models and endothelial cells in response to angiogenic stress. Silencing of tsRNA-1599 suppressed angiogenic effects in endothelial cells in vitro and inhibited pathological ocular angiogenesis in vivo. Mechanistically, tsRNA-1599 exhibited little effect on VEGF signaling but could cause reduced glycolysis and NAD+/NADH production in endothelial cells by regulating the expression of HK2 gene through interacting with YBX1, thus affecting endothelial effects. Conclusions: Targeting glycolytic reprogramming of endothelial cells by a tRNA-derived small RNA represents an exploitable therapeutic approach for ocular neovascular diseases.


Assuntos
Neovascularização de Coroide , Células Endoteliais , Glicólise , Animais , Glicólise/efeitos dos fármacos , Camundongos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/metabolismo , Humanos , Proteína 1 de Ligação a Y-Box/metabolismo , Proteína 1 de Ligação a Y-Box/genética , Inibidores da Angiogênese/farmacologia , Hexoquinase/metabolismo , Hexoquinase/genética , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Modelos Animais de Doenças , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Retinopatia Diabética/genética , Células Endoteliais da Veia Umbilical Humana , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo
12.
PLoS One ; 19(7): e0304670, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38968211

RESUMO

In gold nanoparticle-enhanced radiotherapy, intravenously administered nanoparticles tend to accumulate in the tumor tissue by means of the so-called permeability and retention effect and upon irradiation with x-rays, the nanoparticles release a secondary electron field that increases the absorbed dose that would otherwise be obtained from the interaction of the x-rays with tissue alone. The concentration of the nanoparticles in the tumor, number of nanoparticles per unit of mass, which determines the total absorbed dose imparted, can be measured via magnetic resonance or computed tomography images, usually with a resolution of several millimeters. Using a tumor vasculature model with a resolution of 500 nm, we show that for a given concentration of nanoparticles, the dose enhancement that occurs upon irradiation with x-rays greatly depends on whether the nanoparticles are confined to the tumor vasculature or have already extravasated into the surrounding tumor tissue. We show that, compared to the reference irradiation with no nanoparticles present in the tumor model, irradiation with the nanoparticles confined to the tumor vasculature, either in the bloodstream or attached to the inner blood vessel walls, results in a two to three-fold increase in the absorbed dose to the whole tumor model, with respect to an irradiation when the nanoparticles have already extravasated into the tumor tissue. Therefore, it is not enough to measure the concentration of the nanoparticles in a tumor, but the location of the nanoparticles within each volume element of a tumor, be it inside the vasculature or the tumor tissue, needs to be determined as well if an accurate estimation of the resultant absorbed dose distribution, a key element in the success of a radiotherapy treatment, is to be made.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Animais , Camundongos , Neoplasias/radioterapia , Neoplasias/diagnóstico por imagem , Neoplasias/irrigação sanguínea , Humanos , Dosagem Radioterapêutica , Neovascularização Patológica/radioterapia , Neovascularização Patológica/diagnóstico por imagem
13.
Molecules ; 29(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38999055

RESUMO

Lignans, a class of secondary metabolites found in plants, along with their derivatives, exhibit diverse pharmacological activities, including antioxidant, antimicrobial, anti-inflammatory, and antiangiogenic ones. Angiogenesis, the formation of new blood vessels from pre-existing ones, is a crucial process for cancer growth and development. Several studies have elucidated the synergistic relationship between angiogenesis and inflammation in various inflammatory diseases, highlighting a correlation between inflammation and vascular endothelial growth factor (VEGF)-induced angiogenesis. Thus, the identification of novel molecules capable of modulating VEGF effects presents promising prospects for developing therapies aimed at stabilizing, reversing, or even arresting disease progression. Lignans often suffer from low aqueous solubility and, for their use, encapsulation in a delivery system is needed. In this research, a bioinspired benzoxantene has been encapsulated in solid lipid nanoparticles that have been characterized for their pharmacotechnical properties and their thermotropic behavior. The effects of these encapsulated nanoparticles on angiogenic parameters and inflammation in VEGF-induced angiogenesis were evaluated using human brain microvascular endothelial cells (HBMECs) as a human blood-brain barrier model.


