Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.582
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38791476

RESUMO

Critical illness and sepsis may cause organ failure and are recognized as mortality drivers in hospitalized patients. Neuropilin-1 (NRP-1) is a multifaceted transmembrane protein involved in the primary immune response and is expressed in immune cells such as T and dendritic cells. The soluble form of NRP-1 (sNRP-1) acts as an antagonist to NRP-1 by scavenging its ligands. The aim of this study was to determine the value of sNRP-1 as a biomarker in critical illness and sepsis. We enrolled 180 critically ill patients admitted to a medical intensive care unit and measured serum sNRP-1 concentrations at admission, comparing them to 48 healthy individuals. Critically ill and septic patients showed higher levels of sNRP-1 compared to healthy controls (median of 2.47 vs. 1.70 nmol/L, p < 0.001). Moreover, sNRP-1 was also elevated in patients with sepsis compared to other critical illness (2.60 vs. 2.13 nmol/L, p = 0.01), irrespective of disease severity or organ failure. In critically ill patients, sNRP-1 is positively correlated with markers of kidney and hepatic dysfunction. Most notably, critically ill patients not surviving in the long term (one year after admission) showed higher concentrations of sNRP-1 at the time of ICU admission (p = 0.036), with this association being dependent on the presence of organ failure. Critically ill and septic patients exhibit higher serum concentrations of circulating sNRP-1, which correlates to organ failure, particularly hepatic and kidney dysfunction.


Assuntos
Biomarcadores , Estado Terminal , Insuficiência de Múltiplos Órgãos , Neuropilina-1 , Sepse , Humanos , Sepse/mortalidade , Sepse/sangue , Masculino , Feminino , Neuropilina-1/metabolismo , Neuropilina-1/sangue , Pessoa de Meia-Idade , Idoso , Biomarcadores/sangue , Insuficiência de Múltiplos Órgãos/sangue , Insuficiência de Múltiplos Órgãos/mortalidade , Insuficiência de Múltiplos Órgãos/etiologia , Adulto , Unidades de Terapia Intensiva , Estudos de Casos e Controles
2.
Commun Biol ; 7(1): 629, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789481

RESUMO

Integrin trafficking to and from membrane adhesions is a crucial mechanism that dictates many aspects of a cell's behaviour, including motility, polarisation, and invasion. In endothelial cells (ECs), the intracellular traffic of α5 integrin is regulated by both neuropilin 1 (NRP1) and neuropilin 2 (NRP2), yet the redundancies in function between these co-receptors remain unclear. Moreover, the endocytic complexes that participate in NRP-directed traffic remain poorly annotated. Here we identify an important role for the GTPase-activating protein p120RasGAP in ECs, promoting the recycling of α5 integrin from early endosomes. Mechanistically, p120RasGAP enables transit of endocytosed α5 integrin-NRP1-NRP2 complexes to Rab11+ recycling endosomes, promoting cell polarisation and fibronectin (FN) fibrillogenesis. Silencing of both NRP receptors, or p120RasGAP, resulted in the accumulation of α5 integrin in early endosomes, a loss of α5 integrin from surface adhesions, and attenuated EC polarisation. Endothelial-specific deletion of both NRP1 and NRP2 in the postnatal retina recapitulated our in vitro findings, severely impairing FN fibrillogenesis and polarised sprouting. Our data assign an essential role for p120RasGAP during integrin traffic in ECs and support a hypothesis that NRP receptors co-traffic internalised cargoes. Importantly, we utilise comparative proteomics analyses to isolate a comprehensive map of NRP1-dependent and NRP2-dependent α5 integrin interactions in ECs.


Assuntos
Endossomos , Células Endoteliais , Fibronectinas , Integrina alfa5 , Neuropilina-1 , Neuropilina-2 , Proteômica , Proteína p120 Ativadora de GTPase , Neuropilina-1/metabolismo , Neuropilina-1/genética , Humanos , Integrina alfa5/metabolismo , Integrina alfa5/genética , Endossomos/metabolismo , Proteômica/métodos , Neuropilina-2/metabolismo , Neuropilina-2/genética , Animais , Fibronectinas/metabolismo , Células Endoteliais/metabolismo , Proteína p120 Ativadora de GTPase/metabolismo , Proteína p120 Ativadora de GTPase/genética , Transporte Proteico , Camundongos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Integrinas
3.
Aging (Albany NY) ; 16(9): 8086-8109, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38728245

