Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.128
Filtrar
1.
J Vis ; 24(7): 12, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39028900

RESUMO

Perceiving verticality is crucial for accurate spatial orientation. Previous research has revealed that tilted scenes can bias verticality perception. Verticality perception bias can be represented as the sum of multiple periodic functions that play a role in the perception of visual orientation, where the specific factors affecting each periodicity remain uncertain. This study investigated the influence of the width and depth of an indoor scene on each periodic component of the bias. The participants were presented with an indoor scene showing a rectangular checkerboard room (Experiment 1), a rectangular aperture on the wall (Experiment 2), or a rectangular dotted room (Experiment 3), with various aspect ratios. The stimuli were presented with roll orientations ranging from 90° clockwise to 90° counterclockwise. The participants were asked to report their subjective visual vertical (SVV) perceptions. The contributions of 45°, 90°, and 180° periodicities to the SVV error were assessed by the weighted vector sum model. In Experiment 1, the periodic components of the SVV error increased with the aspect ratio. In Experiments 2 and 3, only the 90° component increased with the aspect ratio. These findings suggest that extended transverse surfaces may modulate the periodic components of verticality perception.


Assuntos
Sinais (Psicologia) , Percepção de Profundidade , Orientação Espacial , Estimulação Luminosa , Humanos , Adulto Jovem , Masculino , Feminino , Percepção de Profundidade/fisiologia , Orientação Espacial/fisiologia , Estimulação Luminosa/métodos , Adulto , Percepção Espacial/fisiologia , Percepção de Forma/fisiologia
2.
Nat Commun ; 15(1): 5968, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013846

RESUMO

Reorientation, the process of regaining one's bearings after becoming lost, requires identification of a spatial context (context recognition) and recovery of facing direction within that context (heading retrieval). We previously showed that these processes rely on the use of features and geometry, respectively. Here, we examine reorientation behavior in a task that creates contextual ambiguity over a long timescale to demonstrate that male mice learn to combine both featural and geometric cues to recover heading. At the neural level, most CA1 neurons persistently align to geometry, and this alignment predicts heading behavior. However, a small subset of cells remaps coherently in a context-sensitive manner, which serves to predict context. Efficient heading retrieval and context recognition correlate with rate changes reflecting integration of featural and geometric information in the active ensemble. These data illustrate how context recognition and heading retrieval are coded in CA1 and how these processes change with experience.


Assuntos
Região CA1 Hipocampal , Sinais (Psicologia) , Animais , Masculino , Camundongos , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/citologia , Neurônios/fisiologia , Orientação Espacial/fisiologia , Camundongos Endogâmicos C57BL , Hipocampo/fisiologia , Hipocampo/citologia , Reconhecimento Psicológico/fisiologia , Orientação/fisiologia , Percepção Espacial/fisiologia
3.
Nat Commun ; 15(1): 4829, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844438

RESUMO

Orientation or axial selectivity, the property of neurons in the visual system to respond preferentially to certain angles of visual stimuli, plays a pivotal role in our understanding of visual perception and information processing. This computation is performed as early as the retina, and although much work has established the cellular mechanisms of retinal orientation selectivity, how this computation is organized across the retina is unknown. Using a large dataset collected across the mouse retina, we demonstrate functional organization rules of retinal orientation selectivity. First, we identify three major functional classes of retinal cells that are orientation selective and match previous descriptions. Second, we show that one orientation is predominantly represented in the retina and that this predominant orientation changes as a function of retinal location. Third, we demonstrate that neural activity plays little role on the organization of retinal orientation selectivity. Lastly, we use in silico modeling followed by validation experiments to demonstrate that the overrepresented orientation aligns along concentric axes. These results demonstrate that, similar to direction selectivity, orientation selectivity is organized in a functional map as early as the retina.