Assuntos
Barreira Hematoencefálica , Inflamação , Nanopartículas , Fator A de Crescimento do Endotélio Vascular , Humanos , Nanopartículas/química , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Lipídeos/química , Neovascularização Fisiológica/efeitos dos fármacos , Angiogênese , Lipossomos
14.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999951

RESUMO

This study examines the impact of zinc, copper, cobalt, iron, and manganese on cancer development, considering their dual roles as potential promoters or inhibitors within tumorigenesis. A comprehensive analysis of existing literature and experimental data is conducted to elucidate the intricate relationship between these trace elements and cancer progression. The findings highlight the multifaceted effects of zinc, copper, cobalt, iron, and manganese on various aspects of cancer development, including cell proliferation, angiogenesis, and metastasis. Understanding the nuanced interactions between these trace elements and cancer could offer crucial insights into tumorigenesis mechanisms and facilitate the identification of novel biomarkers and therapeutic targets for cancer prevention and treatment strategies. This research underscores the importance of considering the roles of essential trace elements in cancer biology and may ultimately contribute to advancements in precision medicine approaches for combating cancer.


Assuntos
Neoplasias , Oligoelementos , Humanos , Neoplasias/metabolismo , Animais , Carcinogênese/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico
15.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38999976

RESUMO

Tumor angiogenesis, the formation of new blood vessels to support tumor growth and metastasis, is a complex process regulated by a multitude of signaling pathways. Dysregulation of signaling pathways involving protein kinases has been extensively studied, but the role of protein phosphatases in angiogenesis within the tumor microenvironment remains less explored. However, among angiogenic pathways, protein phosphatases play critical roles in modulating signaling cascades. This review provides a comprehensive overview of the involvement of protein phosphatases in tumor angiogenesis, highlighting their diverse functions and mechanisms of action. Protein phosphatases are key regulators of cellular signaling pathways by catalyzing the dephosphorylation of proteins, thereby modulating their activity and function. This review aims to assess the activity of the protein tyrosine phosphatases and serine/threonine phosphatases. These phosphatases exert their effects on angiogenic signaling pathways through various mechanisms, including direct dephosphorylation of angiogenic receptors and downstream signaling molecules. Moreover, protein phosphatases also crosstalk with other signaling pathways involved in angiogenesis, further emphasizing their significance in regulating tumor vascularization, including endothelial cell survival, sprouting, and vessel maturation. In conclusion, this review underscores the pivotal role of protein phosphatases in tumor angiogenesis and accentuate their potential as therapeutic targets for anti-angiogenic therapy in cancer.


Assuntos
Neoplasias , Neovascularização Patológica , Fosfoproteínas Fosfatases , Transdução de Sinais , Humanos , Neovascularização Patológica/metabolismo , Neoplasias/irrigação sanguínea , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Fosfoproteínas Fosfatases/metabolismo , Proteína Fosfatase 2/metabolismo , Microambiente Tumoral , Fosforilação , Angiogênese
16.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000375

