Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.183
Filtrar
1.
PLoS One ; 19(9): e0308146, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39302961

RESUMO

Packet information encoding of neural signals was proposed for vision about 50 years ago and has recently been revived as a plausible strategy generalizable to natural and artificial sensory systems. It involves discrete image segmentation controlled by feedback and the ability to store and compare packets of information. This article shows that neurons of the cerebellum-like electrosensory lobe (EL) of the electric fish Gymnotus omarorum use spike-count and spike-timing distribution as constitutive variables of packets of information that encode one-by-one the electrosensory images generated by a self-timed series of electric organ discharges (EODs). To evaluate this hypothesis, extracellular unitary activity was recorded from the centro-medial map of the EL. Units recorded in high-decerebrate preparations were classified into six types using hierarchical cluster analysis of post-EOD spiking histograms. Cross-correlation analysis indicated that each EOD strongly influences the unit firing probability within the next inter-EOD interval. Units of the same type were similarly located in the laminar organization of the EL and showed similar stimulus-specific changes in spike count and spike timing after the EOD when a metal object was moved close by, along the fish's body parallel to the skin, or when the longitudinal impedance of a static cylindrical probe placed at the center of the receptive field was incremented in a stepwise manner in repetitive trials. These last experiments showed that spike-counts and the relative entropy, expressing a comparative measure of information before and after the step, were systematically increased with respect to a control in all unit types. The post-EOD spike-timing probability distribution and the relatively independent contribution of spike-timing and number to the content of information in the transmitted packet suggest that these are the constitutive image-encoding variables of the packets. Comparative analysis suggests that packet information transmission is a general principle for processing superposition images in cerebellum-like networks.


Assuntos
Cerebelo , Animais , Cerebelo/fisiologia , Potenciais de Ação/fisiologia , Órgão Elétrico/fisiologia , Neurônios/fisiologia , Peixe Elétrico/fisiologia , Gimnotiformes/fisiologia , Rede Nervosa/fisiologia
2.
Horm Behav ; 164: 105576, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852479

RESUMO

Sexually dimorphic behaviors are often regulated by gonadal steroid hormones. Species diversity in behavioral sex differences may arise as expression of genes mediating steroid action in brain regions controlling these behaviors evolves. The electric communication signals of apteronotid knifefishes are an excellent model for comparatively studying neuroendocrine regulation of sexually dimorphic behavior. These fish produce and detect weak electric organ discharges (EODs) for electrolocation and communication. EOD frequency (EODf), controlled by the medullary pacemaker nucleus (Pn), is sexually dimorphic and regulated by androgens and estrogens in some species, but is sexually monomorphic and unaffected by hormones in other species. We quantified expression of genes for steroid receptors, metabolizing enzymes, and cofactors in the Pn of two species with sexually dimorphic EODf (Apteronotus albifrons and Apteronotus leptorhynchus) and two species with sexually monomorphic EODf ("Apteronotus" bonapartii and Parapteronotus hasemani). The "A." bonapartii Pn expressed lower levels of androgen receptor (AR) genes than the Pn of species with sexually dimorphic EODf. In contrast, the P. hasemani Pn robustly expressed AR genes, but expressed lower levels of genes for 5α-reductases, which convert androgens to more potent metabolites, and higher levels of genes for 17ß-hydroxysteroid dehydrogenases that oxidize androgens and estrogens to less potent forms. These findings suggest that sexual monomorphism of EODf arose convergently via two different mechanisms. In "A." bonapartii, reduced Pn expression of ARs likely results in insensitivity of EODf to androgens, whereas in P. hasemani, gonadal steroids may be metabolically inactivated in the Pn, reducing their potential to influence EODf.


Assuntos
Comunicação Animal , Peixe Elétrico , Órgão Elétrico , Caracteres Sexuais , Especificidade da Espécie , Animais , Masculino , Peixe Elétrico/genética , Peixe Elétrico/fisiologia , Feminino , Órgão Elétrico/fisiologia , Órgão Elétrico/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Expressão Gênica/fisiologia , Regulação da Expressão Gênica/fisiologia
3.
Gen Comp Endocrinol ; 355: 114549, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38797340

RESUMO

The production of communication signals can be modulated by hormones acting on the brain regions that regulate these signals. However, less is known about how signal perception is regulated by hormones. The electrocommunication signals of weakly electric fishes are sexually dimorphic, sensitive to hormones, and vary across species. The neural circuits that regulate the production and perception of these signals are also well-characterized, and electric fishes are thus an excellent model to examine the neuroendocrine regulation of sensorimotor mechanisms of communication. We investigated (1) whether steroid-related genes are expressed in sensory brain regions that process communication signals; and (2) whether this expression differs across sexes and species that have different patterns of sexual dimorphism in their signals. Apteronotus leptorhynchus and Apteronotus albifrons produce continuous electric organ discharges (EODs) that are used for communication. Two brain regions, the electrosensory lateral line lobe (ELL) and the dorsal torus semicircularis (TSd), process inputs from electroreceptors to allow fish to detect and discriminate electrocommunication signals. We used qPCR to quantify the expression of genes for two androgen receptors (ar1, ar2), two estrogen receptors (esr1, esr2b), and aromatase (cyp19a1b). Four out of five steroid-related genes were expressed in both sensory brain regions, and their expression often varied between sexes and species. These results suggest that expression of steroid-related genes in the brain may differentially influence how EOD signals are encoded across species and sexes, and that gonadal steroids may coordinately regulate central circuits that control both the production and perception of EODs.


