Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 801
Filtrar
1.
Prog Neurobiol ; 232: 102561, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38142769

RESUMO

Chronic craniofacial pain is intractable and its mechanisms remain unclarified. The rostral ventromedial medulla (RVM) plays a crucial role in descending pain facilitation and inhibition. It is unclear how the descending circuits from the RVM to spinal trigeminal nucleus (Sp5) are organized to bidirectionally modulate craniofacial nociception. We used viral tracing, in vivo optogenetics, calcium signaling recording, and chemogenetic manipulations to investigate the structure and function of RVM-Sp5 circuits. We found that most RVM neurons projecting to Sp5 were GABAergic or glutamatergic and facilitated or inhibited craniofacial nociception, respectively. Both GABAergic interneurons and glutamatergic projection neurons in Sp5 received RVM inputs: the former were antinociceptive, whereas the latter were pronociceptive. Furthermore, we demonstrated activation of both GABAergic and glutamatergic Sp5 neurons receiving RVM inputs in inflammation- or dysfunction-induced masseter hyperalgesia. Activating GABAergic Sp5 neurons or inhibiting glutamatergic Sp5 neurons that receive RVM projections reversed masseter hyperalgesia. Our study identifies specific cell types and projections of RVM-Sp5 circuits involved in facilitating or inhibiting craniofacial nociception respectively. Selective manipulation of RVM-Sp5 circuits can be used as potential treatment strategy to relieve chronic craniofacial muscle pain.


Assuntos
Hiperalgesia , Núcleo Espinal do Trigêmeo , Humanos , Hiperalgesia/metabolismo , Núcleo Espinal do Trigêmeo/metabolismo , Dor , Bulbo/metabolismo , Neurônios GABAérgicos/metabolismo
2.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069205

RESUMO

Clinical imaging studies have revealed that the hypothalamus is activated in migraine patients prior to the onset of and during headache and have also shown that the hypothalamus has increased functional connectivity with the spinal trigeminal nucleus. The dopaminergic system of the hypothalamus plays an important role, and the dopamine-rich A11 nucleus may play an important role in migraine pathogenesis. We used intraperitoneal injections of glyceryl trinitrate to establish a model of acute migraine attack and chronicity in mice, which was verified by photophobia experiments and von Frey experiments. We explored the A11 nucleus and its downstream pathway using immunohistochemical staining and neuronal tracing techniques. During acute migraine attack and chronification, c-fos expression in GABAergic neurons in the A11 nucleus was significantly increased, and inhibition of DA neurons was achieved by binding to GABA A-type receptors on the surface of dopaminergic neurons in the A11 nucleus. However, the expression of tyrosine hydroxylase and glutamic acid decarboxylase proteins in the A11 nucleus of the hypothalamus did not change significantly. Specific destruction of dopaminergic neurons in the A11 nucleus of mice resulted in severe nociceptive sensitization and photophobic behavior. The expression levels of the D1 dopamine receptor and D2 dopamine receptor in the caudal part of the spinal trigeminal nucleus candalis of the chronic migraine model were increased. Skin nociceptive sensitization of mice was slowed by activation of the D2 dopamine receptor in SP5C, and activation of the D1 dopamine receptor reversed this behavioral change. GABAergic neurons in the A11 nucleus were activated and exerted postsynaptic inhibitory effects, which led to a decrease in the amount of DA secreted by the A11 nucleus in the spinal trigeminal nucleus candalis. The reduced DA bound preferentially to the D2 dopamine receptor, thus exerting a defensive effect against headache.


Assuntos
Dopamina , Transtornos de Enxaqueca , Camundongos , Humanos , Animais , Dopamina/metabolismo , Núcleo Espinal do Trigêmeo/metabolismo , Hipotálamo/metabolismo , Receptores de Dopamina D1/metabolismo , Transtornos de Enxaqueca/metabolismo , Neurônios Dopaminérgicos/metabolismo , Cefaleia/metabolismo
3.
J Headache Pain ; 24(1): 50, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165344