RESUMO

BACKGROUND: Research has shown a connection between vasculogenic mimicry (VM) and cancer progression. However, the functions of genes related to VM in the emergence and progression of TNBC have not been completely elucidated. METHODS: A survival risk model was constructed by screening biomarkers using DESeq2 and WGCNA based on public TNBC transcriptome data. Furthermore, gene set enrichment analysis was performed, and tumor microenvironment and drug sensitivity were analyzed. The selected biomarkers were validated via quantitative PCR detection, immunohistochemical staining, and protein detection in breast cancer cell lines. Biomarkers related to the proliferation and migration of TNBC cells were validated via in vitro experiments. RESULTS: The findings revealed that 235 target genes were connected to the complement and coagulation cascade pathways. The risk score was constructed using KCND2, NRP1, and VSTM4. The prognosis model using the risk score and pathological T stage yielded good validation results. The clinical risk of TNBC was associated with the angiogenesis signaling pathway, and the low-risk group exhibited better sensitivity to immunotherapy. Quantitative PCR and immunohistochemistry indicated that the expression levels of KCND2 in TNBC tissues were higher than those in adjacent nontumor tissues. In the TNBC cell line, the protein expression of KCND2 was increased. Knockdown of KCND2 and VSTM4 inhibited the proliferation and migration of TNBC cells in vitro. CONCLUSIONS: In this study, three VM-related biomarkers were identified, including KCND2, NRP1, and VSTM4. These findings are likely to aid in deepening our understanding of the regulatory mechanism of VM in TNBC.


Assuntos
Biomarcadores Tumorais , Neovascularização Patológica , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Feminino , Prognóstico , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/genética , Proliferação de Células/genética , Neuropilina-1/genética , Neuropilina-1/metabolismo , Movimento Celular/genética , Transcriptoma , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo
4.
Cancer Res ; 84(9): 1517-1533, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38587552

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy characterized by an immunosuppressive tumor microenvironment enriched with cancer-associated fibroblasts (CAF). This study used a convergence approach to identify tumor cell and CAF interactions through the integration of single-cell data from human tumors with human organoid coculture experiments. Analysis of a comprehensive atlas of PDAC single-cell RNA sequencing data indicated that CAF density is associated with increased inflammation and epithelial-mesenchymal transition (EMT) in epithelial cells. Transfer learning using transcriptional data from patient-derived organoid and CAF cocultures provided in silico validation of CAF induction of inflammatory and EMT epithelial cell states. Further experimental validation in cocultures demonstrated integrin beta 1 (ITGB1) and vascular endothelial factor A (VEGFA) interactions with neuropilin-1 mediating CAF-epithelial cell cross-talk. Together, this study introduces transfer learning from human single-cell data to organoid coculture analyses for experimental validation of discoveries of cell-cell cross-talk and identifies fibroblast-mediated regulation of EMT and inflammation. SIGNIFICANCE: Adaptation of transfer learning to relate human single-cell RNA sequencing data to organoid-CAF cocultures facilitates discovery of human pancreatic cancer intercellular interactions and uncovers cross-talk between CAFs and tumor cells through VEGFA and ITGB1.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Técnicas de Cocultura , Transição Epitelial-Mesenquimal , Inflamação , Integrina beta1 , Neoplasias Pancreáticas , Análise de Célula Única , Microambiente Tumoral , Humanos , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Inflamação/patologia , Inflamação/metabolismo , Integrina beta1/metabolismo , Integrina beta1/genética , Organoides/patologia , Organoides/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Neuropilina-1/metabolismo , Neuropilina-1/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Comunicação Celular
5.
ACS Appl Mater Interfaces ; 16(17): 21709-21721, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38651381

RESUMO

Antiangiogenic therapy is an effective way to disrupt nutrient supply and starve tumors, but it is restricted by poor efficacy and negative feedback-induced tumor relapse. In this study, a neuropilin-1 (NRP-1)-targeted nanomedicine (designated as FPPT@Axi) is reported for spatiotemporal tumor suppression by combining photodynamic therapy (PDT) with antiangiogenesis. In brief, FPPT@Axi is prepared by utilizing an NRP-1-targeting chimeric peptide (Fmoc-K(PpIX)-PEG8-TKPRR) to encapsulate the antiangiogenic drug Axitinib (Axi). Importantly, the NRP-1-mediated targeting property enables FPPT@Axi to selectively concentrate at vascular endothelial and breast cancer cells, facilitating the production of reactive oxygen species (ROS) in situ for specific vascular disruption and enhanced cell apoptosis under light stimulation. Moreover, the codelivered Axi can further inhibit vascular endothelial growth factor receptor (VEGFR) to impair the negative feedback of PDT-induced tumor neovascularization. Consequently, FPPT@Axi spatiotemporally restrains the tumor growth through blocking angiogenesis, destroying tumor vessels, and inducing tumor apoptosis. Such an NRP-1-mediated targeting codelivery system sheds light on constructing an appealing candidate with translational potential by using clinically approved PDT and chemotherapy.


Assuntos
Inibidores da Angiogênese , Neovascularização Patológica , Neuropilina-1 , Fotoquimioterapia , Neuropilina-1/metabolismo , Humanos , Animais , Camundongos , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/química , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Feminino , Axitinibe/farmacologia , Axitinibe/química , Axitinibe/uso terapêutico , Nanomedicina , Apoptose/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Camundongos Nus
6.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38674009

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to raise concerns worldwide. Numerous host factors involved in SARS-CoV-2 infection have been identified, but the regulatory mechanisms of these host factor remain unclear. Here, we report the role of G-quadruplexes (G4s) located in the host factor promoter region in SARS-CoV-2 infection. Using bioinformatics, biochemical, and biological assays, we provide evidence for the presence of G4 structures in the promoter regions of SARS-CoV-2 host factors NRP1. Specifically, we focus on two representative G4s in the NRP1 promoter and highlight its importance in SARS-CoV-2 pathogenesis. The presence of the G4 structure greatly increases NRP1 expression, facilitating SARS-CoV-2 entry into cells. Utilizing published single-cell RNA sequencing data obtained from simulated SARS-CoV-2 infection in human bronchial epithelial cells (HBECs), we found that ciliated cells with high levels of NRP1 are prominently targeted by the virus during infection. Furthermore, our study identifies E2F1 act as a transcription factor that binds to G4s. These findings uncover a previously unknown mechanism underlying SARS-CoV-2 infection and suggest that targeting G4 structures could be a potential strategy for COVID-19 prevention and treatment.


Assuntos
COVID-19 , Quadruplex G , Neuropilina-1 , Regiões Promotoras Genéticas , Humanos , COVID-19/genética , COVID-19/virologia , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Células Epiteliais/virologia , Células Epiteliais/metabolismo , Neuropilina-1/genética , Neuropilina-1/metabolismo , SARS-CoV-2/fisiologia , Internalização do Vírus
7.
Cell Mol Immunol ; 21(6): 575-588, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38632385

RESUMO

Neonates are susceptible to inflammatory disorders such as necrotizing enterocolitis (NEC) due to their immature immune system. The timely appearance of regulatory immune cells in early life contributes to the control of inflammation in neonates, yet the underlying mechanisms of which remain poorly understood. In this study, we identified a subset of neonatal monocytes characterized by high levels of neuropilin-1 (Nrp1), termed Nrp1high monocytes. Compared with their Nrp1low counterparts, Nrp1high monocytes displayed potent immunosuppressive activity. Nrp1 deficiency in myeloid cells aggravated the severity of NEC, whereas adoptive transfer of Nrp1high monocytes led to remission of NEC. Mechanistic studies showed that Nrp1, by binding to its ligand Sema4a, induced intracellular p38-MAPK/mTOR signaling and activated the transcription factor KLF4. KLF4 transactivated Nos2 and enhanced the production of nitric oxide (NO), a key mediator of immunosuppression in monocytes. These findings reveal an important immunosuppressive axis in neonatal monocytes and provide a potential therapeutic strategy for treating inflammatory disorders in neonates.


Assuntos
Animais Recém-Nascidos , Enterocolite Necrosante , Inflamação , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like , Monócitos , Neuropilina-1 , Monócitos/metabolismo , Monócitos/imunologia , Animais , Neuropilina-1/metabolismo , Neuropilina-1/genética , Inflamação/patologia , Inflamação/imunologia , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Enterocolite Necrosante/imunologia , Enterocolite Necrosante/metabolismo , Enterocolite Necrosante/prevenção & controle , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Camundongos Endogâmicos C57BL , Recém-Nascido , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Camundongos Knockout
8.
Am J Physiol Cell Physiol ; 326(6): C1659-C1668, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38646784

RESUMO

Idiopathic pulmonary fibrosis (IPF) is marked by the activation of fibroblasts, leading to excessive production and deposition of extracellular matrix (ECM) within the lung parenchyma. Despite the pivotal role of ECM overexpression in IPF, potential negative regulators of ECM production in fibroblasts have yet to be identified. Semaphorin class 3B (SEMA3B), a secreted protein highly expressed in lung tissues, has established roles in axonal guidance and tumor suppression. However, the role of SEMA3B in ECM production by fibroblasts in the pathogenesis of IPF remains unexplored. Here, we show the downregulation of SEMA3B and its cognate binding receptor, neuropilin 1 (NRP1), in IPF lungs compared with healthy controls. Notably, the reduced expression of SEMA3B and NRP1 is associated with a decline in lung function in IPF. The downregulation of SEMA3B and NRP1 transcripts was validated in the lung tissues of patients with IPF, and two alternative mouse models of pulmonary fibrosis. In addition, we show that transforming growth factor-ß (TGFß) functions as a negative regulator of SEMA3B and NRP1 expression in lung fibroblasts. Furthermore, we demonstrate the antifibrotic effects of SEMA3B against TGFß-induced ECM production in IPF lung fibroblasts. Overall, our findings uncovered a novel role of SEMA3B in the pathogenesis of pulmonary fibrosis and provided novel insights into modulating the SEMA3B-NRP1 axis to attenuate pulmonary fibrosis.NEW & NOTEWORTHY The excessive production and secretion of collagens and other extracellular matrix proteins by fibroblasts lead to the scarring of the lung in severe fibrotic lung diseases. This study unveils an antifibrotic role for semaphorin class 3B (SEMA3B) in the pathogenesis of idiopathic pulmonary fibrosis. SEMA3B functions as an inhibitor of transforming growth factor-ß-driven fibroblast activation and reduced levels of SEMA3B and its receptor, neuropilin 1, are associated with decreased lung function in idiopathic pulmonary fibrosis.