Assuntos
Encéfalo , Peixe Elétrico , Órgão Elétrico , Caracteres Sexuais , Animais , Feminino , Peixe Elétrico/genética , Peixe Elétrico/metabolismo , Masculino , Encéfalo/metabolismo , Órgão Elétrico/metabolismo , Órgão Elétrico/fisiologia
4.
J Exp Biol ; 227(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38712896

RESUMO

Weakly electric gymnotiform fishes use self-generated electric organ discharges (EODs) to navigate and communicate. The electrosensory range for these processes is a function of EOD amplitude, determined by the fish's electric organ (EO) output and the electrical conductivity of the surrounding water. Anthropogenic activity, such as deforestation, dams and industrial/agricultural runoff, are known to increase water conductivity in neotropical habitats, likely reducing the electrosensory range of these fish. We investigated whether fish modulate EO output as means of re-expanding electrosensory range after a rapid increase in water conductivity in the pulse-type Brachyhypopomus gauderio and the wave-type Eigenmannia virescens. Furthermore, because EOD production incurs significant metabolic costs, we assessed whether such compensation is associated with an increase in metabolic rate. Following the conductivity increase, B. gauderio increased EOD amplitude by 20.2±4.3% over 6 days but with no associated increase in metabolic rate, whereas the EOD amplitude of E. virescens remained constant, accompanied by an unexpected decrease in metabolic rate. Our results suggest that B. gauderio uses a compensation mechanism that requires no metabolic investment, such as impedance matching, or a physiological trade-off wherein energy is diverted from other physiological processes to increase EO output. These divergent responses between species could be the result of differences in reproductive life history or evolutionary adaptations to different aquatic habitats. Continued investigation of electrosensory responses to changing water conditions will be essential for understanding the effects of anthropogenic disturbances on gymnotiforms, and potential physiological mechanisms for adapting to a rapidly changing aquatic environment.


Assuntos
Condutividade Elétrica , Órgão Elétrico , Gimnotiformes , Animais , Órgão Elétrico/fisiologia , Gimnotiformes/fisiologia , Peixe Elétrico/fisiologia , Água/metabolismo
5.
Curr Biol ; 34(9): R351-R353, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38714163

RESUMO

When animals using active sensing, e.g., sonar or an electric organ discharge, cooperate while foraging, the emitted sound or electric field is available to neighboring conspecifics. Experimental and modelling studies have shown that an electric fish can use the discharge of neighbors to extend their own electrosensory prey detection range.


Assuntos
Peixe Elétrico , Comportamento Predatório , Animais , Comportamento Predatório/fisiologia , Peixe Elétrico/fisiologia , Órgão Elétrico/fisiologia
6.
Nature ; 628(8006): 139-144, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448593

RESUMO

A number of organisms, including dolphins, bats and electric fish, possess sophisticated active sensory systems that use self-generated signals (for example, acoustic or electrical emissions) to probe the environment1,2. Studies of active sensing in social groups have typically focused on strategies for minimizing interference from conspecific emissions2-4. However, it is well known from engineering that multiple spatially distributed emitters and receivers can greatly enhance environmental sensing (for example, multistatic radar and sonar)5-8. Here we provide evidence from modelling, neural recordings and behavioural experiments that the African weakly electric fish Gnathonemus petersii utilizes the electrical pulses of conspecifics to extend its electrolocation range, discriminate objects and increase information transmission. These results provide evidence for a new, collective mode of active sensing in which individual perception is enhanced by the energy emissions of nearby group members.


Assuntos
Comunicação Animal , Comportamento Cooperativo , Peixe Elétrico , Órgão Elétrico , Animais , Peixe Elétrico/fisiologia , Órgão Elétrico/fisiologia , Masculino , Feminino
7.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38410843

RESUMO

In the African weakly electric fish genus Campylomormyrus, electric organ discharge signals are strikingly different in shape and duration among closely related species, contribute to prezygotic isolation, and may have triggered an adaptive radiation. We performed mRNA sequencing on electric organs and skeletal muscles (from which the electric organs derive) from 3 species with short (0.4 ms), medium (5 ms), and long (40 ms) electric organ discharges and 2 different cross-species hybrids. We identified 1,444 upregulated genes in electric organ shared by all 5 species/hybrid cohorts, rendering them candidate genes for electric organ-specific properties in Campylomormyrus. We further identified several candidate genes, including KCNJ2 and KLF5, and their upregulation may contribute to increased electric organ discharge duration. Hybrids between a short (Campylomormyrus compressirostris) and a long (Campylomormyrus rhynchophorus) discharging species exhibit electric organ discharges of intermediate duration and showed imbalanced expression of KCNJ2 alleles, pointing toward a cis-regulatory difference at this locus, relative to electric organ discharge duration. KLF5 is a transcription factor potentially balancing potassium channel gene expression, a crucial process for the formation of an electric organ discharge. Unraveling the genetic basis of the species-specific modulation of the electric organ discharge in Campylomormyrus is crucial for understanding the adaptive radiation of this emerging model taxon of ecological (perhaps even sympatric) speciation.