RESUMO

BACKGROUND: Dental treatment associated with unadaptable occlusal alteration can cause chronic primary myofascial orofacial pain. The serotonin (5-HT) pathway from the rostral ventromedial medulla (RVM) exerts descending modulation on nociceptive transmission in the spinal trigeminal nucleus (Sp5) and facilitates chronic pain. The aim of this study was to investigate whether descending 5-HT modulation from the RVM to the Sp5 is involved in the maintenance of primary myofascial orofacial hyperalgesia after persistent experimental occlusal interference (PEOI) or after delayed removal of experimental occlusal interference (REOI). METHODS: Expressions of 5-HT3A and 5-HT3B receptor subtypes in the Sp5 were assessed by immunofluorescence staining and Western blotting. The release and metabolism of 5-HT in the Sp5 were measured by high-performance liquid chromatography. Changes in the pain behavior of these rats were examined after specific pharmacologic antagonism of the 5-HT3 receptor, chemogenetic manipulation of the RVM 5-HT neurons, or selective down-regulation of 5-HT synthesis in the RVM. RESULTS: Upregulation of the 5-HT3B receptor subtype in the Sp5 was found in REOI and PEOI rats. The concentration of 5-HT in Sp5 increased significantly only in REOI rats. Intrathecal administration of Y-25130 (a selective 5-HT3 receptor antagonist) dose-dependently reversed the hyperalgesia in REOI rats but only transiently reversed the hyperalgesia in PEOI rats. Chemogenetic inhibition of the RVM 5-HT neurons reversed the hyperalgesia in REOI rats; selective down-regulation of 5-HT in advance also prevented the development of hyperalgesia in REOI rats; the above two manipulations did not affect the hyperalgesia in PEOI rats. However, chemogenetic activation of the RVM 5-HT neurons exacerbated the hyperalgesia both in REOI and PEOI rats. CONCLUSIONS: These results provide several lines of evidence that the descending pathway from 5-HT neurons in the RVM to 5-HT3 receptors in the Sp5, plays an important role in facilitating the maintained orofacial hyperalgesia after delayed EOI removal, but has a limited role in that after persistent EOI.


Assuntos
Dor Crônica , Hiperalgesia , Ratos , Animais , Hiperalgesia/induzido quimicamente , Núcleo Espinal do Trigêmeo/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo , Receptores 5-HT3 de Serotonina/uso terapêutico , Serotonina/metabolismo , Ratos Sprague-Dawley , Dor Facial/etiologia , Dor Crônica/etiologia
4.
Cephalalgia ; 43(5): 3331024231174862, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37203351

RESUMO

BACKGROUND: The human in-vivo functional somatotopy of the three branches of the trigeminal (V1, V2, V3) and greater occipital nerve in brainstem and also in thalamus and insula is still not well understood. METHODS: After preregistration (clinicaltrials.gov: NCT03999060), we mapped the functional representations of this trigemino-cervical complex non-invasively in 87 humans using high-resolution protocols for functional magnetic resonance imaging during painful electrical stimulation in two separate experiments. The imaging protocol and analysis was optimized for the lower brainstem and upper spinal cord, to identify activation of the spinal trigeminal nuclei. The stimulation protocol involved four electrodes which were positioned on the left side according to the three branches of the trigeminal nerve and the greater occipital nerve. The stimulation site was randomized and each site was repeated 10 times per session. The participants partook in three sessions resulting in 30 trials per stimulation site. RESULTS: We show a large overlap of peripheral dermatomes on brainstem representations and a somatotopic arrangement of the three branches of the trigeminal nerve along the perioral-periauricular axis and for the greater occipital nerve in brainstem below pons, as well as in thalamus, insula and cerebellum. The co-localization of greater occipital nerve with V1 along the lower part of brainstem is of particular interest since some headache patients profit from an anesthetic block of the greater occipital nerve. CONCLUSION: Our data provide anatomical evidence for a functional inter-inhibitory network between the trigeminal branches and greater occipital nerve in healthy humans as postulated in animal work. We further show that functional trigeminal representations intermingle perioral and periauricular facial dermatomes with individual branches of the trigeminal nerve in an onion shaped manner and overlap in a typical within-body-part somatotopic arrangement.Trial registration: clinicaltrials.gov: NCT03999060.


Assuntos
Tronco Encefálico , Nervo Trigêmeo , Animais , Humanos , Tronco Encefálico/diagnóstico por imagem , Cefaleia , Dor , Núcleo Espinal do Trigêmeo
5.
Curr Eye Res ; 48(6): 546-556, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36803321

RESUMO

PURPOSE: To observe the effects of electroacupuncture on ocular surface neuralgia and the P2X3R-PKC signaling pathway in guinea pigs with dry eye. METHODS: A dry eye guinea pig model was established by subcutaneous injection of scopolamine hydrobromide. Guinea pigs were monitored for body weight, palpebral fissure height, number of blinks, corneal fluorescein staining score, phenol red thread test, and corneal mechanical perception threshold. Histopathological changes and mRNA expression of P2X3R and protein kinase C in the trigeminal ganglion and spinal trigeminal nucleus caudalis were observed. We performed a second part of the experiment, which involved the P2X3R-specific antagonist A317491 and the P2X3R agonist ATP in dry-eyed guinea pigs to further validate the involvement of the P2X3R-protein kinase C signaling pathway in the regulation of ocular surface neuralgia in dry eye. The number of blinks and corneal mechanical perception threshold were monitored before and 5 min after subconjunctival injection and the protein expression of P2X3R and protein kinase C was detected in the trigeminal ganglion and spinal trigeminal nucleus caudalis of guinea pigs. RESULTS: Dry-eyed guinea pigs showed pain-related manifestations and the expression of P2X3R and protein kinase C in the trigeminal ganglion and spinal trigeminal nucleus caudalis was upregulated. Electroacupuncture reduced pain-related manifestations and inhibited the expression of P2X3R and protein kinase C in the trigeminal ganglion and spinal trigeminal nucleus caudalis. Subconjunctival injection of A317491 attenuated corneal mechanoreceptive nociceptive sensitization in dry-eyed guinea pigs, while ATP blocked the analgesic effect of electroacupuncture. CONCLUSIONS: Electroacupuncture reduced ocular surface sensory neuralgia in dry-eyed guinea pigs, and the mechanism of action may be associated with the inhibition of the P2X3R-protein kinase C signaling pathway in the trigeminal ganglion and spinal trigeminal nucleus caudalis by electroacupuncture.