Assuntos
Orientação , Retina , Animais , Retina/fisiologia , Camundongos , Orientação/fisiologia , Estimulação Luminosa , Camundongos Endogâmicos C57BL , Simulação por Computador , Percepção Visual/fisiologia , Modelos Neurológicos , Orientação Espacial/fisiologia , Células Ganglionares da Retina/fisiologia
4.
J Vis ; 24(6): 17, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38916886

RESUMO

A large body of literature has examined specificity and transfer of perceptual learning, suggesting a complex picture. Here, we distinguish between transfer over variations in a "task-relevant" feature (e.g., transfer of a learned orientation task to a different reference orientation) and transfer over a "task-irrelevant" feature (e.g., transfer of a learned orientation task to a different retinal location or different spatial frequency), and we focus on the mechanism for the latter. Experimentally, we assessed whether learning a judgment of one feature (such as orientation) using one value of an irrelevant feature (e.g., spatial frequency) transfers to another value of the irrelevant feature. Experiment 1 examined whether learning in eight-alternative orientation identification with one or multiple spatial frequencies transfers to stimuli at five different spatial frequencies. Experiment 2 paralleled Experiment 1, examining whether learning in eight-alternative spatial-frequency identification at one or multiple orientations transfers to stimuli with five different orientations. Training the orientation task with a single spatial frequency transferred widely to all other spatial frequencies, with a tendency to specificity when training with the highest spatial frequency. Training the spatial frequency task fully transferred across all orientations. Computationally, we extended the identification integrated reweighting theory (I-IRT) to account for the transfer data (Dosher, Liu, & Lu, 2023; Liu, Dosher, & Lu, 2023). Just as location-invariant representations in the original IRT explain transfer over retinal locations, incorporating feature-invariant representations effectively accounted for the observed transfer. Taken together, we suggest that feature-invariant representations can account for transfer of learning over a "task-irrelevant" feature.


Assuntos
Estimulação Luminosa , Humanos , Estimulação Luminosa/métodos , Adulto Jovem , Masculino , Percepção Visual/fisiologia , Adulto , Feminino , Transferência de Experiência/fisiologia , Aprendizagem/fisiologia , Orientação Espacial/fisiologia , Simulação por Computador , Orientação/fisiologia
5.
Proc Natl Acad Sci U S A ; 121(23): e2312851121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38771864

RESUMO

The way goal-oriented birds adjust their travel direction and route in response to wind significantly affects their travel costs. This is expected to be particularly pronounced in pelagic seabirds, which utilize a wind-dependent flight style called dynamic soaring. Dynamic soaring seabirds in situations without a definite goal, e.g. searching for prey, are known to preferentially fly with crosswinds or quartering-tailwinds to increase the speed and search area, and reduce travel costs. However, little is known about their reaction to wind when heading to a definite goal, such as homing. Homing tracks of wandering albatrosses (Diomedea exulans) vary from beelines to zigzags, which are similar to those of sailboats. Here, given that both albatrosses and sailboats travel slower in headwinds and tailwinds, we tested whether the time-minimizing strategies used by yacht racers can be compared to the locomotion patterns of wandering albatrosses. We predicted that when the goal is located upwind or downwind, albatrosses should deviate their travel directions from the goal on the mesoscale and increase the number of turns on the macroscale. Both hypotheses were supported by track data from albatrosses and racing yachts in the Southern Ocean confirming that albatrosses qualitatively employ the same strategy as yacht racers. Nevertheless, albatrosses did not strictly minimize their travel time, likely making their flight robust against wind fluctuations to reduce flight costs. Our study provides empirical evidence of tacking in albatrosses and demonstrates that man-made movement strategies provide a new perspective on the laws underlying wildlife movement.