Assuntos
Proteínas da Matriz Extracelular , Fibroblastos , Fibrose Pulmonar Idiopática , Pulmão , Neuropilina-1 , Semaforinas , Fator de Crescimento Transformador beta , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/genética , Humanos , Animais , Neuropilina-1/metabolismo , Neuropilina-1/genética , Pulmão/metabolismo , Pulmão/patologia , Fibroblastos/metabolismo , Semaforinas/metabolismo , Semaforinas/genética , Fator de Crescimento Transformador beta/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Camundongos , Masculino , Feminino , Matriz Extracelular/metabolismo , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Células Cultivadas , Glicoproteínas de Membrana
9.
J Cell Mol Med ; 28(8): e18201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568078

RESUMO

Sensory nerves play a crucial role in maintaining bone homeostasis by releasing Semaphorin 3A (Sema3A). However, the specific mechanism of Sema3A in regulation of bone marrow mesenchymal stem cells (BMMSCs) during bone remodelling remains unclear. The tibial denervation model was used and the denervated tibia exhibited significantly lower mass as compared to sham operated bones. In vitro, BMMSCs cocultured with dorsal root ganglion cells (DRGs) or stimulated by Sema3A could promote osteogenic differentiation through the Wnt/ß-catenin/Nrp1 positive feedback loop, and the enhancement of osteogenic activity could be inhibited by SM345431 (Sema3A-specific inhibitor). In addition, Sema3A-stimulated BMMSCs or intravenous injection of Sema3A could promote new bone formation in vivo. To sum up, the coregulation of bone remodelling is due to the ageing of BMMSCs and increased osteoclast activity. Furthermore, the sensory neurotransmitter Sema3A promotes osteogenic differentiation of BMMSCs via Wnt/ß-catenin/Nrp1 positive feedback loop, thus promoting osteogenesis in vivo and in vitro.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Osteogênese/genética , Semaforina-3A/genética , Retroalimentação , beta Catenina , Gânglios Espinais , Neuropilina-1/genética
11.
Cancer Res ; 84(11): 1781-1798, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38507720

RESUMO

Inflammatory breast cancer (IBC) is a highly aggressive subtype of breast cancer characterized by rapidly arising diffuse erythema and edema. Genomic studies have not identified consistent alterations and mechanisms that differentiate IBC from non-IBC tumors, suggesting that the microenvironment could be a potential driver of IBC phenotypes. Here, using single-cell RNA sequencing, multiplex staining, and serum analysis in patients with IBC, we identified enrichment of a subgroup of luminal progenitor (LP) cells containing high expression of the neurotropic cytokine pleiotrophin (PTN) in IBC tumors. PTN secreted by the LP cells promoted angiogenesis by directly interacting with the NRP1 receptor on endothelial tip cells located in both IBC tumors and the affected skin. NRP1 activation in tip cells led to recruitment of immature perivascular cells in the affected skin of IBC, which are correlated with increased angiogenesis and IBC metastasis. Together, these findings reveal a role for cross-talk between LPs, endothelial tip cells, and immature perivascular cells via PTN-NRP1 axis in the pathogenesis of IBC, which could lead to improved strategies for treating IBC. SIGNIFICANCE: Nonmalignant luminal progenitor cells expressing pleiotrophin promote angiogenesis by activating NRP1 and induce a prometastatic tumor microenvironment in inflammatory breast cancer, providing potential therapeutic targets for this aggressive breast cancer subtype.


Assuntos
Proteínas de Transporte , Citocinas , Neoplasias Inflamatórias Mamárias , Neovascularização Patológica , Microambiente Tumoral , Humanos , Feminino , Citocinas/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Animais , Camundongos , Neovascularização Patológica/patologia , Neovascularização Patológica/metabolismo , Neoplasias Inflamatórias Mamárias/patologia , Neoplasias Inflamatórias Mamárias/metabolismo , Neoplasias Inflamatórias Mamárias/genética , Neuropilina-1/metabolismo , Neuropilina-1/genética , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Metástase Neoplásica , Angiogênese
12.
Eur J Immunol ; 54(6): e2350619, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38532599

RESUMO

This study sought to compare the behavior of Treg subsets displaying different coexpression patterns of Neuropilin-1 (Nrp1) and Helios, under the influence of gut stress unrelated to hematopoietic stem cell transplantation, pretransplantation conditioning, and posttransplant gastrointestinal acute graft versus host disease (GI-aGvHD). Host CD4+/CD25hi/Foxp3+ Treg cells, identified by flow cytometry, were isolated from various tissues of mice affected by these stressors. Expression of CD25, CTLA-4, CD39, OX40, integrin-ß7, LAG3, TGFß/LAP, granzyme-A, -B, and interleukin-10 was compared in four Treg subsets displaying Helios or Nrp1 only, both or none. Fluorescence-activated cell sorter-sorted Treg subsets, displaying markers affected in a conditioning- and GI-aGVHD-restricted manner, were further investigated by transcriptome profiling and T-cell suppression assays. We found that conditioning by irradiation greatly diminished the relative frequency of Helios+/Nrp1+ Treg, shifting the balance toward Helios-/Nrp1- Treg in the host. Upregulation of integrin-ß7 and OX40 occurred in GI-aGvHD-dependent manner in Helios+/Nrp1+ cells but not in Helios-/Nrp1- Treg. Sorted Treg subsets, confirmed to overexpress Nrp1, Helios, OX40, or integrin-ß7, displayed superior immunosuppressive activity and enrichment in activation-related messenger RNA transcripts. Our data suggest that conditioning-induced shrinkage of the Nrp1+/Helios+ Treg subset may contribute to the development of GI-GvHD by impairing gut homing and decreasing the efficiency of Treg-mediated immunosuppression.


Assuntos
Doença Enxerto-Hospedeiro , Cadeias beta de Integrinas , Neuropilina-1 , Linfócitos T Reguladores , Animais , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/metabolismo , Linfócitos T Reguladores/imunologia , Camundongos , Neuropilina-1/metabolismo , Neuropilina-1/genética , Cadeias beta de Integrinas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Condicionamento Pré-Transplante/métodos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Camundongos Endogâmicos C57BL , Gastroenteropatias/imunologia , Camundongos Endogâmicos BALB C , Receptores OX40/metabolismo , Doença Aguda , Transplante de Células-Tronco Hematopoéticas , Feminino , Ligante OX40
13.
BMC Cancer ; 24(1): 331, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468231

RESUMO

BACKGROUND: Angiogenesis is crucial for tumor development, progression, and metastasizing. The most important regulator of angiogenesis is the vascular endothelial growth factor (VEGF) family, which is involved in multiple pathways in tumor microenvironment. The objective of this study was to investigate the prognostic value of the VEGF family in patients treated for metastatic breast cancer. The emphasis was on neuropilin-1 (NRP-1) and placental growth factor (PlGF). MATERIALS AND METHODS: An analysis of eight members of the VEGF family was performed using baseline plasma samples of 65 patients treated for metastatic HER2 negative breast cancer in a phase II first-line bevacizumab plus chemotherapy trial. The patients were divided into two groups, high or low, according to the median for each VEGF family member. Progression-free survival (PFS) and overall survival (OS) were determined for each VEGF family member. RESULTS: The patients with low plasma levels of NRP-1 and PlGF had a longer OS than those with high plasma levels [multivariable adjusted hazard ratios (HRs) 2.54 (95% confidence interval (CI) 1.11-5.82, p = 0.02) and 3.11 (95% CI 1.30-7.47, p = 0.01), respectively]. The patients with low levels of both NRP-1 and PlGF had a remarkably long OS with HR of 6.24, (95% CI 1.97-19.76, p = 0.002). In addition, high baseline NRP-1 level was associated with a significantly shorter PFS [multivariable adjusted HR 2.90 (95% CI 1.02-8.28, p = 0.04)] than that in the low-level group, and a high baseline vascular endothelial growth factor receptor-2 level was associated with a longer PFS [multivariable adjusted HR 0.43 (95% CI 0.19-0.98, p = 0.04)]. CONCLUSION: Especially NRP-1 and PlGF have prognostic potential in metastatic breast cancer patients treated with a bevacizumab-taxane combination. Patients with low plasma levels of NRP-1 or PlGF have longer OS than patients with high levels. Patients with both low NRP-1 and PlGF levels appear to have excellent long-term survival. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT00979641, registration date 18/09/2009. The regional Ethics Committee: R08142M, registration date 18/11/2008.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Bevacizumab/uso terapêutico , Fator de Crescimento Placentário , Fator A de Crescimento do Endotélio Vascular , Neuropilina-1 , Prognóstico , Fatores de Crescimento do Endotélio Vascular , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Microambiente Tumoral
14.
J Physiol ; 602(8): 1815-1833, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38381008