Assuntos
Síndromes do Olho Seco , Eletroacupuntura , Neuralgia , Animais , Cobaias , Núcleo Espinal do Trigêmeo , Gânglio Trigeminal , Transdução de Sinais , Síndromes do Olho Seco/terapia , Córnea , Proteína Quinase C/farmacologia , Trifosfato de Adenosina/farmacologia
6.
Brain Res ; 1804: 148248, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36681372

RESUMO

The insular cortex (IC) receives orofacial nociceptive information. Pyramidal neurons in IC layer V send their axons to various brain regions, such as the trigeminal spinal subnucleus caudalis (Sp5C), parabrachial nucleus, and periaqueductal gray. However, little information has been available about the functions of these descending projections from the IC. This study aimed to elucidate the effect of IC â†’ Sp5C on neuronal spike firings responding to noxious and innoxious stimuli to the face of the rat receiving an injection of adeno-associated virus encoding modified channelrhodopsin-2 (ChR2) fused to mCherry under the control of the human synapsin promotor. We classified Sp5C neurons responding to mechanical stimuli into three groups: low-threshold (LT), nociceptive specific (NS), and wide dynamic range (WDR) neurons, which respond to innoxious stimuli (brushing) only, noxious mechanical stimuli (pinching) only, and both noxious and innoxious stimuli, respectively. Neuronal activities of IC neurons were activated by photostimulation (repetitive pulses at 20 Hz for 5 Hz) to the IC that consistently induced action potentials in IC layer V pyramidal neurons. LT neurons showed comparable spike firing rates to brushing the facial skin before and during ChR2 activation induced by photostimulation. In contrast, NS neurons showed an increase in their firing frequency to pinching during ChR2 activation. On the other hand, WDR neurons increased their Sp5C neuronal firing to pinching during ChR2 activation without changing their firing rates to innoxious mechanical stimuli. These results suggest that the IC descending projections facilitate nociception by increasing Sp5C neuronal activities responding to noxious mechanical stimuli.


Assuntos
Córtex Insular , Neurônios , Humanos , Ratos , Animais , Nociceptores/fisiologia , Substância Cinzenta Periaquedutal , Pele , Núcleo Espinal do Trigêmeo
7.
J World Fed Orthod ; 12(1): 3-8, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36344400

RESUMO

BACKGROUND: The aim of this in vivo study was to quantitatively evaluate pain after rapid maxillary expansion (RME) in young rats by analyzing the activation of nociception-related structures, that is, the caudalis, interpolaris, and oralis subnuclei, according to the Fos expression. METHODS: A total of 65 Wistar rats were assigned to three groups: control group (n = 15) with no treatment, positive control group (n = 25), and experimental group (n = 25) with RME. The experimental animals were euthanized at 6, 12, 24, 48, and 72 hours after RME, and the brain was later carefully collected. Coronal sections through the spinal trigeminal caudalis, spinal trigeminal interpolaris, and spinal trigeminal oralis were cut (thickness of 40 µm) on a cryostat and processed for Fos immunohistochemistry. Images from the sections were captured under light microscopy, and ImageJ software was used to count Fos-like immunoreactive neurons. The Analysis of variance (ANOVA) and Tukey test were used for statistical analysis, and the significance level was set at 5%. RESULTS: RME induced incisor distalization and opening of the midpalatal suture, as well as neuronal activation of the spinal trigeminal nucleus. The experimental group demonstrated significantly more Fos-positive neurons in subnuclei caudalis and subnuclei interpolaris 6 hours after the maxillary expansion. The Fos immunoreactivity significantly decreased at 12 hours and increased again at 24 and 48 hours (P < 0.001). CONCLUSIONS: The RME increases the neural activation of brain regions involved in the nociception region, as determined by the Fos expression. The most intense Fos-like immunoreactive expression was detected in the brain 6 hours after the start of the palatal expansion.