Assuntos
Aves , Voo Animal , Vento , Animais , Voo Animal/fisiologia , Aves/fisiologia , Orientação/fisiologia , Comportamento de Retorno ao Território Vital/fisiologia , Orientação Espacial/fisiologia , Migração Animal/fisiologia
6.
Exp Brain Res ; 242(7): 1533-1541, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733383

RESUMO

Prism adaptation (PA) affects visuospatial attention such as spatial orienting in both the right and left hemifields; however, the systematic after-effects of PA on visuospatial attention remain unclear. Visuospatial attention can be affected by non-spatial attentional factors, and postural control difficulty, which delays the reaction time (RT) to external stimulation, may be one such factor. Therefore, we aimed to investigate the influence of postural control difficulty on changes in spatial orienting of attention after leftward PA. Seventeen healthy young adults underwent 15-min and 5-min PA procedures for a leftward visual shift (30 diopters). Participants underwent the Posner cueing test immediately before (pre-evaluation) and in between and after the PA procedures (post-evaluations) while standing barefoot on the floor (normal standing condition) and on a balance-disc (balance standing condition). In the pre-evaluation, RTs in the balance standing condition were significantly longer compared to those in the normal standing condition for targets appearing in both the right and left hemifields. Leftward PA improved the RT for targets appearing in the right, but no left, hemifield in the balance standing condition, such that RTs for targets in the right hemifield in the post-evaluation were not significantly different between the two standing conditions. However, leftward PA did not significantly change RTs for targets in both hemifields in the normal standing condition. Therefore, postural control difficulty may enhance sensitivity to the features of the visuospatial cognitive after-effects of leftward PA.


Assuntos
Adaptação Fisiológica , Atenção , Orientação Espacial , Equilíbrio Postural , Tempo de Reação , Percepção Espacial , Humanos , Masculino , Adulto Jovem , Feminino , Equilíbrio Postural/fisiologia , Adulto , Atenção/fisiologia , Adaptação Fisiológica/fisiologia , Tempo de Reação/fisiologia , Percepção Espacial/fisiologia , Orientação Espacial/fisiologia , Percepção Visual/fisiologia , Desempenho Psicomotor/fisiologia
7.
Behav Processes ; 218: 105041, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38692460

RESUMO

A previous study demonstrated that rodents on an inclined square platform traveled straight vertically or horizontally and avoided diagonal travel. Through behavior they aligned their head with the horizontal plane, acquiring similar bilateral vestibular cues - a basic requirement for spatial orientation and a salient feature of animals in motion. This behavior had previously been shown to be conspicuous in Tristram's jirds. Here, therefore jirds were challenged by testing their travel behavior on a circular arena inclined at 0°-75°. Our hypothesis was that if, as typical to rodents, the jirds would follow the curved arena wall, they would need to display a compensating mechanism to enable traveling in such a path shape, which involves a tilted frontal head axis and unbalanced bilateral vestibular cues. We found that with the increase in inclination, the jirds remained more in the lower section of the arena (geotaxis). When tested on the steep inclinations, however, their travel away from the arena wall was strictly straight up or down, in contrast to the curved paths that followed the circular arena wall. We suggest that traveling along a circular path while maintaining contact with the wall (thigmotaxis), provided tactile information that compensated for the unbalanced bilateral vestibular cues present when traveling along such curved inclined paths. In the latter case, the frontal plane of the head was in a diagonal posture in relation to gravity, a posture that was avoided when traveling away from the wall.


Assuntos
Sinais (Psicologia) , Orientação Espacial , Vestíbulo do Labirinto , Animais , Vestíbulo do Labirinto/fisiologia , Orientação Espacial/fisiologia , Masculino , Tato/fisiologia , Postura/fisiologia , Percepção do Tato/fisiologia
8.
J Vis ; 24(5): 2, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691087