RESUMO

Angiogenesis is critical for rheumatoid arthritis (RA) progression. The effects of tofacitinib, a JAK-STAT inhibitor used for RA treatment, on angiogenesis in RA are unclear. We, therefore, evaluated the levels of angiogenic factors in two systems of a human co-culture of fibroblast (HT1080) and monocytic (U937) cell lines treated with tofacitinib and in serum samples from RA patients before and after six months of tofacitinib treatment. Tofacitinib reduced CD147 levels, matrix metalloproteinase-9 (MMP-9) activity, and angiogenic potential but increased endostatin levels and secreted proteasome 20S activity. In vitro, tofacitinib did not change CD147 mRNA but increased miR-146a-5p expression and reduced STAT3 phosphorylation. We recently showed that CD147 regulates the ability of MMP-9 and secreted proteasome 20S to cleave collagen XVIIIA into endostatin. We show here that tofacitinib-enhanced endostatin levels are mediated by CD147, as CD147-siRNA or an anti-CD147 antibody blocked proteasome 20S activity. The correlation between CD147 and different disease severity scores supported this role. Lastly, tofacitinib reduced endostatin' s degradation by inhibiting cathepsin S activity and recombinant cathepsin S reversed this in both systems. Thus, tofacitinib inhibits angiogenesis by reducing pro-angiogenic factors and enhancing the anti-angiogenic factor endostatin in a dual effect mediated partly through CD147 and partly through cathepsin S.


Assuntos
Artrite Reumatoide , Basigina , Catepsinas , Endostatinas , Piperidinas , Pirimidinas , Humanos , Basigina/metabolismo , Basigina/genética , Piperidinas/farmacologia , Endostatinas/metabolismo , Endostatinas/farmacologia , Pirimidinas/farmacologia , Catepsinas/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Fator de Transcrição STAT3/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Patológica/tratamento farmacológico , Inibidores da Angiogênese/farmacologia , Feminino , Pessoa de Meia-Idade , Masculino , Pirróis/farmacologia , Linhagem Celular
17.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39000466

RESUMO

It is acknowledged that conventional renal cell carcinoma (cRCC), which makes up 85% of renal malignancies, is a highly vascular tumor. Humanized monoclonal antibodies were developed to inhibit tumor neo-angiogenesis, which is driven by VEGFA/KDR signaling. The results largely met our expectations, and in several cases, adverse events occurred. Our study aimed to analyze the expression of VEGFA and its receptor KDR by immunohistochemistry in tissue multi-array containing 811 cRCC and find a correlation between VEGFA/KDR signaling and new vessel formation. None of the 811 cRCC displayed VEGFA-positive immunostaining. However, each glomerulus in normal kidney showed VEGFA-positive endothelial cells. KDR expression in endothelial meshwork was found in only 9% of cRCC, whereas 2% of the cRCC displayed positive KDR reaction in the cytoplasm of tumor cells. Our results disclose the involvement of VEGFA/KDR signaling in the neo-vascularization of cRCC and explain the frequent resistance to drugs targeting the VEGFA/KDR signaling and the high frequency of adverse events.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Neoplasias Renais/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Feminino , Masculino , Pessoa de Meia-Idade , Neovascularização Patológica/metabolismo , Neovascularização Patológica/tratamento farmacológico , Idoso , Terapia de Alvo Molecular , Adulto
18.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000507

RESUMO

Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide, with 20% of patients presenting with metastatic disease at diagnosis. TGF-ß signaling plays a crucial role in various cellular processes, including growth, differentiation, apoptosis, epithelial-mesenchymal transition (EMT), regulation of the extracellular matrix, angiogenesis, and immune responses. TGF-ß signals through SMAD proteins, which are intracellular molecules that transmit TGF-ß signals from the cell membrane to the nucleus. Alterations in the TGF-ß pathway and mutations in SMAD proteins are common in metastatic CRC (mCRC), making them critical factors in CRC tumorigenesis. This review first analyzes normal TGF-ß signaling and then investigates its role in CRC pathogenesis, highlighting the mechanisms through which TGF-ß influences metastasis development. TGF-ß promotes neoangiogenesis via VEGF overexpression, pericyte differentiation, and other mechanisms. Additionally, TGF-ß affects various elements of the tumor microenvironment, including T cells, fibroblasts, and macrophages, promoting immunosuppression and metastasis. Given its strategic role in multiple processes, we explored different strategies to target TGF-ß in mCRC patients, aiming to identify new therapeutic options.