Assuntos
Técnica de Expansão Palatina , Núcleo Espinal do Trigêmeo , Ratos , Animais , Ratos Wistar , Núcleo Espinal do Trigêmeo/metabolismo , Encéfalo/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Dor/metabolismo
8.
Comput Intell Neurosci ; 2022: 2345039, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035817

RESUMO

To explore the changes of pain sensitivity (PS) in the masseter area (MA) in the rat model of psychological stress and the mechanism of action between spinal nucleus neurons and astrocytes in the trigeminal ganglion. The 40 Sprague-Dawley rats were randomly divided into control group (no treatment), group A (restraint stress (RS) 1 d), group B (RS 7 d), and group C (RS 14 d). The body weight growth rates (WGR) of rats in each group were compared and the difference of CORT and ACTH in serum was analyzed by ELISA. The open field test and the elevated "cross" maze test were adopted to detect the behavioral changes of rats. Finally, pain threshold of the MA in rats, the activation amount of brain tissue medulla oblongata parts astrocytes markers Glial fibrillary acidic protein (GFAP), and the protein expression of IL-1ß and IL-1RI were detected. The results showed the WGR at 7 d and 14 d was greatly lower than control group (P < 0.01). In addition, the activity level and serum CORT and ACTH levels AND mean pain threshold in the MA of groups B and C were greatly lower than control group (P < 0.05). The activation rate of GFRP in group C (P < 0.01) and the protein expression of IL-1ß and IL-1RI (P < 0.05) in rat trigeminal ganglion astrocytes of groups B and C was greatly higher than control group, indicating the increase of RS time, the release of IL-1ß and IL-1RI can activate neurons and astrocytes in spinal trigeminal nucleus (STN) nerve and increase the PS of the MA.


Assuntos
Astrócitos , Núcleo Espinal do Trigêmeo , Hormônio Adrenocorticotrópico , Animais , Neurônios , Limiar da Dor , Ratos , Ratos Sprague-Dawley
9.
Arq. ciências saúde UNIPAR ; 26(2): 175-186, maio-ago. 2022.
Artigo em Português | LILACS | ID: biblio-1372973

RESUMO

O Tronco encefálico (TE) é uma estrutura singular do sistema nervoso central, pois nele passam tratos sensoriais ascendentes da medula espinal, tratos sensoriais da cabeça e do pescoço, os tratos descendentes motores originados no prosencéfalo (divisão mais rostral do encéfalo), e as vias ligadas aos centros de movimento dos olhos. Contém ainda os núcleos dos nervos cranianos e está envolvido na regulação do nível de consciência através de projeções ao prosencéfalo oriundas da formação reticular. Todas essas estruturas coexistem em um espaço muito exíguo, o que faz com que o TE seja um local muito sensível às alterações patológicas, sendo que os pacientes apresentam muitos sinais neurológicos mesmo com lesões muito pequenas nesse local. Compreender a anatomia interna do TE é essencial para o diagnóstico neurológico e a prática da medicina clínica. Outros profissionais da saúde também se beneficiam desse conhecimento para melhor manejo dos seus pacientes neurológicos. Essa revisão apresenta detalhes da anatomia macroscópica e microscópica do bulbo, bem como seus correlatos clínicos frente às lesões mais comuns dessa divisão particular do TE, conhecidas como síndromes bulbares.


The brainstem is a unique structure in the central nervous system, since it gives way to ascending sensory tracts from the spinal cord, sensory tracts from the head and neck, motor descending tracts originating from the forebrain, and the pathways connected to the eye movement centers. It also contains the cranial nerve nuclei and is involved in the regulation of consciousness levels through projections to the forebrain originating in the reticular formation. All these structures coexist in a very small space, which makes the brainstem very sensitive to pathological changes, with patients presenting several neurological symptoms even with very small brainstem lesions. Understanding the internal anatomy of the brainstem is essential for neurological diagnosis and the practice of clinical medicine. Other health professionals also benefit from this knowledge to better manage their neurological patients. This review presents detailed information on the macroscopic and microscopic anatomy of the medulla, as well as its clinical correlates in the face of the most common lesions of this particular division of the brainstem, known as medullary syndromes.


Assuntos
Humanos , Síndrome Medular Lateral/diagnóstico , Bulbo/anatomia & histologia , Tratos Piramidais/anatomia & histologia , Formação Reticular/anatomia & histologia , Núcleo Espinal do Trigêmeo/anatomia & histologia , Área Postrema/anatomia & histologia , Pedúnculo Cerebral/anatomia & histologia
10.
Mol Pain ; 18: 17448069221094529, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35354345

RESUMO

The anterior cingulate cortex (ACC) is a key cortical region that plays an important role in pain perception and emotional functions. Previous studies of the ACC projections have been collected primarily from monkeys, rabbits and rats. Due to technological advances, such as gene manipulation, recent progress has been made in our understanding of the molecular and cellular mechanisms of the ACC-related chronic pain and emotion is mainly obtained from adult mice. Few anatomic studies have examined the whole-brain projections of the ACC in adult mice. In the present study, we examined the continuous axonal outputs of the ACC in the whole brain of adult male mice. We used the virus anterograde tracing technique and an ultrahigh-speed imaging method of Volumetric Imaging with Synchronized on-the-fly-scan and Readout (VISoR). We created a three-dimensional (3D) reconstruction of mouse brains. We found that the ACC projected ipsilaterally primarily to the caudate putamen (CPu), ventral thalamic nucleus, zona incerta (ZI), periaqueductal gray (PAG), superior colliculus (SC), interpolar spinal trigeminal nucleus (Sp5I), and dorsal medullary reticular nucleus (MdD). The ACC also projected to contralateral brain regions, including the ACC, reuniens thalamic nucleus (Re), PAG, Sp5I, and MdD. Our results provide a whole-brain mapping of efferent projections from the ACC in adult male mice, and these findings are critical for future studies of the molecular and synaptic mechanisms of the ACC and its related network in mouse models of brain diseases.


Assuntos
Mapeamento Encefálico , Giro do Cíngulo , Animais , Encéfalo , Vias Eferentes , Masculino , Camundongos , Substância Cinzenta Periaquedutal , Coelhos , Ratos , Núcleo Espinal do Trigêmeo
11.
Int J Mol Sci ; 22(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34768835

RESUMO

Pain is one of the most severe concerns in tongue cancer patients. However, the underlying mechanisms of tongue cancer pain are not fully understood. We investigated the molecular mechanisms of tongue cancer-induced mechanical allodynia in the tongue by squamous cell carcinoma (SCC) inoculation in rats. The head-withdrawal threshold of mechanical stimulation (MHWT) to the tongue was reduced following SCC inoculation, which was inhibited by intracisternal administration of 10Panx, an inhibitory peptide for pannexin 1 (PANX1) channels. Immunohistochemical analyses revealed that the expression of PANX1 was upregulated in the trigeminal spinal subnucleus caudalis (Vc) following SCC inoculation. The majority of PANX1 immunofluorescence was merged with ionized calcium-binding adapter molecule 1 (Iba1) fluorescence and a part of it was merged with glial fibrillary acidic protein (GFAP) fluorescence. Spike frequencies of Vc nociceptive neurons to noxious mechanical stimulation were significantly enhanced in SCC-inoculated rats, which was suppressed by intracisternal 10Panx administration. Phosphorylated extracellular signal-regulated kinase (pERK)-immunoreactive (IR) neurons increased significantly in the Vc after SCC inoculation, which was inhibited by intracisternal 10Panx administration. SCC inoculation-induced MHWT reduction and increased pERK-IR Vc neuron numbers were inhibited by P2X7 purinoceptor (P2X7R) antagonism. Conversely, these effects were observed in the presence of P2X7R agonist in SCC-inoculated rats with PANX1 inhibition. SCC inoculation-induced MHWT reduction was significantly recovered by intracisternal interleukin-1 receptor antagonist administration. These observations suggest that SCC inoculation causes PANX1 upregulation in Vc microglia and adenosine triphosphate released through PANX1 sensitizes nociceptive neurons in the Vc, resulting in tongue cancer pain.


Assuntos
Conexinas/metabolismo , Hiperalgesia/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neoplasias da Língua/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Dor do Câncer/patologia , Carcinoma de Células Escamosas , Conexinas/antagonistas & inibidores , Conexinas/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Microglia/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/fisiologia , Neurônios/metabolismo , Nociceptores/metabolismo , Dor/metabolismo , Dor/fisiopatologia , Medição da Dor , Limiar da Dor/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Transdução de Sinais , Língua/metabolismo , Língua/patologia , Neoplasias da Língua/fisiopatologia , Núcleo Espinal do Trigêmeo/metabolismo , Núcleo Espinal do Trigêmeo/fisiopatologia
12.
Neuroscience ; 479: 35-47, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34695536

RESUMO

The spinal trigeminal nucleus caudalis (SpVc) in the mammalian brainstem serves a pivotal function in pain processing. As the main relay center for nociceptive signals, SpVc conducts pain-related signals from various regions of the head toward higher levels of central processing such as the thalamus. SpVc also receives modulatory signals from other brain areas, which can alleviate the perception of headache. We studied the impact of olfactory co-stimulation on pain-related behavior and SpVc neural activity in mice. Using the TRPA1 agonist allyl isothiocyanate (AITC) as noxious stimulus, we quantified the aversive response and the perceived pain intensity by evaluating explorative running and the mouse grimace scale, respectively. We found that the floral odorants phenylethyl alcohol (PEA) and lavender oil mitigated the aversive response to AITC. Consistent with this finding, a newly developed, automated quantification of c-Fos expression in SpVc revealed that co-stimulation with PEA or lavender profoundly reduced network activity in the presence of AITC. These results demonstrated a substantial analgesic potential of odor stimulation in the trigeminal system and provide an explanation for the palliative effect of odors in the treatment of headache.