RESUMO

Historically, in many perceptual learning experiments, only a single stimulus is practiced, and learning is often specific to the trained feature. Our prior work has demonstrated that multi-stimulus learning (e.g., training-plus-exposure procedure) has the potential to achieve generalization. Here, we investigated two important characteristics of multi-stimulus learning, namely, roving and feature variability, and their impacts on multi-stimulus learning and generalization. We adopted a feature detection task in which an oddly oriented target bar differed by 16° from the background bars. The stimulus onset asynchrony threshold between the target and the mask was measured with a staircase procedure. Observers were trained with four target orientation search stimuli, either with a 5° deviation (30°-35°-40°-45°) or with a 45° deviation (30°-75°-120°-165°), and the four reference stimuli were presented in a roving manner. The transfer of learning to the swapped target-background orientations was evaluated after training. We found that multi-stimulus training with a 5° deviation resulted in significant learning improvement, but learning failed to transfer to the swapped target-background orientations. In contrast, training with a 45° deviation slowed learning but produced a significant generalization to swapped orientations. Furthermore, a modified training-plus-exposure procedure, in which observers were trained with four orientation search stimuli with a 5° deviation and simultaneously passively exposed to orientations with high feature variability (45° deviation), led to significant orientation learning generalization. Learning transfer also occurred when the four orientation search stimuli with a 5° deviation were presented in separate blocks. These results help us to specify the condition under which multistimuli learning produces generalization, which holds potential for real-world applications of perceptual learning, such as vision rehabilitation and expert training.


Assuntos
Estimulação Luminosa , Humanos , Adulto Jovem , Masculino , Feminino , Adulto , Estimulação Luminosa/métodos , Aprendizagem/fisiologia , Transferência de Experiência/fisiologia , Orientação Espacial/fisiologia , Orientação/fisiologia
9.
Atten Percept Psychophys ; 86(3): 828-837, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443622

RESUMO

Reports in a visual working memory(WM) task exhibit biases related to the categorical structure of the stimulus space (e.g., cardinal bias) as well as biases related to previously seen stumuli (e.g., serial bias). While these biases are common and can occur simultaneously, the extent to which they interact in WM remains unknown. In the present study, I used orientation delayed estimation tasks known to produce both cardinal and serial biases and found that the serial bias systematically varied based on the relative positions of the cardinal axis and the preceding stimulus in orientation space. When they were positioned in a way that generated cardinal and serial biases in the same direction (i.e., on the same side of the target orientation), reports for the target orientation exhibited a regular repulsive serial bias. However, when their positions resulted in the biases in the opposite directions (i.e., on the opposite side of the target orientation), no serial bias occurred. This absence of serial bias was replicated in a follow-up experiment where the locations of the stimulus orientation and the response probe were completely randomized, suggesting that the interaction occurs independently from location-based response preparation processes. Together, these results demonstrate that the prior stimulus and the cardinal axis impose interactive impact on the processing of new stimulus, producing differential patterns of serial bias depending on the specific stimulus being processed. These findings place significant implications on computational models addressing the nature of the stimulus history effect and its underlying mechanisms.


Assuntos
Memória de Curto Prazo , Reconhecimento Visual de Modelos , Humanos , Reconhecimento Visual de Modelos/fisiologia , Adulto Jovem , Masculino , Feminino , Adulto , Tempo de Reação , Orientação Espacial , Aprendizagem Seriada , Atenção/fisiologia , Orientação
10.
PeerJ ; 12: e17056, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38436036

RESUMO

Balance involves several sensory modalities including vision, proprioception and the vestibular system. This study aims to investigate vestibulospinal activation elicited by tone burst stimulation in various muscles and how head position influences these responses. We recorded electromyogram (EMG) responses in different muscles (sternocleidomastoid-SCM, cervical erector spinae-ES-C, lumbar erector spinae-ES-L, gastrocnemius-G, and tibialis anterior-TA) of healthy participants using tone burst stimulation applied to the vestibular system. We also evaluated how head position affected the responses. Tone burst stimulation elicited reproducible vestibulospinal reflexes in the SCM and ES-C muscles, while responses in the distal muscles (ES-L, G, and TA) were less consistent among participants. The magnitude and polarity of the responses were influenced by the head position relative to the cervical spine. When the head was rotated or tilted, the polarity of the vestibulospinal responses changed, indicating the integration of vestibular and proprioceptive inputs in generating these reflexes. Overall, our study provides valuable insights into the complexity of vestibulospinal reflexes and their modulation by head position. However, the high variability in responses in some muscles limits their clinical application. These findings may have implications for future research in understanding vestibular function and its role in posture and movement control.