Assuntos
Neoplasias Colorretais , Transdução de Sinais , Fator de Crescimento Transformador beta , Microambiente Tumoral , Humanos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Fator de Crescimento Transformador beta/metabolismo , Transição Epitelial-Mesenquimal , Animais , Neovascularização Patológica/metabolismo
19.
Gan To Kagaku Ryoho ; 51(6): 585-590, 2024 Jun.
Artigo em Japonês | MEDLINE | ID: mdl-39009511

RESUMO

Alveolar soft part sarcoma(ASPS)is a rare malignant tumor whose origin is unidentified, arising from deep soft tissue and affecting adolescents and young adults. ASPS is characterized by its abundant vascular network forming alveolar structures, and demonstrates frequent hematogenous metastasis. An ASPSCR1-TFE3 fusion gene derived from t(X;17)chromosome translocation is detected as a disease gene in all cases, and the ASPSCR1-TFE3 protein causes abnormal transcriptional regulation. We generated a mouse model for ASPS by introducing ASPSCR1-TFE3 into mouse embryonic mesenchymal cells. In the model, tumor angiogenesis and alveolar structures of human ASPS were reproduced, revealing pericyte-rich blood vessels and metastatic processes with pericytic encapsulation of tumor cell nests. ASPSCR1-TFE3 is frequently associated with active enhancers and super-enhancers, and angiogenesis-related enhancers were significantly diminished by the loss of ASPSCR1- TFE3. Angiogenesis-associated enhancers and important target genes, Rab27a, Sytl2, Pdgfb and Vwf were identified by epigenetic CRISPR screening. Rab27a and Sytl2 facilitates trafficking of cytoplasmic vesicles containing angiogenic factors such as Pdgfb and Vwf, resulting in pericyte-rich vascular structures in ASPS. These studies highlight the importance of the Rab27/Sytl axis as a novel drug target in cancer.


Assuntos
Neovascularização Patológica , Sarcoma Alveolar de Partes Moles , Sarcoma Alveolar de Partes Moles/genética , Sarcoma Alveolar de Partes Moles/patologia , Humanos , Animais , Neovascularização Patológica/genética , Proteínas de Fusão Oncogênica/genética , Camundongos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos
20.
Semin Immunopathol ; 46(1-2): 3, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990363

RESUMO

Sustained tumor angiogenesis, i.e., the induction and maintenance of blood vessel growth by tumor cells, is one of the hallmarks of cancer. The vascularization of malignant tissues not only facilitates tumor growth and metastasis, but also contributes to immune evasion. Important players in all these processes are the endothelial cells which line the luminal side of blood vessel. In the tumor vasculature, these cells are actively involved in angiogenesis as well in the hampered recruitment of immune cells. This is the result of the abnormal tumor microenvironment which triggers both angiostimulatory and immune inhibitory gene expression profiles in endothelial cells. In recent years, it has become evident that galectins constitute a protein family that is expressed in the tumor endothelium. Moreover, several members of this glycan-binding protein family have been found to facilitate tumor angiogenesis and stimulate immune suppression. All this has identified galectins as potential therapeutic targets to simultaneously hamper tumor angiogenesis and alleviate immune suppression. The current review provides a brief introduction in the human galectin protein family. The current knowledge regarding the expression and regulation of galectins in endothelial cells is summarized. Furthermore, an overview of the role that endothelial galectins play in tumor angiogenesis and tumor immunomodulation is provided. Finally, some outstanding questions are discussed that should be addressed by future research efforts. This will help to fully understand the contribution of endothelial galectins to tumor progression and to exploit endothelial galectins for cancer therapy.


Assuntos
Galectinas , Neoplasias , Neovascularização Patológica , Microambiente Tumoral , Humanos , Neoplasias/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/irrigação sanguínea , Galectinas/metabolismo , Galectinas/imunologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/imunologia , Animais , Microambiente Tumoral/imunologia , Células Endoteliais/metabolismo , Células Endoteliais/imunologia , Imunomodulação , Angiogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...