Assuntos
Nociceptividade , Olfato , Animais , Encéfalo , Camundongos , Odorantes , Núcleo Espinal do Trigêmeo
13.
Biochem Biophys Res Commun ; 569: 147-153, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34245979

RESUMO

Currently, limited information regarding the role of calcitonin gene-related peptide (CGRP) in neuropathic pain is available. Intracerebroventricular administrations of an anti-CGRP antibody were performed in rats with infraorbital nerve ligation. Anti-CGRP antibody administration attenuated mechanical and heat hypersensitivities induced by nerve ligation and decreased the phosphorylated extracellular signal-regulated kinase expression levels in the trigeminal spinal subnucleus caudalis (Vc) following mechanical or heat stimulation. An increased CGRP immunoreactivity in the Vc appeared after nerve ligation. A decreased CGRP immunoreactivity resulted from anti-CGRP antibody administration. Our findings suggest that anti-CGRP antibody administration attenuates the symptoms of trigeminal neuropathic pain by acting on CGRP in the Vc.


Assuntos
Anticorpos Monoclonais/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/imunologia , Temperatura Alta , Hipersensibilidade/prevenção & controle , Estresse Mecânico , Traumatismos do Nervo Trigêmeo/complicações , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hipersensibilidade/etiologia , Imuno-Histoquímica , Masculino , Microscopia Confocal , Neuralgia/etiologia , Neuralgia/prevenção & controle , Fosforilação , Ratos Wistar , Núcleo Espinal do Trigêmeo/metabolismo
14.
Int J Mol Sci ; 22(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917574

RESUMO

The neuromodulator calcitonin gene-related peptide (CGRP) is known to facilitate nociceptive transmission in the superficial laminae of the spinal trigeminal nucleus caudalis (Sp5C). The central effects of CGRP in the Sp5C are very likely to contribute to the activation of central nociceptive pathways leading to attacks of severe headaches like migraine. To examine the potential impacts of CGRP on laminae I/II neurons at cellular and synaptic levels, we performed whole-cell patch-clamp recordings in juvenile mouse brainstem slices. First, we tested the effect of CGRP on cell excitability, focusing on neurons with tonically firing action potentials upon depolarizing current injection. CGRP (100 nM) enhanced tonic discharges together with membrane depolarization, an excitatory effect that was significantly reduced when the fast synaptic transmissions were pharmacologically blocked. However, CGRP at 500 nM was capable of exciting the functionally isolated cells, in a nifedipine-sensitive manner, indicating its direct effect on membrane intrinsic properties. In voltage-clamped cells, 100 nM CGRP effectively increased the frequency of excitatory synaptic inputs, suggesting its preferential presynaptic effect. Both CGRP-induced changes in cell excitability and synaptic drives were prevented by the CGRP receptor inhibitor BIBN 4096BS. Our data provide evidence that CGRP increases neuronal activity in Sp5C superficial laminae by dose-dependently promoting excitatory synaptic drive and directly enhancing cell intrinsic properties. We propose that the combination of such pre- and postsynaptic actions of CGRP might underlie its facilitation in nociceptive transmission in situations like migraine with elevated CGRP levels.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Tronco Encefálico/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Neurônios/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Núcleo Espinal do Trigêmeo/metabolismo , Animais , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/farmacologia , Feminino , Masculino , Camundongos , Piperazinas/farmacologia , Quinazolinas/farmacologia
15.
J Comp Neurol ; 529(11): 2842-2864, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33598920

RESUMO

The trigeminal blink reflex plays an important role in protecting the corneal surface from damage and preserving visual function in an unpredictable environment. The closing phase of the human reflex, produced by activation of the orbicularis oculi (ObOc) muscles, consists of an initial, small, ipsilateral R1 component, followed by a larger, bilateral R2 component. We investigated the circuitry that underlies this reflex in macaque (Macaca fascicularis and Macaca mulatta) monkeys by the use of single and dual tracer methods. Injection of retrograde tracer into the facial nucleus labeled neurons in the principal trigeminal nucleus, and in the spinal nucleus pars oralis and interpolaris, bilaterally, and in pars caudalis, ipsilaterally. Injection of anterograde tracer into the principal trigeminal nucleus labeled axons that directly terminated on ObOc motoneurons, with an ipsilateral predominance. Injection of anterograde tracer into pars caudalis of the spinal trigeminal nucleus labeled axons that directly terminated on ipsilateral ObOc motoneurons. The observed pattern of labeling indicates that the reticular formation ventromedial to the principal and spinal nuclei also contributes extensive bilateral input to ObOc motoneurons. Thus, much of the trigeminal sensory complex is in a position to supply a monosynaptic drive for lid closure, and the adjacent reticular formation can supply a disynaptic drive. These findings indicate that the assignment of the R1 and R2 components of the blink reflex to different parts of the trigeminal sensory complex cannot be exclusively based on subdivision connectional relationships with facial motoneurons. The characteristics of the R2 component may be due, instead, to other circuit properties.


Assuntos
Piscadela/fisiologia , Neurônios Motores/fisiologia , Rede Nervosa/fisiologia , Núcleo Espinal do Trigêmeo/fisiologia , Animais , Feminino , Macaca fascicularis , Macaca mulatta , Masculino , Neurônios Motores/química , Neurônios Motores/ultraestrutura , Rede Nervosa/química , Rede Nervosa/ultraestrutura , Núcleo Espinal do Trigêmeo/química , Núcleo Espinal do Trigêmeo/ultraestrutura
16.
Pain ; 162(4): 1153-1162, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065738

RESUMO

ABSTRACT: The mechanisms underlying headaches attributed to hypoxia are poorly known. The activation of spinal trigeminal neurons with meningeal afferent input is believed to be responsible for the generation of headaches. In the caudal spinal trigeminal nucleus of anaesthetized and ventilated rats, the spontaneous firing of neurons with input from the exposed parietal dura mater and the activity evoked by mechanical stimuli to the dura and the adjacent periosteum were recorded, whereas the O2 fraction of the ventilation gas was stepwise reduced by omitting O2 and adding nitrogen. The expiratory CO2 level, the arterial pressure, the pulse rate, and the peripheral O2 saturation (SpO2) were registered. The meningeal blood flow was recorded using laser Doppler flowmetry; video imaging was used to measure the diameter of dural and medullary arteries. Lowering O2 in the ventilation gas from hyperoxic to normoxic and finally hypoxic conditions was followed by an increase in spontaneous activity up to 300% of the initial activity in most neurons, whereas the activity in a minor fraction of neurons ceased. The mechanical threshold was reduced under hypoxia. Arterial pressure, pulse rate, and SpO2 fell during stepwise lowering of the O2 concentration, whereas the arteries of the dura mater and the medulla dilated. Increased neuronal activity in the spinal trigeminal nucleus following lowering of the inhaled O2 goes along with variations in cardiovascular parameters. The experiments may partly model the conditions of high altitudes and other hypoxic states as risk factors for headache generation.


Assuntos
Cefaleia , Núcleo Espinal do Trigêmeo , Animais , Dura-Máter , Cefaleia/etiologia , Hipóxia/complicações , Neurônios , Ratos , Ratos Wistar
17.
Cephalalgia ; 41(5): 535-545, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33203222

RESUMO

BACKGROUND: The pathophysiology of headaches associated with rhinosinusitis is poorly known. Since the generation of headaches is thought to be linked to the activation of intracranial afferents, we used an animal model to characterise spinal trigeminal neurons with nociceptive input from the dura mater and paranasal sinuses. METHODS: In isoflurane anaesthetised rats, extracellular recordings were made from neurons in the spinal trigeminal nucleus with afferent input from the exposed frontal dura mater. Dural and facial receptive fields were mapped and the paranasal cavities below the thinned nasal bone were stimulated by sequential application of synthetic interstitial fluid, 40 mM potassium chloride, 100 µM bradykinin, 1% ethanol (vehicle) and 100 µm capsaicin. RESULTS: Twenty-five neurons with input from the frontal dura mater and responses to chemical stimulation of the paranasal cavities were identified. Some of these neurons had additional receptive fields in the parietal dura, most of them in the face. The administration of synthetic interstitial fluid, potassium chloride and ethanol was not followed by significant changes in activity, but bradykinin provoked a cluster of action potentials in 20 and capsaicin in 23 neurons. CONCLUSION: Specific spinal trigeminal neurons with afferent input from the cranial dura mater respond to stimulation of paranasal cavities with noxious agents like bradykinin and capsaicin. This pattern of activation may be due to convergent input of trigeminal afferents that innervate dura mater and nasal cavities and project to spinal trigeminal neurons, which could explain the genesis of headaches due to disorders of paranasal sinuses.


Assuntos
Bradicinina , Capsaicina , Dura-Máter/fisiologia , Estimulação Elétrica , Neurônios/fisiologia , Seios Paranasais , Núcleos do Trigêmeo/fisiologia , Núcleo Espinal do Trigêmeo/fisiologia , Animais , Bradicinina/farmacologia , Capsaicina/farmacologia , Dura-Máter/efeitos dos fármacos , Cefaleia/etiologia , Inflamação , Masculino , Neurônios/efeitos dos fármacos , Neurônios Aferentes , Cloreto de Potássio , Ratos , Núcleos do Trigêmeo/efeitos dos fármacos , Núcleo Espinal do Trigêmeo/efeitos dos fármacos , Vasodilatadores/farmacologia
18.
Neuroscience ; 444: 54-63, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32750381