Assuntos
Orientação Espacial , Vestíbulo do Labirinto , Humanos , Percepção Espacial , Vértebras Cervicais , Cafeína , Músculos do Pescoço , Niacinamida
11.
Alzheimer Dis Assoc Disord ; 38(1): 98-100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38300875

RESUMO

The Mini-mental State Examination (MMSE) is a commonly used screening tool for cognitive impairment. Lenient scoring of spatial orientation errors (SOEs) on the MMSE is common and negatively affects its diagnostic utility. We examined the effect of lenient SOE scoring on MMSE classification accuracy in a consecutive case series of 103 older adults (age 60 or above) clinically referred for neuropsychological evaluation. Lenient scoring of SOEs on the MMSE occurred in 53 (51.4%) patients and lowered the sensitivity by 7% to 18%, with variable gains in specificity (0% to 11%) to psychometrically operationalized cognitive impairment. Results are consistent with previous reports that lenient scoring is widespread and attenuates the sensitivity of the MMSE. Given the higher clinical priority of correctly detecting early cognitive decline over specificity, a warning against lenient scoring of SOEs (on the MMSE and other screening tools) during medical education and in clinical practice is warranted.


Assuntos
Disfunção Cognitiva , Orientação Espacial , Humanos , Idoso , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Empatia , Disfunção Cognitiva/diagnóstico , Testes Neuropsicológicos
12.
J Exp Biol ; 227(5)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38323420

RESUMO

Animals can use different types of information for navigation. Domestic chicks (Gallus gallus) prefer to use local features as a beacon over spatial relational information. However, the role of egocentric navigation strategies is less understood. Here, we tested domestic chicks' egocentric and allocentric orientation abilities in a large circular arena. In experiment 1, we investigated whether domestic chicks possess a side bias during viewpoint-dependent egocentric orientation, revealing facilitation for targets on the chicks' left side. Experiment 2 showed that local features are preferred over viewpoint-dependent egocentric information when the two conflict. Lastly, in experiment 3, we found that in a situation where there is a choice between egocentric and allocentric spatial relational information provided by free-standing objects, chicks preferentially rely on egocentric information. We conclude that chicks orient according to a hierarchy of cues, in which the use of the visual appearance of an object is the dominant strategy, followed by viewpoint-dependent egocentric information and finally by spatial relational information.


Assuntos
Galinhas , Orientação Espacial , Animais , Orientação , Percepção Espacial , Sinais (Psicologia)
13.
Atten Percept Psychophys ; 86(3): 768-775, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316722

RESUMO

A large number of recent studies have demonstrated that efficient attentional selection depends to a large extent on the ability to extract regularities present in the environment. Through statistical learning, attentional selection is facilitated by directing attention to locations in space that were relevant in the past while suppressing locations that previously were distracting. The current study shows that we are not only able to learn to prioritize locations in space but also locations within objects independent of space. Participants learned that within a specific object, particular locations within the object were more likely to contain relevant information than other locations. The current results show that this learned prioritization was bound to the object as the learned bias to prioritize a specific location within the object stayed in place even when the object moved to a completely different location in space. We conclude that in addition to spatial attention prioritization of locations in space, it is also possible to learn to prioritize relevant locations within specific objects. The current findings have implications for the inferred spatial priority map of attentional weights as this map cannot be strictly retinotopically organized.


Assuntos
Atenção , Reconhecimento Visual de Modelos , Transferência de Experiência , Humanos , Adulto Jovem , Aprendizagem por Probabilidade , Orientação , Orientação Espacial , Masculino , Feminino , Aprendizagem Espacial , Tempo de Reação , Aprendizagem por Discriminação , Percepção Espacial
14.
Nature ; 626(8000): 819-826, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326621

RESUMO

To navigate, we must continuously estimate the direction we are headed in, and we must correct deviations from our goal1. Direction estimation is accomplished by ring attractor networks in the head direction system2,3. However, we do not fully understand how the sense of direction is used to guide action. Drosophila connectome analyses4,5 reveal three cell populations (PFL3R, PFL3L and PFL2) that connect the head direction system to the locomotor system. Here we use imaging, electrophysiology and chemogenetic stimulation during navigation to show how these populations function. Each population receives a shifted copy of the head direction vector, such that their three reference frames are shifted approximately 120° relative to each other. Each cell type then compares its own head direction vector with a common goal vector; specifically, it evaluates the congruence of these vectors via a nonlinear transformation. The output of all three cell populations is then combined to generate locomotor commands. PFL3R cells are recruited when the fly is oriented to the left of its goal, and their activity drives rightward turning; the reverse is true for PFL3L. Meanwhile, PFL2 cells increase steering speed, and are recruited when the fly is oriented far from its goal. PFL2 cells adaptively increase the strength of steering as directional error increases, effectively managing the tradeoff between speed and accuracy. Together, our results show how a map of space in the brain can be combined with an internal goal to generate action commands, via a transformation from world-centric coordinates to body-centric coordinates.


Assuntos
Encéfalo , Drosophila melanogaster , Objetivos , Cabeça , Neurônios , Orientação Espacial , Navegação Espacial , Animais , Encéfalo/citologia , Encéfalo/fisiologia , Conectoma , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Cabeça/fisiologia , Locomoção/fisiologia , Neurônios/classificação , Neurônios/fisiologia , Orientação Espacial/fisiologia , Navegação Espacial/fisiologia , Fatores de Tempo
15.
Nature ; 626(8000): 808-818, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326612

RESUMO

Neuronal signals that are relevant for spatial navigation have been described in many species1-10. However, a circuit-level understanding of how such signals interact to guide navigational behaviour is lacking. Here we characterize a neuronal circuit in the Drosophila central complex that compares internally generated estimates of the heading and goal angles of the fly-both of which are encoded in world-centred (allocentric) coordinates-to generate a body-centred (egocentric) steering signal. Past work has suggested that the activity of EPG neurons represents the fly's moment-to-moment angular orientation, or heading angle, during navigation2,11. An animal's moment-to-moment heading angle, however, is not always aligned with its goal angle-that is, the allocentric direction in which it wishes to progress forward. We describe FC2 cells12, a second set of neurons in the Drosophila brain with activity that correlates with the fly's goal angle. Focal optogenetic activation of FC2 neurons induces flies to orient along experimenter-defined directions as they walk forward. EPG and FC2 neurons connect monosynaptically to a third neuronal class, PFL3 cells12,13. We found that individual PFL3 cells show conjunctive, spike-rate tuning to both the heading angle and the goal angle during goal-directed navigation. Informed by the anatomy and physiology of these three cell classes, we develop a model that explains how this circuit compares allocentric heading and goal angles to build an egocentric steering signal in the PFL3 output terminals. Quantitative analyses and optogenetic manipulations of PFL3 activity support the model. Finally, using a new navigational memory task, we show that flies expressing disruptors of synaptic transmission in subsets of PFL3 cells have a reduced ability to orient along arbitrary goal directions, with an effect size in quantitative accordance with the prediction of our model. The biological circuit described here reveals how two population-level allocentric signals are compared in the brain to produce an egocentric output signal that is appropriate for motor control.


Assuntos
Encéfalo , Drosophila melanogaster , Objetivos , Cabeça , Vias Neurais , Orientação Espacial , Navegação Espacial , Animais , Potenciais de Ação , Encéfalo/citologia , Encéfalo/fisiologia , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Cabeça/fisiologia , Locomoção , Neurônios/metabolismo , Optogenética , Orientação Espacial/fisiologia , Percepção Espacial/fisiologia , Memória Espacial/fisiologia , Navegação Espacial/fisiologia , Transmissão Sináptica
16.
Atten Percept Psychophys ; 86(3): 909-930, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38253985

RESUMO

Can synchrony in stimulation guide attention and aid perceptual performance? Here, in a series of three experiments, we tested the influence of visual and auditory synchrony on attentional selection during a novel human foraging task. Human foraging tasks are a recent extension of the classic visual search paradigm in which multiple targets must be located on a given trial, making it possible to capture a wide range of performance metrics. Experiment 1 was performed online, where the task was to forage for 10 (out of 20) vertical lines among 60 randomly oriented distractor lines that changed color between yellow and blue at random intervals. The targets either changed colors in visual synchrony or not. In another condition, a non-spatial sound additionally occurred synchronously with the color change of the targets. Experiment 2 was run in the laboratory (within-subjects) with the same design. When the targets changed color in visual synchrony, foraging times were significantly shorter than when they randomly changed colors, but there was no additional benefit for the sound synchrony, in contrast to predictions from the so-called "pip-and-pop" effect (Van der Burg et al., Journal of Experimental Psychology, 1053-1065, 2008). In Experiment 3, task difficulty was increased as participants foraged for as many 45° rotated lines as possible among lines of different orientations within 10 s, with the same synchrony conditions as in Experiments 1 and 2. Again, there was a large benefit of visual synchrony but no additional benefit for sound synchronization. Our results provide strong evidence that visual synchronization can guide attention during multiple target foraging. This likely reflects the local grouping of the synchronized targets. Importantly, there was no additional benefit for sound synchrony, even when the foraging task was quite difficult (Experiment 3).


Assuntos
Atenção , Percepção de Cores , Reconhecimento Visual de Modelos , Humanos , Atenção/fisiologia , Feminino , Percepção de Cores/fisiologia , Masculino , Adulto Jovem , Reconhecimento Visual de Modelos/fisiologia , Adulto , Percepção Auditiva/fisiologia , Tempo de Reação/fisiologia , Orientação Espacial/fisiologia , Adolescente , Orientação
17.
Curr Opin Neurol ; 37(1): 52-58, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38010039

RESUMO

PURPOSE OF REVIEW: The vestibular system provides three-dimensional idiothetic cues for updating of one's position in space during head and body movement. Ascending vestibular signals reach entorhinal and hippocampal networks via head-direction pathways, where they converge with multisensory information to tune the place and grid cell code. RECENT FINDINGS: Animal models have provided insight to neurobiological consequences of vestibular lesions for cerebral networks controlling spatial cognition. Multimodal cerebral imaging combined with behavioural testing of spatial orientation and navigation performance as well as strategy in the last years helped to decipher vestibular-cognitive interactions also in humans. SUMMARY: This review will update the current knowledge on the anatomical and cellular basis of vestibular contributions to spatial orientation and navigation from a translational perspective (animal and human studies), delineate the behavioural and functional consequences of different vestibular pathologies on these cognitive domains, and will lastly speculate on a potential role of vestibular dysfunction for cognitive aging and impeding cognitive impairment in analogy to the well known effects of hearing loss.


Assuntos
Orientação Espacial , Vestíbulo do Labirinto , Animais , Humanos , Percepção Espacial , Cognição , Sinais (Psicologia)
18.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38100330

RESUMO

There is disagreement regarding the major components of the brain network supporting spatial cognition. To address this issue, we applied a lesion mapping approach to the clinical phenomenon of topographical disorientation. Topographical disorientation is the inability to maintain accurate knowledge about the physical environment and use it for navigation. A review of published topographical disorientation cases identified 65 different lesion sites. Our lesion mapping analysis yielded a topographical disorientation brain map encompassing the classic regions of the navigation network: medial parietal, medial temporal, and temporo-parietal cortices. We also identified a ventromedial region of the prefrontal cortex, which has been absent from prior descriptions of this network. Moreover, we revealed that the regions mapped are correlated with the Default Mode Network sub-network C. Taken together, this study provides causal evidence for the distribution of the spatial cognitive system, demarking the major components and identifying novel regions.


Assuntos
Orientação Espacial , Orientação , Humanos , Encéfalo/patologia , Mapeamento Encefálico , Confusão/etiologia , Confusão/patologia , Imageamento por Ressonância Magnética
19.
Artigo em Inglês | MEDLINE | ID: mdl-38134234

RESUMO

OBJECTIVES: Global cognitive changes in older age affect driving behavior and road safety, but how spatial orientation differences affect driving behaviors is unknown on a population level, despite clear implications for driving policy and evaluation during aging. The present study aimed to establish how spatial navigation changes affect driving behavior and road safety within a large cohort of older adults. METHODS: Eight hundred and four participants (mean age: 71.05) were recruited for a prospective cohort study. Participants self-reported driving behavior followed by spatial orientation (allocentric and egocentric) testing and a broader online cognitive battery (visuomotor speed, processing speed, executive functioning, spatial working memory, episodic memory, visuospatial functioning). RESULTS: Spatial orientation performance significantly predicted driving difficulty and frequency. Experiencing more driving difficulty was associated with worse allocentric spatial orientation, processing speed, and source memory performance. Similarly, avoiding challenging driving situations was associated with worse spatial orientation and episodic memory. Allocentric spatial orientation was the only cognitive domain consistently affecting driving behavior in under 70 and over 70 age groups, a common age threshold for driving evaluation in older age. DISCUSSION: We established for the first time that worse spatial orientation performance predicted increased driving difficulty and avoidance of challenging situations within an older adult cohort. Deficits in spatial orientation emerge as a robust indicator of driving performance in older age, which should be considered in future aging driving assessments, as it has clear relevance for road safety within the aging population.


Assuntos
Condução de Veículo , Envelhecimento Saudável , Humanos , Idoso , Orientação Espacial , Estudos Prospectivos , Cognição , Envelhecimento/psicologia
20.
Ann Otol Rhinol Laryngol ; 133(3): 330-336, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38130098

RESUMO

OBJECTIVES: Spatial cognition is a perceptual-motor function that pertains to the comprehension and processing of two-dimensional and three-dimensional space. The impairment of any sensory system can have adverse effects on cognitive functioning. The objective of this study is to examine spatial cognition in adults with hearing impairments. METHODS: There were a total of 61 individuals in this study: thirty-six with hearing loss and 25 with normal hearing. The Spatial Orientation Test (SOT), the Mental Rotation test (MR), and the Money's Road Map Test (RMT) were administered to assess participants' spatial learning-orientation, mental imagery-rotation, and spatial navigation abilities. A high number of errors in RMT, high angle difference in SOT and a low score in MR suggest poor spatial abilities. RESULTS: Participants with hearing loss had a greater number of RMT errors and SOT angle difference, but lower MR scores than those with normal hearing (P < .001). Hearing impairment negatively impacted all 3 spatial cognitive assessments. Hearing loss was associated with a 6.9 increase in the number of RMT errors (95% Confidence Interval (CI): 4.8, 9), a 23.6 increase in the SOT angle difference (95% CI: 16, 31.2), and an 8.5 decrease in the MR score (95% CI: -10.8, -6.2). CONCLUSIONS: The study found that individuals with hearing loss exhibited lower performance in various cognitive tasks related to spatial orientation, navigation, spatial learning, mental imagery, and rotation abilities when compared to an age and sex matched control group. In future study, it is imperative to place greater emphasis on hearing loss as a potential detrimental factor in the prediction of spatial cognition impairment.


Assuntos
Perda Auditiva , Orientação Espacial , Adulto , Humanos , Cognição , Percepção Espacial , Perda Auditiva/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA