Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.387
Filtrar
1.
Gut Microbes ; 16(1): 2363015, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38845453

RESUMO

Gut microbiota is responsible for essential functions in human health. Several communication axes between gut microbiota and other organs via neural, endocrine, and immune pathways have been described, and perturbation of gut microbiota composition has been implicated in the onset and progression of an emerging number of diseases. Here, we analyzed peripheral nerves, dorsal root ganglia (DRG), and skeletal muscles of neonatal and young adult mice with the following gut microbiota status: a) germ-free (GF), b) gnotobiotic, selectively colonized with 12 specific gut bacterial strains (Oligo-Mouse-Microbiota, OMM12), or c) natural complex gut microbiota (CGM). Stereological and morphometric analyses revealed that the absence of gut microbiota impairs the development of somatic median nerves, resulting in smaller diameter and hypermyelinated axons, as well as in smaller unmyelinated fibers. Accordingly, DRG and sciatic nerve transcriptomic analyses highlighted a panel of differentially expressed developmental and myelination genes. Interestingly, the type III isoform of Neuregulin1 (NRG1), known to be a neuronal signal essential for Schwann cell myelination, was overexpressed in young adult GF mice, with consequent overexpression of the transcription factor Early Growth Response 2 (Egr2), a fundamental gene expressed by Schwann cells at the onset of myelination. Finally, GF status resulted in histologically atrophic skeletal muscles, impaired formation of neuromuscular junctions, and deregulated expression of related genes. In conclusion, we demonstrate for the first time a gut microbiota regulatory impact on proper development of the somatic peripheral nervous system and its functional connection to skeletal muscles, thus suggesting the existence of a novel 'Gut Microbiota-Peripheral Nervous System-axis.'


Assuntos
Gânglios Espinais , Microbioma Gastrointestinal , Junção Neuromuscular , Animais , Junção Neuromuscular/microbiologia , Camundongos , Gânglios Espinais/metabolismo , Gânglios Espinais/microbiologia , Vida Livre de Germes , Nervos Periféricos/microbiologia , Nervos Periféricos/crescimento & desenvolvimento , Músculo Esquelético/microbiologia , Camundongos Endogâmicos C57BL , Neuregulina-1/metabolismo , Neuregulina-1/genética , Masculino , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Células de Schwann/microbiologia , Células de Schwann/metabolismo
2.
J Pharm Biomed Anal ; 245: 116185, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38723556

RESUMO

Human epidermal growth factor receptor 2 (HER2) is a key player in the pathogenesis and progression of breast cancer and is currently a primary target for breast cancer immunotherapy. Bioactivity determination is necessary to guarantee the safety and efficacy of therapeutic antibodies targeting HER2. Nevertheless, currently available bioassays for measuring the bioactivity of anti-HER2 mAbs are either not representative or have high variability. Here, we established a reliable reporter gene assay (RGA) based on T47D-SRE-Luc cell line that expresses endogenous HER2 and luciferase controlled by serum response element (SRE) to measure the bioactivity of anti-HER2 antibodies. Neuregulin-1 (NRG-1) can lead to the heterodimerization of HER2 on the cell membrane and induce the expression of downstream SRE-controlled luciferase, while pertuzumab can dose-dependently reverse the reaction, resulting in a good dose-response curve reflecting the activity of the antibody. After optimizing the relevant assay parameters, the established RGA was fully validated based on ICH-Q2 (R1), which demonstrated that the method had excellent specificity, accuracy, precision, linearity, and stability. In summary, this robust and innovative bioactivity determination assay can be applied in the development and screening, release control, biosimilar assessment and stability studies of anti-HER2 mAbs.


Assuntos
Anticorpos Monoclonais Humanizados , Bioensaio , Genes Reporter , Luciferases , Neuregulina-1 , Receptor ErbB-2 , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia , Receptor ErbB-2/antagonistas & inibidores , Humanos , Linhagem Celular Tumoral , Anticorpos Monoclonais Humanizados/farmacologia , Bioensaio/métodos , Luciferases/genética , Neuregulina-1/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Neoplasias da Mama/genética , Feminino , Antineoplásicos Imunológicos/farmacologia , Reprodutibilidade dos Testes , Elementos de Resposta
3.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674054

RESUMO

Neuregulin-1 (Nrg1, gene symbol: Nrg1), a ligand of the ErbB receptor family, promotes intestinal epithelial cell proliferation and repair. However, the dynamics and accurate derivation of Nrg1 expression during colitis remain unclear. By analyzing the public single-cell RNA-sequencing datasets and employing a dextran sulfate sodium (DSS)-induced colitis model, we investigated the cell source of Nrg1 expression and its potential regulator in the process of epithelial healing. Nrg1 was majorly expressed in stem-like fibroblasts arising early in mouse colon after DSS administration, and Nrg1-Erbb3 signaling was identified as a potential mediator of interaction between stem-like fibroblasts and colonic epithelial cells. During the ongoing colitis phase, a significant infiltration of macrophages and neutrophils secreting IL-1ß emerged, accompanied by the rise in stem-like fibroblasts that co-expressed Nrg1 and IL-1 receptor 1. By stimulating intestinal or lung fibroblasts with IL-1ß in the context of inflammation, we observed a downregulation of Nrg1 expression. Patients with inflammatory bowel disease also exhibited an increase in NRG1+IL1R1+ fibroblasts and an interaction of NRG1-ERBB between IL1R1+ fibroblasts and colonic epithelial cells. This study reveals a novel potential mechanism for mucosal healing after inflammation-induced epithelial injury, in which inflammatory myeloid cell-derived IL-1ß suppresses the early regeneration of intestinal tissue by interfering with the secretion of reparative neuregulin-1 by stem-like fibroblasts.


Assuntos
Colite , Sulfato de Dextrana , Fibroblastos , Mucosa Intestinal , Neuregulina-1 , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Colite/metabolismo , Colite/induzido quimicamente , Colite/patologia , Sulfato de Dextrana/efeitos adversos , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Interleucina-1beta/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Neuregulina-1/metabolismo , Neuregulina-1/genética , Receptor ErbB-3/metabolismo , Receptor ErbB-3/genética , Receptores Tipo I de Interleucina-1/metabolismo , Receptores Tipo I de Interleucina-1/genética
4.
Cell Rep ; 43(5): 114162, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678558

RESUMO

Zebrafish have a lifelong cardiac regenerative ability after damage, whereas mammals lose this capacity during early postnatal development. This study investigated whether the declining expression of growth factors during postnatal mammalian development contributes to the decrease of cardiomyocyte regenerative potential. Besides confirming the proliferative ability of neuregulin 1 (NRG1), interleukin (IL)1b, receptor activator of nuclear factor kappa-Β ligand (RANKL), insulin growth factor (IGF)2, and IL6, we identified other potential pro-regenerative factors, with BMP7 exhibiting the most pronounced efficacy. Bmp7 knockdown in neonatal mouse cardiomyocytes and loss-of-function in adult zebrafish during cardiac regeneration reduced cardiomyocyte proliferation, indicating that Bmp7 is crucial in the regenerative stages of mouse and zebrafish hearts. Conversely, bmp7 overexpression in regenerating zebrafish or administration at post-mitotic juvenile and adult mouse stages, in vitro and in vivo following myocardial infarction, enhanced cardiomyocyte cycling. Mechanistically, BMP7 stimulated proliferation through BMPR1A/ACVR1 and ACVR2A/BMPR2 receptors and downstream SMAD5, ERK, and AKT signaling. Overall, BMP7 administration is a promising strategy for heart regeneration.


Assuntos
Proteína Morfogenética Óssea 7 , Proliferação de Células , Miócitos Cardíacos , Regeneração , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Miócitos Cardíacos/metabolismo , Proteína Morfogenética Óssea 7/metabolismo , Proteína Morfogenética Óssea 7/genética , Camundongos , Transdução de Sinais , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Neuregulina-1/metabolismo , Neuregulina-1/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Camundongos Endogâmicos C57BL , Proteína Smad5/metabolismo
5.
Cell Rep ; 43(3): 113905, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38446660

RESUMO

Motivation-driven mating is a basic affair for the maintenance of species. However, the underlying molecular mechanisms that control mating motivation are not fully understood. Here, we report that NRG1-ErbB4 signaling in the medial amygdala (MeA) is pivotal in regulating mating motivation. NRG1 expression in the MeA negatively correlates with the mating motivation levels in adult male mice. Local injection and knockdown of MeA NRG1 reduce and promote mating motivation, respectively. Consistently, knockdown of MeA ErbB4, a major receptor for NRG1, and genetic inactivation of its kinase both promote mating motivation. ErbB4 deletion decreases neuronal excitability, whereas chemogenetic manipulations of ErbB4-positive neuronal activities bidirectionally modulate mating motivation. We also identify that the effects of NRG1-ErbB4 signaling on neuronal excitability and mating motivation rely on hyperpolarization-activated cyclic nucleotide-gated channel 3. This study reveals a critical molecular mechanism for regulating mating motivation in adult male mice.


Assuntos
Motivação , Transdução de Sinais , Camundongos , Masculino , Animais , Neurônios/metabolismo , Receptor ErbB-4/metabolismo , Tonsila do Cerebelo/metabolismo , Neuregulina-1/metabolismo
6.
Neuropharmacology ; 251: 109929, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38521230

RESUMO

The incidence of ischemic stroke is increasing year by year and showing a younger trend. Impaired blood-brain barrier (BBB) is one of the pathological manifestations caused by cerebral ischemia, leading to poor prognosis of patients. Accumulating evidence indicates that ferroptosis is involved in cerebral ischemia/reperfusion injury (CIRI). We have previously demonstrated that Ginsenoside Rd (G-Rd) protects against CIRI-induced neuronal injury. However, whether G-Rd can attenuate CIRI-induced disruption of the BBB remains unclear. In this study, we found that G-Rd could upregulate the levels of ZO-1, occludin, and claudin-5 in ipsilateral cerebral microvessels and bEnd.3 cells, reduce endothelial cells (ECs) loss and Evans blue (EB) leakage, and ultimately improve BBB integrity after CIRI. Interestingly, the expressions of ACSL4 and COX2 were upregulated, the expressions of GPX4 and xCT were downregulated, the levels of GSH was decreased, and the levels of MDA and Fe2+ were increased in ischemic tissues and bEnd.3 cells after CIRI, suggesting that ECs ferroptosis occurred after CIRI. However, G-Rd can alleviate CIRI-induced BBB disruption by inhibiting ECs ferroptosis. Mechanistically, G-Rd prevented tight junction loss and BBB leakage by upregulating NRG1, activating its tyrosine kinase ErbB4 receptor, and then activating downstream PI3K/Akt/mTOR signaling, thereby inhibiting CIRI-induced ferroptosis in ECs. Taken together, these data provides data support for G-Rd as a promising therapeutic drug for cerebral ischemia.


Assuntos
Isquemia Encefálica , Ferroptose , Ginsenosídeos , Neuregulina-1 , Traumatismo por Reperfusão , Ratos , Animais , Humanos , Camundongos , Barreira Hematoencefálica/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Endoteliais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ratos Sprague-Dawley , Infarto Cerebral , Isquemia Encefálica/metabolismo , Transdução de Sinais , Reperfusão , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo
7.
J Reprod Dev ; 70(3): 202-206, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479855

RESUMO

Ovarian fibrosis contributes to age-related ovarian dysfunction. In our previous study, we observed ovarian fibrosis in both obese and aging mice with intracellular lipid droplets in the fibrotic ovaries. Although the importance of mitochondria in ovarian fibrosis has been recognized in pharmacological studies, their role in lipid metabolism remains unclear. Globin peptide (GP), derived from hemoglobin, enhances lipid metabolism in obese mice. This study aimed to elucidate the importance of lipid metabolism in ovarian fibrosis by using GP. Treatment of ovarian stromal cells with GP increased mitochondrial oxygen consumption during ß-oxidation. Lipid accumulation was also observed in the ovaries of granulosa cell-specific Nrg1 knockout mice (gcNrg1KO), and the administration of GP to gcNrg1KO mice for two months reduced ovarian lipid accumulation and fibrosis in addition to restoring the estrous cycle. GP holds promise for mitigating lipid-related ovarian issues and provides a novel approach to safeguarding ovarian health by regulating fibrosis via lipid pathways.


Assuntos
Envelhecimento , Fertilidade , Fibrose , Globinas , Células da Granulosa , Metabolismo dos Lipídeos , Camundongos Knockout , Neuregulina-1 , Animais , Feminino , Camundongos , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Fertilidade/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Globinas/metabolismo , Globinas/genética , Neuregulina-1/metabolismo , Neuregulina-1/genética , Ovário/efeitos dos fármacos , Ovário/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Ciclo Estral/efeitos dos fármacos , Peptídeos/farmacologia
8.
mSphere ; 9(3): e0078523, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38376205

RESUMO

Candida albicans is one of the most common causes of superficial and invasive fungal diseases in humans. Its ability to cause disease is closely linked to its ability to undergo a morphological transition from budding yeast to filamentous forms (hyphae and pseudohyphae). The extent to which C. albicans strains isolated from patients undergo filamentation varies significantly. In addition, the filamentation phenotypes of mutants involving transcription factors that positively regulate hyphal morphogenesis can also vary from strain to strain. Here, we characterized the virulence, in vitro and in vivo filamentation, and in vitro and in vivo hypha-associated gene expression profiles for four poorly filamenting C. albicans isolates and their corresponding deletion mutants of the repressor of filamentation NRG1. The two most virulent strains, 57055 and 78048, show robust in vivo filamentation but are predominately yeast phase under in vitro hypha induction; the two low-virulence strains (94015 and 78042) do not undergo filamentation well under either condition. In vitro, deletion of NRG1 increases hyphae formation in the SC5314 derivative SN250, but only pseudohyphae are formed in the clinical isolates. Deletion of NRG1 modestly increased the virulence of 78042, which was accompanied by increased expression of hypha-associated genes without an increase in filamentation. Strikingly, deletion of NRG1 in 78048 reduced filamentation in vivo, expression of candidalysin (ECE1), and virulence without dramatically altering establishment of infection. Thus, the function of the conserved repressor NRG1 in C. albicans shows strain-based heterogeneity during infection.IMPORTANCEClinical isolates of the human fungal pathogen Candida albicans show significant variation in their ability to undergo in vitro filamentation and in the function of well-characterized transcriptional regulators of filamentation. Here, we show that Nrg1, a key repressor of filamentation and filament specific gene expression in standard reference strains, has strain-dependent functions, particularly during infection. Most strikingly, loss of NRG1 function can reduce filamentation, hypha-specific gene expression such as the toxin candidalysin, and virulence in some strains. Our data emphasize that the functions of seemingly fundamental and well-conserved transcriptional regulators such as Nrg1 are contextual with respect to both environment and genetic backgrounds.


Assuntos
Candida albicans , Candidíase , Humanos , Candidíase/microbiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência , Neuregulina-1/genética , Neuregulina-1/metabolismo
9.
Cell Commun Signal ; 22(1): 147, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388921

RESUMO

BACKGROUND: Patients with Alzheimer's disease (AD) are often co-morbid with unprovoked seizures, making clinical diagnosis and management difficult. Although it has an important role in both AD and epilepsy, abnormal γ-aminobutyric acid (GABA)ergic transmission is recognized only as a compensative change for glutamatergic damage. Neuregulin 1 (NRG1)-ErbB4 signaling can promote GABA release and suppress epileptogenesis, but its effects on cognition in AD are still controversial. METHODS: Four-month-old APPswe/PS1dE9 mice (APP mice) were used as animal models in the early stage of AD in this study. Acute/chronic chemical-kindling epilepsy models were established with pentylenetetrazol. Electroencephalogram and Racine scores were performed to assess seizures. Behavioral tests were used to assess cognition and emotion. Electrophysiology, western blot and immunofluorescence were performed to detect the alterations in synapses, GABAergic system components and NRG1-ErbB4 signaling. Furthermore, NRG1 was administrated intracerebroventricularly into APP mice and then its antiepileptic and cognitive effects were evaluated. RESULTS: APP mice had increased susceptibility to epilepsy and resulting hippocampal synaptic damage and cognitive impairment. Electrophysiological analysis revealed decreased GABAergic transmission in the hippocampus. This abnormal GABAergic transmission involved a reduction in the number of parvalbumin interneurons (PV+ Ins) and decreased levels of GABA synthesis and transport. We also found impaired NRG1-ErbB4 signaling which mediated by PV+ Ins loss. And NRG1 administration could effectively reduce seizures and improve cognition in four-month-old APP mice. CONCLUSION: Our results indicated that abnormal GABAergic transmission mediated hippocampal hyperexcitability, further excitation/inhibition imbalance, and promoted epileptogenesis in the early stage of AD. Appropriate NRG1 administration could down-regulate seizure susceptibility and rescue cognitive function. Our study provided a potential direction for intervening in the co-morbidity of AD and epilepsy.


Assuntos
Doença de Alzheimer , Epilepsia , Humanos , Camundongos , Animais , Lactente , Receptor ErbB-4/metabolismo , Doença de Alzheimer/complicações , Hipocampo/metabolismo , Ácido gama-Aminobutírico , Convulsões , Neuregulina-1/metabolismo
11.
Trends Cancer ; 10(5): 430-443, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38378317

RESUMO

Gene fusions and rearrangements play a crucial role in tumor biology. They are rare events typically detected in KRAS wild-type (WT) pancreatic tumors. Their identification can inform clinical management by enabling precision oncology, as fusions involving BRAF, FGFR2, RET, NTRK, NRG1, and ALK represent actionable targets in KRAS-WT cancers, and serve diagnostic purposes since fusions involving PRKACA/B represent the diagnostic hallmark of intraductal oncocytic papillary neoplasms (IOPNs). Although they are rare, the therapeutic and diagnostic importance of these genomic events should not be underestimated, highlighting the need for quality-ensured molecular diagnostics in the management of cancer. Herein we review the existing literature on the role of fusion genes in pancreatic tumors and their clinical potential as effective biomarkers and therapeutic targets.


Assuntos
Proteínas de Fusão Oncogênica , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas de Fusão Oncogênica/genética , Biomarcadores Tumorais/genética , Receptor trkA/genética , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas B-raf/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Neuregulina-1/genética , Neuregulina-1/metabolismo , Quinase do Linfoma Anaplásico/genética , Fusão Gênica
12.
Cell Death Dis ; 15(2): 167, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396027

RESUMO

Neuronal nitric oxide synthase (nNOS, gene name Nos1) orchestrates the synthesis of nitric oxide (NO) within neurons, pivotal for diverse neural processes encompassing synaptic transmission, plasticity, neuronal excitability, learning, memory, and neurogenesis. Despite its significance, the precise regulation of nNOS activity across distinct neuronal types remains incompletely understood. Erb-b2 receptor tyrosine kinase 4 (ErbB4), selectively expressed in GABAergic interneurons and activated by its ligand neuregulin 1 (NRG1), modulates GABA release in the brain. Our investigation reveals the presence of nNOS in a subset of GABAergic interneurons expressing ErbB4. Notably, NRG1 activates nNOS via ErbB4 and its downstream phosphatidylinositol 3-kinase (PI3K), critical for NRG1-induced GABA release. Genetic removal of nNos from Erbb4-positive neurons impairs GABAergic transmission, partially rescued by the NO donor sodium nitroprusside (SNP). Intriguingly, the genetic deletion of nNos from Erbb4-positive neurons induces schizophrenia-relevant behavioral deficits, including hyperactivity, impaired sensorimotor gating, and deficient working memory and social interaction. These deficits are ameliorated by the atypical antipsychotic clozapine. This study underscores the role and regulation of nNOS within a specific subset of GABAergic interneurons, offering insights into the pathophysiological mechanisms of schizophrenia, given the association of Nrg1, Erbb4, Pi3k, and Nos1 genes with this mental disorder.


Assuntos
Receptores ErbB , Fosfatidilinositol 3-Quinases , Animais , Humanos , Camundongos , Receptores ErbB/metabolismo , Ácido gama-Aminobutírico , Hipocampo/metabolismo , Neuregulina-1/genética , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo
13.
BMC Med ; 22(1): 74, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369520

RESUMO

BACKGROUND: Neuregulin-1 (NRG1) is implicated in both cancer and neurologic diseases such as amyotrophic lateral sclerosis (ALS); however, to date, there has been little cross-field discussion between neurology and oncology in regard to these genes and their functions. MAIN BODY: Approximately 0.15-0.5% of cancers harbor NRG1 fusions that upregulate NRG1 activity and hence that of the cognate ERBB3/ERBB4 (HER3/HER4) receptors; abrogating this activity with small molecule inhibitors/antibodies shows preliminary tissue-agnostic anti-cancer activity. Notably, ERBB/HER pharmacologic suppression is devoid of neurologic toxicity. Even so, in ALS, attenuated ERBB4/HER4 receptor activity (due to loss-of-function germline mutations or other mechanisms in sporadic disease) is implicated; indeed, ERBB4/HER4 is designated ALS19. Further, secreted-type NRG1 isoforms may be upregulated (perhaps via a feedback loop) and could contribute to ALS pathogenesis through aberrant glial cell stimulation via enhanced activity of other (e.g., ERBB1-3/HER1-3) receptors and downstream pathways. Hence, pan-ERBB inhibitors, already in use for cancer, may be agents worthy of testing in ALS. CONCLUSION: Common signaling cascades between cancer and ALS may represent novel therapeutic targets for both diseases.


Assuntos
Esclerose Lateral Amiotrófica , Neoplasias , Neuregulina-1 , Receptor ErbB-4 , Humanos , Esclerose Lateral Amiotrófica/genética , Neoplasias/genética , Neuregulina-1/genética , Neuregulina-1/metabolismo , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo , Transdução de Sinais
14.
BMC Oral Health ; 24(1): 238, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355448

RESUMO

BACKGROUND: Facial nerve injury often results in poor prognosis due to the challenging process of nerve regeneration. Neuregulin-1, a human calmodulin, is under investigation in this study for its impact on the reparative capabilities of Dental Pulp Stem Cells (DPSCs) in facial nerve injury. METHODS: Lentivirus was used to transfect and construct Neuregulin-1 overexpressed DPSCs. Various techniques assessed the effects of Neuregulin-1: osteogenic induction, lipid induction, Reverse Transcription Polymerase Chain Reaction, Western Blot, Cell Counting Kit-8 assay, wound healing, immunofluorescence, Phalloidin staining, nerve stem action potential, Hematoxylin-eosin staining, transmission electron microscopy, and immunohistochemistry. RESULTS: Neuregulin-1 effectively enhanced the proliferation, migration, and cytoskeletal rearrangement of DPSCs, while simultaneously suppressing the expression of Ras homolog gene family member A (RhoA) and Microfilament actin (F-actin). These changes facilitated the neural differentiation of DPSCs. Additionally, in vivo experiments showed that Neuregulin-1 expedited the restoration of action potential in the facial nerve trunk, increased the thickness of the myelin sheath, and stimulated axon regeneration. CONCLUSION: Neuregulin-1 has the capability to facilitate the repair of facial nerve injuries by promoting the regenerative capacity of DPSCs. Thus, Neuregulin-1 is a significant potential gene in the reparative processes of nerve damage.


Assuntos
Polpa Dentária , Traumatismos do Nervo Facial , Humanos , Axônios , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Traumatismos do Nervo Facial/metabolismo , Regeneração Nervosa/fisiologia , Neuregulina-1/metabolismo , Células-Tronco/metabolismo
15.
Diagn Pathol ; 19(1): 28, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331905

RESUMO

OBJECTIVE: Benign nerve sheath tumors (BNSTs) present diagnostic challenges due to their heterogeneous nature. This study aimed to determine the significance of NRG1 as a novel diagnostic biomarker in BNST, emphasizing its involvement in the PI3K-Akt pathway and tumor immune regulation. METHODS: Differential genes related to BNST were identified from the GEO database. Gene co-expression networks, protein-protein interaction networks, and LASSO regression were utilized to pinpoint key genes. The CIBERSORT algorithm assessed immune cell infiltration differences, and functional enrichment analyses explored BNST signaling pathways. Clinical samples helped establish PDX models, and in vitro cell lines to validate NRG1's role via the PI3K-Akt pathway. RESULTS: Nine hundred eighty-two genes were upregulated, and 375 downregulated in BNST samples. WGCNA revealed the brown module with the most significant difference. Top hub genes included NRG1, which was also determined as a pivotal gene in disease characterization. Immune infiltration showed significant variances in neutrophils and M2 macrophages, with NRG1 playing a central role. Functional analyses confirmed NRG1's involvement in key pathways. Validation experiments using PDX models and cell lines further solidified NRG1's role in BNST. CONCLUSION: NRG1 emerges as a potential diagnostic biomarker for BNST, influencing the PI3K-Akt pathway, and shaping the tumor immune microenvironment.


Assuntos
Neoplasias de Bainha Neural , Fosfatidilinositol 3-Quinases , Humanos , Proteínas Proto-Oncogênicas c-akt , Algoritmos , Biomarcadores , Microambiente Tumoral , Neuregulina-1/genética
16.
Genomics ; 116(2): 110797, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262564

RESUMO

BACKGROUND: Hypertrophic scar (HTS) is a prevalent chronic inflammatory skin disorder characterized by abnormal proliferation and extracellular matrix deposition and the precise mechanisms underlying HTS remain elusive. This study aimed to identify and validate potential immune-related genes associated with hypertrophic scar formation. METHODS: Skin samples from normal (n = 12) and hypertrophic scar tissues (n = 12) were subjected to RNA-seq analysis. Differentially expressed genes (DEGs) and significant modular genes in Weighted gene Co-expression Network Analysis (WGCNA) were identified. Subsequently, functional enrichment analysis was performed on the intersecting genes. Additionally, eight immune-related genes were matched from the ImmPort database. Validation of NRG1 and CRLF1 was carried out using an external cohort (GSE136906). Furthermore, the association between these two genes and immune cells was assessed by Spearman correlation analysis. Finally, RNA was extracted from normal and hypertrophic scar samples, and RT-qPCR, Immunohistochemistry staining and Western Blot were employed to validate the expression of characteristic genes. RESULTS: A total of 940 DEGs were identified between HTS and normal samples, and 288 key module genes were uncovered via WGCNA. Enrichment analysis in key module revealed involvement in many immune-related pathways, such as Th17 cell differentiation, antigen processing and presentation and B cell receptor signaling pathway. The eight immune-related genes (IFI30, NR2F2, NRG1, ESM1, NFATC2, CRLF1, COLEC12 and IL6) were identified by matching from the ImmPort database. Notably, we observed that activated mast cell positively correlated with CRLF1 expression, while CD8 T cells exhibited a positive correlation with NRG1. The expression of NRG1 and CRLF1 was further validated in clinical samples. CONCLUSION: In this study, two key immune-related genes (CRLF1 and NRG1) were identified as characteristic genes associated with HTS. These findings provide valuable insights into the immune-related mechanisms underlying hypertrophic scar formation.


Assuntos
Cicatriz Hipertrófica , Neuregulina-1 , Receptores de Citocinas , Humanos , Diferenciação Celular , Cicatriz Hipertrófica/genética , Bases de Dados Factuais , Matriz Extracelular , Pele , Receptores de Citocinas/genética
17.
J Stroke Cerebrovasc Dis ; 33(3): 107581, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224792

RESUMO

OBJECTIVE: Moyamoya disease (MMD) is a rare and progressive stenosis of cerebral arteries characterized by abnormally proliferative vasculopathy. Current studies have demonstrated that Neuregulin 1 (NRG1) plays a key role in angiogenesis-related disorders. Thus, the aim of our study is to investigate the serum NRG1 levels and their clinical correlations in MMD patients. METHODS: In this study, thirty adult patients with MMD and age-gender matched healthy controls were enrolled from our hospital between July 2020 and April 2022. Peripheral blood samples were collected at baseline, and clinical data were obtained from the electronic medical record system. Serum NRG1 concentrations were measured by enzyme-linked immunosorbent assay. Sanger sequencing was applied to detect the RNF213 p.R4810K mutation. RESULTS: The serum NRG1 levels were significantly higher in MMD patients compared to controls (14.48 ± 10.81 vs.7.54 ± 6.35mmol/L, p < 0.001). No statistical difference in baseline clinical characteristics was found between both groups. Correlation analyses showed that NRG1 levels were positively associated with Suzuki staging (r = 0.4137, p = 0.023) while not related to other clinical features (reduced cerebral blood flow, posterior cerebral artery involvement, bilateral or unilateral steno-occlusive changes). Furthermore, subgroup analysis revealed that MMD patients with the RNF213 p.R4810K mutation presented with significantly higher NRG1 levels than those without the mutation (9.60 ± 0.929 vs. 25.89 ± 4.338 mmol/L, p = 0.001). CONCLUSIONS: Our study suggests that increased serum NRG1 levels may constitute a characteristic feature of MMD, indicating a potential positive correlation with disease progression and the presence of the RNF213 mutation. This positions NRG1 as a potentially crucial target for further studies aimed at comprehending the pathogenesis of MMD.


Assuntos
Doença de Moyamoya , Adulto , Humanos , Adenosina Trifosfatases/genética , Biomarcadores , Estudos de Casos e Controles , China , Progressão da Doença , Predisposição Genética para Doença , Doença de Moyamoya/diagnóstico , Doença de Moyamoya/genética , Neuregulina-1/genética , Ubiquitina-Proteína Ligases/genética
18.
Diagn Pathol ; 19(1): 1, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38173003

RESUMO

BACKGROUND: NRG1 fusion is a promising therapeutic target for various tumors but its prevalence is extremely low, and there are no standardized testing algorithms for genetic assessment. MOTHODS: In this study, we analyzed 3008 tumors using Fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) to screen for NRG1 translocation and p-HER3 expression. RESULTS: Our results demonstrated no cases with p-HER3 positivity through IHC. Nonetheless, 29 cases (0.96%) were identified positive for NRG1 translocation through FISH, with three different signal types. FISH-positive cases were subsequently subjected to next-generation sequencing (NGS) testing. However, only eight of these cases were confirmed with NRG1 fusion through NGS. Notably, we divided FISH into three types and FISH type C group was consistent with NGS results. All NGS NRG1 fusion tumors were adenocarcinomas, with a higher prevalence in females. Our findings indicate that although FISH has limitations in screening NRG1 gene rearrangements, NRG1 fusions can be reliably detected with signals exhibiting low copy numbers of the 5'-end of the gene and no fusion signals. CONCLUSION: Considering the high cost of NGS, FISH remains a useful method for screening NRG1 fusions in various types of tumors. This study provides valuable insights into the molecular mechanisms of NRG1 fusion and identifies potential treatment targets for patients suffering from this disease.


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , Feminino , Humanos , Neoplasias Pulmonares/patologia , Hibridização in Situ Fluorescente/métodos , Adenocarcinoma/patologia , Translocação Genética , Rearranjo Gênico , Proteínas de Fusão Oncogênica/genética , Neuregulina-1/genética , Neuregulina-1/uso terapêutico
19.
Artigo em Inglês | MEDLINE | ID: mdl-38242426

RESUMO

The core clinical characteristics of autism, which is a neurodevelopmental disease, involve repetitive behavior and impaired social interactions. Studies have shown that the Notch and Neuregulin1 (NRG1) signaling pathways are abnormally activated in autism, but the mechanism by which these two signaling pathways interact to contribute to the progression of autism has not been determined. Our results suggest that the levels of Notch1, Hes1, NRG1, and phosphorylated ErbB4 in the cerebellum (CB), hippocampus (HC), and prefrontal cortex (PFC) were increased in rats with valproic acid (VPA)-induced autism compared to those in the Con group. However, 3, 5-difluorophenyl-L-alanyl-L-2-phenylglycine tert-butyl (DAPT), which is a Notch pathway inhibitor, ameliorated autism-like behavioral abnormalities and decreased the protein levels of NRG1 and phosphorylated ErbB4 in rats with VPA-induced autism; these results demonstrated that the Notch1/Hes1 pathway could participate in the pathogenesis of autism by regulating the NRG1/ErbB4 signaling pathway. Studies have shown that the Notch pathway regulates microglial differentiation and activation during the onset of neurological disorders and that microglia affect autism-like behavior via synaptic pruning. Therefore, we hypothesized that the Notch1/Hes1 pathway could regulate the NRG1/ErbB4 pathway and thus participate in the development of autism by regulating microglial functions. The present study showed that AG1478, which is an ErbB4 inhibitor, ameliorated the autism-like behaviors in a VPA-induced autism rat model, reduced abnormal microglial activation, and decreased NRG1 and Iba-1 colocalization; however, AG1478 did not alter Notch1/Hes1 activity. These results demonstrated that Notch1/Hes1 may participate in the microglial activation in autism by regulating NRG1/ErbB4, revealing a new mechanism underlying the pathogenesis of autism.


Assuntos
Transtorno Autístico , Quinazolinas , Tirfostinas , Animais , Ratos , Transtorno Autístico/induzido quimicamente , Neuregulina-1 , Microglia , Ácido Valproico , Fatores de Transcrição HES-1 , Receptor Notch1
20.
Cancer Res ; 84(5): 725-740, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175774

RESUMO

Aberrations of the fibroblast growth factor receptor (FGFR) family members are frequently observed in metastatic urothelial cancer (mUC), and blocking the FGF/FGFR signaling axis is used as a targeted therapeutic strategy for treating patients. Erdafitinib is a pan-FGFR inhibitor, which has recently been approved by the FDA for mUC with FGFR2/3 alterations. Although mUC patients show initial response to erdafitinib, acquired resistance rapidly develops. Here, we found that adipocyte precursors promoted resistance to erdafitinib in FGFR-dependent bladder and lung cancer in a paracrine manner. Moreover, neuregulin 1 (NRG1) secreted from adipocyte precursors was a mediator of erdafitinib resistance by activating human epidermal growth factor receptor 3 (ERBB3; also known as HER3) signaling, and knockdown of NRG1 in adipocyte precursors abrogated the conferred paracrine resistance. NRG1 expression was significantly downregulated in terminally differentiated adipocytes compared with their progenitors. Pharmacologic inhibition of the NRG1/HER3 axis using pertuzumab reversed erdafitinib resistance in tumor cells in vitro and prolonged survival of mice bearing bladder cancer xenografts in vivo. Remarkably, data from single-cell RNA sequencing revealed that NRG1 was enriched in platelet-derived growth factor receptor-A (PDGFRA) expressing inflammatory cancer-associated fibroblasts, which is also expressed on adipocyte precursors. Together, this work reveals a paracrine mechanism of anti-FGFR resistance in bladder cancer, and potentially other cancers, that is amenable to inhibition using available targeted therapies. SIGNIFICANCE: Acquired resistance to FGFR inhibition can be rapidly promoted by paracrine activation of the NRG1/HER3 axis mediated by adipocyte precursors and can be overcome by the combination of pertuzumab and erdafitinib treatment. See related commentary by Kolonin and Anastassiou, p. 648.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Camundongos , Animais , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Carcinoma de Células de Transição/patologia , Neuregulina-1 , Receptores de Fatores de Crescimento de Fibroblastos , Transdução de Sinais , Inibidores de Proteínas Quinases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...