RESUMO

Renin is the key enzyme of the systemic renin-angiotensin-aldosterone system, which plays an essential role in regulating blood pressure and maintaining electrolyte and extracellular volume homeostasis. Renin is mainly produced and secreted by specialized juxtaglomerular (JG) cells in the kidney. In the present study, we report for the first time that the conserved transmembrane receptor neuropilin-1 (NRP1) participates in the development of JG cells and plays a key role in renin production. We used the myelin protein zero-Cre (P0-Cre) to abrogate Nrp1 constitutively in P0-Cre lineage-labelled cells of the kidney. We found that the P0-Cre precursor cells differentiate into renin-producing JG cells. We employed a lineage-tracing strategy combined with RNAscope quantification and metabolic studies to reveal a cell-autonomous role for NRP1 in JG cell function. Nrp1-deficient animals displayed abnormal levels of tissue renin expression and failed to adapt properly to a homeostatic challenge to sodium balance. These findings provide new insights into cell fate decisions and cellular plasticity operating in P0-Cre-expressing precursors and identify NRP1 as a novel key regulator of JG cell maturation. KEY POINTS: Renin is a centrepiece of the renin-angiotensin-aldosterone system and is produced by specialized juxtaglomerular cells (JG) of the kidney. Neuropilin-1 (NRP1) is a conserved membrane-bound receptor that regulates vascular and neuronal development, cancer aggressiveness and fibrosis progression. We used conditional mutagenesis and lineage tracing to show that NRP1 is expressed in JG cells where it regulates their function. Cell-specific Nrp1 knockout mice present with renin paucity in JG cells and struggle to adapt to a homeostatic challenge to sodium balance. The results support the versatility of renin-producing cells in the kidney and may open new avenues for therapeutic approaches.


Assuntos
Sistema Justaglomerular , Renina , Camundongos , Animais , Renina/metabolismo , Sistema Justaglomerular/metabolismo , Neuropilina-1/genética , Neuropilina-1/metabolismo , Rim/metabolismo , Camundongos Knockout , Sódio/metabolismo
15.
Immunology ; 172(2): 226-234, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38409805

RESUMO

Group 2 innate lymphoid cells (ILC2s) play critical roles in driving the pathogenesis of allergic airway inflammation. The mechanisms underlying the regulation of ILC2s remain to be fully understood. Here, we identified neuropilin-1 (NRP1) as a surface marker of ILC2s in response to IL-33 stimulation. NRP1 was abundantly expressed in ILC2s from lung under steady state, which was significantly reduced upon IL-33 stimulation. ILC2s with high expression of NRP1 (NRP1high) displayed lower response to IL-33, as compared with NRP1low ILC2s. Transcriptional profiling and flow cytometric analysis showed that downregulation of AKT-mTOR signalling participated in the diminished functionality of NRP1high ILC2s. These observations revealed a potential role of NRP1 in ILC2s responses under allergic inflammatory condition.


Assuntos
Regulação para Baixo , Imunidade Inata , Interleucina-33 , Linfócitos , Neuropilina-1 , Transdução de Sinais , Interleucina-33/metabolismo , Interleucina-33/imunologia , Animais , Neuropilina-1/metabolismo , Neuropilina-1/genética , Camundongos , Linfócitos/imunologia , Linfócitos/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Endogâmicos C57BL
16.
Eur J Nucl Med Mol Imaging ; 51(7): 1826-1840, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38319321

RESUMO

PURPOSE: Neuropilin-1 (NRP-1) is a multifunctional protein involved in a variety of biological processes such as angiogenesis, tumorigenesis and immunomodulation. It was usually overexpressed in many cancer cell lines and correlated with poor prognosis of breast cancer. Positron emission tomography (PET) is an advanced imaging technique for detecting the function and metabolism of tumor-associated molecules in real time, dynamically, quantitatively and noninvasively. To improve the level of early diagnosis and evaluate the prognosis of breast cancer, an NRP-1 targeting peptide-based tracer [68 Ga]Ga-NOTA-PEG4-CK2 was designed to sensitively and specifically detect the NRP-1 expression in vivo via PET imaging. METHODS: In silico modeling and microscale thermophoresis (MST) assay were carried out to design the NRP-1 targeting peptide NOTA-PEG4-CK2, and it was further radiolabeled with 68 Ga to prepare the tracer [68 Ga]Ga-NOTA-PEG4-CK2. The radiochemical yield (RCY), radiochemical purity (RCP), molar activity (Am), lipid-water partition coefficient (Log P) and stability of [68 Ga]Ga-NOTA-PEG4-CK2 were assessed. The targeting specificity of the tracer for NRP-1 was investigated by in vitro cellular uptake assay and in vivo PET imaging as well as blocking studies. The sensitivity of the tracer in monitoring the dynamic changes of NRP-1 expression induced by chemical drug was also investigated in vitro and in vivo. Ex vivo biodistribution, autoradiography, western blot, and immunofluorescence staining were also performed to study the specificity of [68 Ga]Ga-NOTA-PEG4-CK2 for NRP-1. RESULTS: [68 Ga]Ga-NOTA-PEG4-CK2 was designed and synthesized with high RCY (> 98%), high stability (RCP > 95%) and high affinity to NRP-1 (KD = 25.39 ± 1.65 nM). In vitro cellular uptake assay showed that the tracer [68 Ga]Ga-NOTA-PEG4-CK2 can specifically bind to NRP-1 positive cancer cells MDA-MB-231 (1.04 ± 0.04% at 2 h) rather than NRP-1 negative cancer cells NCI-H1299 (0.43 ± 0.05%). In vivo PET imaging showed the maximum tumor uptake of [68 Ga]Ga-NOTA-PEG4-CK2 in MDA-MB-231 xenografts (4.16 ± 0.67%ID/mL) was significantly higher than that in NCI-H1299 xenografts (1.03 ± 0.19%ID/mL) at 10 min post injection, and the former exhibited higher tumor-to-muscle uptake ratio (5.22 ± 0.18) than the latter (1.07 ± 0.27) at 60 min post injection. MDA-MB-231 xenografts pretreated with nonradioactive precursor NOTA-PEG4-CK2 showed little tumor uptake of [68 Ga]Ga-NOTA-PEG4-CK2 (1.67 ± 0.38%ID/mL at 10 min post injection). Both cellular uptake assay and PET imaging revealed that NRP-1 expression in breast cancer MDA-MB-231 could be effectively suppressed by SB-203580 treatment and can be sensitively detected by [68 Ga]Ga-NOTA-PEG4-CK2. Ex vivo analysis also proved the high specificity and sensitivity of [68 Ga]Ga-NOTA-PEG4-CK2 for NRP-1 expression in MDA-MB-231 xenografts. CONCLUSION: A promising NRP-1 targeting PET tracer [68 Ga]Ga-NOTA-PEG4-CK2 was successfully prepared. It showed remarkable specificity and sensitivity in monitoring the dynamic changes of NRP-1 expression. Hence, it could provide valuable information for early diagnosis of NRP-1 relevant cancers and evaluating the prognosis of cancer patients.


Assuntos
Radioisótopos de Gálio , Neuropilina-1 , Tomografia por Emissão de Pósitrons , Neuropilina-1/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Animais , Camundongos , Humanos , Linhagem Celular Tumoral , Distribuição Tecidual , Feminino , Compostos Heterocíclicos com 1 Anel/química , Marcação por Isótopo , Peptídeos/química , Regulação Neoplásica da Expressão Gênica , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/química
17.
Adv Mater ; 36(23): e2314132, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38353332

RESUMO

Radiation therapy (RT) is one of the primary options for clinical cancer therapy, in particular advanced head and neck squamous cell carcinoma (HNSCC). Herein, the crucial role of bromodomain-containing protein 4 (BRD4)-RAD51 associated protein 1 (RAD51AP1) axis in sensitizing RT of HNSCC is revealed. A versatile nanosensitizer (RPB7H) is thus innovatively engineered by integrating a PROteolysis TArgeting Chimeras (PROTAC) prodrug (BPA771) and hafnium dioxide (HfO2) nanoparticles to downregulate BRD4-RAD51AP1 pathway and sensitize HNSCC tumor to RT. Upon intravenous administration, the RPB7H nanoparticles selectively accumulate at the tumor tissue and internalize into tumor cells by recognizing neuropilin-1 overexpressed in the tumor mass. HfO2 nanoparticles enhance RT effectiveness by amplifying X-ray deposition, intensifying DNA damage, and boosting oxidative stress. Meanwhile, BPA771 can be activated by RT-induced H2O2 secretion to degrade BRD4 and inactivate RAD51AP1, thus impeding RT-induced DNA damage repair. This versatile nanosensitizer, combined with X-ray irradiation, effectively regresses HNSCC tumor growth in a mouse model. The findings introduce a PROTAC prodrug-based radiosensitization strategy by targeting the BRD4-RAD51AP1 axis, may offer a promising avenue to augment RT and more effective HNSCC therapy.


Assuntos
Nanopartículas , Pró-Fármacos , Radiossensibilizantes , Fatores de Transcrição , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Animais , Humanos , Linhagem Celular Tumoral , Camundongos , Radiossensibilizantes/química , Radiossensibilizantes/farmacologia , Fatores de Transcrição/metabolismo , Nanopartículas/química , Proteínas de Ciclo Celular/metabolismo , Proteólise/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Dano ao DNA/efeitos dos fármacos , Neuropilina-1/metabolismo , Proteínas que Contêm Bromodomínio
18.
PLoS Comput Biol ; 20(2): e1011798, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324585

RESUMO

The vascular endothelial growth factor (VEGF) family of cytokines are key drivers of blood vessel growth and remodeling. These ligands act via multiple VEGF receptors (VEGFR) and co-receptors such as Neuropilin (NRP) expressed on endothelial cells. These membrane-associated receptors are not solely expressed on the cell surface, they move between the surface and intracellular locations, where they can function differently. The location of the receptor alters its ability to 'see' (access and bind to) its ligands, which regulates receptor activation; location also alters receptor exposure to subcellularly localized phosphatases, which regulates its deactivation. Thus, receptors in different subcellular locations initiate different signaling, both in terms of quantity and quality. Similarly, the local levels of co-expression of other receptors alters competition for ligands. Subcellular localization is controlled by intracellular trafficking processes, which thus control VEGFR activity; therefore, to understand VEGFR activity, we must understand receptor trafficking. Here, for the first time, we simultaneously quantify the trafficking of VEGFR1, VEGFR2, and NRP1 on the same cells-specifically human umbilical vein endothelial cells (HUVECs). We build a computational model describing the expression, interaction, and trafficking of these receptors, and use it to simulate cell culture experiments. We use new quantitative experimental data to parameterize the model, which then provides mechanistic insight into the trafficking and localization of this receptor network. We show that VEGFR2 and NRP1 trafficking is not the same on HUVECs as on non-human ECs; and we show that VEGFR1 trafficking is not the same as VEGFR2 trafficking, but rather is faster in both internalization and recycling. As a consequence, the VEGF receptors are not evenly distributed between the cell surface and intracellular locations, with a very low percentage of VEGFR1 being on the cell surface, and high levels of NRP1 on the cell surface. Our findings have implications both for the sensing of extracellular ligands and for the composition of signaling complexes at the cell surface versus inside the cell.


Assuntos
Fator A de Crescimento do Endotélio Vascular , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Transdução de Sinais , Fosforilação , Neuropilina-1/metabolismo
19.
Biochem Soc Trans ; 52(1): 137-150, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38323651

RESUMO

Neuropilin-1 (NRP1) is a transmembrane glycoprotein expressed by several cell types including, neurons, endothelial cells (ECs), smooth muscle cells, cardiomyocytes and immune cells comprising macrophages, dendritic cells and T cell subsets. Since NRP1 discovery in 1987 as an adhesion molecule in the frog nervous system, more than 2300 publications on PubMed investigated the function of NRP1 in physiological and pathological contexts. NRP1 has been characterised as a coreceptor for class 3 semaphorins and several members of the vascular endothelial growth factor (VEGF) family. Because the VEGF family is the main regulator of blood and lymphatic vessel growth in addition to promoting neurogenesis, neuronal patterning, neuroprotection and glial growth, the role of NRP1 in these biological processes has been extensively investigated. It is now established that NRP1 promotes the physiological growth of new vessels from pre-existing ones in the process of angiogenesis. Furthermore, several studies have shown that NRP1 mediates signalling pathways regulating pathological vascular growth in ocular neovascular diseases and tumour development. Less defined are the roles of NRP1 in maintaining the function of the quiescent established vasculature in an adult organism. This review will focus on the opposite roles of NRP1 in regulating transforming growth factor ß signalling pathways in different cell types, and on the emerging role of endothelial NRP1 as an atheroprotective, anti-inflammatory factor involved in the response of ECs to shear stress.


Assuntos
Aterosclerose , Neuropilina-1 , Humanos , Adulto , Neuropilina-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Angiogênese , Inflamação
20.
J Nanobiotechnology ; 22(1): 60, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347587

RESUMO

Mesenchymal stem cells/stromal cells (MSCs)-derived extracellular vesicles (EVs) mediate pro-regenerative effects in damaged ischemic tissues by regulating angiogenesis. MSCs-EVs modulate functions of cells including endogenous mature cells, progenitors and stem cells, resulting in restoration of blood flow. However, the mechanisms underlying such MSC-EV activity still remain poorly understood. The present study analyzes biological effects of bone marrow (BM) MSC-EVs on endothelial cells (ECs) in ischemic tissues both in in vitro and in vivo conditions and elucidates the molecular mechanisms underlying the tissue repair. MSC-EVs were isolated from murine BM-derived MSCs and their morphological, antigenic and molecular composition regarding protein and microRNA levels were evaluated to examine their properties. Global proteomic analysis demonstrated the presence in MSC-EVs of proteins regulating pro-regenerative pathways, including integrin α5 (Itgα5) and neuropilin-1 (NRP1) involved in lymphangiogenesis. MSC-EVs were also enriched in microRNAs regulating angiogenesis, TGF-ß signaling and processes guiding cellular adhesion and interactions with extracellular matrix. The functional effects of MSC-EVs on capillary ECs in vitro included the increase of capillary-like tube formation and cytoprotection under normal and inflammatory conditions by inhibiting apoptosis. Notably, MSC-EVs enhanced also capillary-like tube formation of lymphatic ECs, which may be regulated by Itgα5 and NRP1. Moreover, in a mouse model of critical hind limb ischemia, MSC-EVs increased the recovery of blood flow in ischemic muscle tissue, which was accompanied with increased vascular density in vivo. This pro-angiogenic effect was associated with an increase in nitric oxide (NO) production via endothelial NO-synthase activation in ischemic muscles. Interestingly, MSC-EVs enhanced lymphangiogenesis, which has never been reported before. The study provides evidence on pro-angiogenic and novel pro-lymphangiogenic role of MSC-EVs on ECs in ischemic tissue mediated by their protein and miRNA molecular cargos. The results highlight Itgα5 and NRP1 carried by MSC-EVs as potential therapeutic targets to boost lymphangiogenesis.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neuropilina-1/metabolismo , Células Endoteliais/metabolismo , Linfangiogênese , Proteômica , Vesículas Extracelulares/metabolismo , Isquemia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...