RESUMO

Itch induces a desire to scratch and leads to skin damage in some severe conditions. Much progress has been made in the peripheral and spinal level, and recent findings suggested that we need to focus on the central circuitry mechanism. However, the functional role of the thalamus in itch signal processing remains largely unknown. We showed that the posterior thalamic nucleus (Po) played a vital role in modulating facial histaminergic itch signal processing. We found that the calcium signal of Po neurons was increased during the histaminergic itch-induced scratching behavior in the cheek model, and pharmacogenetic suppression of Po neurons reduced the scratching behaviors. Retrograde mapping results suggested that the Po receives information from the somatosensory cortex, motor cortex, parabrachial nucleus (PBN), the principal sensory trigeminal nucleus (PrV) and the spinal trigeminal nucleus (SpV), which participate in itch signal transmission from head and body. Thus, our study indicates that the Po is critical in modulating facial histaminergic itch signal processing.


Assuntos
Núcleos Parabraquiais , Núcleos Posteriores do Tálamo , Humanos , Prurido , Córtex Somatossensorial , Núcleo Espinal do Trigêmeo
19.
Eur J Oral Sci ; 128(4): 275-283, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-33856731

RESUMO

The present study investigated whether, under in vivo conditions, systemic administration of resveratrol attenuates the experimental tooth movement-induced ectopic hyperalgesia associated with hyperexcitability of nociceptive trigeminal spinal nucleus caudalis (SpVc) neurons. The threshold of escape from mechanical stimulation applied to the ipsilateral whisker pad in rats exposed to experimental tooth movement was significantly lower than seen in control rats from day 1 to 3 following movement of the right maxillary first molar tooth. The lowered mechanical threshold in the rats exposed to experimental tooth movement had almost returned to the level of sham-treated naïve rats at day 3 following administration of resveratrol. The mean mechanical threshold of nociceptive SpVc neurons was significantly lower after experimental tooth movement but the lower threshold could be reversed by administration of resveratrol. The higher discharge frequency of nociceptive SpVc neurons for noxious mechanical stimuli observed in rats exposed to experimental tooth movement was statistically significantly lower following resveratrol administration. These results suggest that resveratrol attenuates experimental tooth movement-induced mechanical ectopic hyperalgesia via suppression of peripheral and/or central sensitization. These findings support the idea that resveratrol, a complementary alternative medicine, is a potential therapeutic agent for the prevention of experimental tooth movement-induced ectopic hyperalgesia.


Assuntos
Hiperalgesia , Nociceptores , Animais , Ratos , Ratos Wistar , Resveratrol/farmacologia , Núcleo Espinal do Trigêmeo
20.
Brain Res Bull ; 154: 61-67, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31722251

RESUMO

7S,8R,17S-trihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid (resolvin D1 [RvD1]) is biosynthesized from docosahexaenoic acid (DHA), and belongs to a novel family of lipid mediators showing remarkable anti-inflammatory effects; however, the effect of RvD1 on inflammation-induced hyperexcitability of nociceptive neurons under in vivo conditions remains to be determined. The present study, therefore, investigated whether under in vivo conditions, systemic administration of RvD1 could attenuate the inflammation-induced hyperexcitability of spinal trigeminal nucleus caudalis (SpVc) wide-dynamic range (WDR) neurons associated with hyperalgesia in rats. The threshold of escape from mechanical stimulation applied to the orofacial area in rats with complete Freund's adjuvant-induced inflammation was significantly lower than in naïve rats. The lowered mechanical threshold in rats with inflammation was returned to control levels following administration of RvD1 (3 ng/kg, i.p.) for 3 days. The mean discharge frequency of SpVc WDR neurons in rats with inflammation was significantly decreased after RvD1 administration for both non-noxious and noxious mechanical stimuli. Increased spontaneous discharge of SpVc WDR neurons in rats with inflammation was also significantly decreased after RvD1 administration. Noxious pinch-evoked afterdischarge frequency and occurrence in rats with inflammation was significantly diminished after RvD1 administration. Expansion of the receptive field in rats with inflammation also returned to control levels after RvD1 administration. These results suggest that administration of RvD1 attenuates inflammation-induced hyperexcitability of SpVc WDR neurons associated with inflammatory hyperalgesia. These findings support the idea that RvD1, derived from DHA, as well as DHA itself, are potential complementary or alternative therapeutic agents for the alleviation of inflammatory hyperalgesia.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Hiperalgesia/metabolismo , Nervo Trigêmeo/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Núcleo Caudado/efeitos dos fármacos , Núcleo Caudado/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Hiperalgesia/tratamento farmacológico , Inflamação , Masculino , Neurônios/efeitos dos fármacos , Nociceptores/efeitos dos fármacos , Nociceptores/metabolismo , Ratos , Ratos Wistar , Nervo Trigêmeo/efeitos dos fármacos , Núcleo Espinal do Trigêmeo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...