Assuntos
Peixe Elétrico , Animais , Peixe Elétrico/genética , Alelos , Órgão Elétrico/metabolismo , Regulação para Cima , Canais de Potássio/genética
8.
Biol Lett ; 20(2): 20230480, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38412964

RESUMO

Active electroreception-the ability to detect objects and communicate with conspecifics via the detection and generation of electric organ discharges (EODs)-has evolved convergently in several fish lineages. South American electric fishes (Gymnotiformes) are a highly species-rich group, possibly in part due to evolution of an electric organ (EO) that can produce diverse EODs. Neofunctionalization of a voltage-gated sodium channel gene accompanied the evolution of electrogenic tissue from muscle and resulted in a novel gene (scn4aa) uniquely expressed in the EO. Here, we investigate the link between variation in scn4aa and differences in EOD waveform. We combine gymnotiform scn4aa sequences encoding the C-terminus of the Nav1.4a protein, with biogeographic data and EOD recordings to test whether physiological transitions among EOD types accompany differential selection pressures on scn4aa. We found positive selection on scn4aa coincided with shifts in EOD types. Species that evolved in the absence of predators, which likely selected for reduced EOD complexity, exhibited increased scn4aa evolutionary rates. We model mutations in the protein that may underlie changes in protein function and discuss our findings in the context of gymnotiform signalling ecology. Together, this work sheds light on the selective forces underpinning major evolutionary transitions in electric signal production.


Assuntos
Peixe Elétrico , Animais , Peixe Elétrico/genética , Órgão Elétrico/fisiologia , Filogenia , Canais de Sódio/genética , América do Sul
9.
Artigo em Inglês | MEDLINE | ID: mdl-37002418

RESUMO

Living organisms display molecular, physiological and behavioral rhythms synchronized with natural environmental cycles. Understanding the interaction between environment, physiology and behavior requires taking into account the complexity of natural habitats and the diversity of behavioral and physiological adaptations. Brachyhypopomus gauderio is characterized by the emission of electric organ discharges (EOD), with a very stable rate modulated by social and environmental cues. The nocturnal arousal in B. gauderio coincides with a melatonin-dependent EOD rate increase. Here, we first show a daily cycle in both the EOD basal rate (EOD-BR) and EOD-BR variability of B. gauderio in nature. We approached the understanding of the role of melatonin in this natural behavior through both behavioral pharmacology and in vitro assays. We report, for the first time in gymnotiformes, a direct effect of melatonin on the pacemaker nucleus (PN) in in vitro preparation. Melatonin treatment lowered EOD-BR in freely moving fish and PN basal rate, while increasing the variability of both. These results show that melatonin plays a key role in modulating the electric behavior of B. gauderio through its effect on rate and variability, both of which must be under a tight temporal regulation to prepare the animal for the challenging nocturnal environment.


Assuntos
Peixe Elétrico , Gimnotiformes , Melatonina , Animais , Peixe Elétrico/fisiologia , Melatonina/farmacologia , Gimnotiformes/fisiologia , Órgão Elétrico/fisiologia , Comportamento Animal/fisiologia
10.
Mol Ecol ; 33(4): e17248, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38126927

RESUMO

Ecological speciation within the mormyrid genus Campylomormyrus resulted in sympatric species exhibiting divergence in their feeding apparatus and electric organ discharge (EOD). This study documents the overall diet of the genus Campylomormyrus and examines the hypothesis that the Campylomormyrus radiation is caused by adaptation to different food sources. We performed diet assessment of five sympatric Campylomormyrus species (C. alces, C. compressirostris, C. curvirostris, C. tshokwe, C. numenius) and their sister taxon Gnathonemus petersii with markedly different snout morphologies and EODs using hybrid capture/HTS DNA metabarcoding of their stomach contents. Our approach allowed for high taxonomic resolution of prey items, including benthic invertebrates, allochthonous invertebrates and vegetation. Comparisons of the diet compositions using quantitative measures and diet overlap indices revealed that all species are able to exploit multiple food niches in their habitats, that is fauna at the bottom, the water surface and the water column. A major part of the diet is larvae of aquatic insects, such as dipterans, coleopterans and trichopterans, known to occur in holes and interstitial spaces of the substrate. The results indicate that different snout morphologies and the associated divergence in the EOD could translate into different prey spectra. This suggests that the diversification in EOD and/or morphology of the feeding apparatus could be under functional adaptation.


Assuntos
Peixe Elétrico , Animais , Peixe Elétrico/genética , Simpatria , Órgão Elétrico/anatomia & histologia , Dieta , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA