Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.238
Filtrar
1.
Curr Microbiol ; 81(7): 170, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734822

RESUMO

As a primary nutrient in agricultural soils, phosphorus plays a crucial but growth-limiting role for plants due to its complex interactions with various soil elements. This often results in excessive phosphorus fertilizer application, posing concerns for the environment. Agri-research has therefore shifted focus to increase fertilizer-use efficiency and minimize environmental impact by leveraging plant growth-promoting rhizobacteria. This study aimed to evaluate the in-field incremental effect of inorganic phosphate concentration (up to 50 kg/ha/P) on the ability of two rhizobacterial isolates, Lysinibacillus sphaericus (T19), Paenibacillus alvei (T29), from the previous Breedt et al. (Ann Appl Biol 171:229-236, 2017) study on maize in enhancing the yield of commercially grown Duzi® cultivar wheat. Results obtained from three seasons of field trials revealed a significant relationship between soil phosphate concentration and the isolates' effectiveness in improving wheat yield. Rhizospheric samples collected at flowering during the third season, specifically to assess phosphatase enzyme activity at the different soil phosphate levels, demonstrated a significant decrease in soil phosphatase activity when the phosphorus rate reached 75% for both isolates. Furthermore, in vitro assessments of inorganic phosphate solubilization by both isolates at five increments of tricalcium phosphate-amended Pikovskaya media found that only isolate T19 was capable of solubilizing tricalcium at concentrations exceeding 3 mg/ml. The current study demonstrates the substantial influence of inorganic phosphate on the performance of individual rhizobacterial isolates, highlighting that this is an essential consideration when optimizing these isolates to increase wheat yield in commercial cultivation.


Assuntos
Fosfatos , Rizosfera , Microbiologia do Solo , Solo , Triticum , Triticum/microbiologia , Triticum/crescimento & desenvolvimento , Fosfatos/metabolismo , Solo/química , Fertilizantes/análise , Paenibacillus/metabolismo , Paenibacillus/genética , Paenibacillus/crescimento & desenvolvimento , Fósforo/metabolismo
2.
Protein Expr Purif ; 219: 106482, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38583789

RESUMO

GH11 enzyme is known to be specific and efficient for the hydrolysis of xylan. It has been isolated from many microorganisms, and its enzymatic characteristics and thermostability vary between species. In this study, a GH11 enzyme PphXyn11 from a novel xylan-degrading strain of Paenibacillus physcomitrellae XB was characterized, and five mutants were constructed to try to improve the enzyme's thermostability. The results showed that PphXyn11 was an acidophilic endo-ß-1,4-xylanase with the optimal reaction pH of 3.0-4.0, and it could deconstruct different kinds of xylan substrates efficiently, such as beechwood xylan, wheat arabinoxylan and xylo-oligosaccharides, to produce xylobiose and xylotriose as the main products at the optimal reaction temperature of 40 °C. Improvement of the thermal stability of PphXyn11 using site-directed mutagenesis revealed that three mutants, W33C/N47C, S127C/N174C and S49E, designed by adding the disulfide bonds at the N-terminal, C-terminal and increasing the charged residues on the surface of PphXyn11 respectively, could increase the enzymatic activity and thermal stablility significantly and make the optimal reaction temperature reach 50 °C. Molecular dynamics simulations as well as computed the numbers of salt bridges and hydrogen bonds indicated that the protein structures of these three mutants were more stable than the wild type, which provided theoretical support for their improved thermal stability. Certainly, further research is necessary to improve the enzymatic characteristics of PphXyn11 to achieve the bioconversion of hemicellulosic biomass on an applicable scale.


Assuntos
Endo-1,4-beta-Xilanases , Estabilidade Enzimática , Paenibacillus , Paenibacillus/enzimologia , Paenibacillus/genética , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Xilanos/metabolismo , Xilanos/química , Concentração de Íons de Hidrogênio , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Temperatura , Especificidade por Substrato
3.
Artigo em Inglês | MEDLINE | ID: mdl-38607368

RESUMO

Two Gram-positive, rod-shaped, endospore-forming strains, YIM B05601 and YIM B05602T, were isolated from soil sampled at Hamazui hot spring, Tengchong City, Yunnan Province, PR China. Phylogenetic analysis based on 16S rRNA gene sequences suggested that the two strains fell within the genus Paenibacillus, appearing most closely related to Paenibacillus alkalitolerans YIM B00362T (96.9 % sequence similarity). Genome-based phylogenetic analysis confirmed that strains YIM B05601 and YIM B05602T formed a distinct phylogenetic cluster within the genus Paenibacillus. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values of strains YIM B05601 and YIM B05602T with the related species P. alkalitolerans YIM B00362T were within the ranges of 74.43-74.57 % and 12.1-18.5 %, respectively, which clearly indicated that strains YIM B05601, YIM B05602T represented a novel species. Strains YIM B05601 and YIM B05602T exhibited 99.6 % 16S rRNA gene sequence similarity. The ANI and dDDH values between the two strains were 99.8 and 100 %, respectively, suggesting that they belong to the same species. Optimum growth for both strains occurred at pH 7.0 and 45 °C. The diagnostic diamino acid in the cell-wall peptidoglycan of strains YIM B05601 and YIM B05602T was meso-diaminopimelic acid. MK-7 was the predominant menaquinone. The polar lipids of strain YIM B05602T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, four unidentified glycolipids, an unidentified polarlipid and phosphatidylinositol mannoside. The major fatty acids of the two stains were iso-C15 : 0 and anteiso-C15 : 0. Based on phylogenomic and phylogenetic analyses coupled with phenotypic and chemotaxonomic characterizations, strains YIM B05601 and YIM B05602T could be classified as a novel species of the genus Paenibacillus, for which the name Paenibacillus thermotolerans sp. nov. is proposed. The type strain is YIM B05602T (=CGMCC 1.60051T=KCTC 43460T=NBRC 115924T).


Assuntos
Fontes Termais , Paenibacillus , China , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Nucleotídeos , Paenibacillus/genética
4.
Sci Rep ; 14(1): 7755, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565929

RESUMO

Cellulose-degrading microorganisms hold immense significance in utilizing cellulose resources efficiently. The screening of natural cellulase bacteria and the optimization of fermentation conditions are the hot spots of research. This study meticulously screened cellulose-degrading bacteria from mixed soil samples adopting a multi-step approach, encompassing preliminary culture medium screening, Congo red medium-based re-screening, and quantification of cellulase activity across various strains. Particularly, three robust cellulase-producing strains were identified: A24 (MT740356.1 Brevibacillus borstelensis), A49 (MT740358.1 Bacillus cereus), and A61 (MT740357.1 Paenibacillus sp.). For subsequent cultivation experiments, the growth curves of the three obtained isolates were monitored diligently. Additionally, optimal CMCase production conditions were determined, keeping CMCase activity as a key metric, through a series of single-factor experiments: agitation speed, cultivation temperature, unit medium concentration, and inoculum volume. Maximum CMCase production was observed at 150 rpm/37 °C, doubling the unit medium addition, and a 5 mL inoculation volume. Further optimization was conducted using the selected isolate A49 employing response surface methodology. The software model recommended a 2.21fold unit medium addition, 36.11 °C temperature, and 4.91 mL inoculant volume for optimal CMCase production. Consequently, three parallel experiments were conducted based on predicted conditions consistently yielding an average CMCase production activity of 15.63 U/mL, closely aligning with the predicted value of 16.41 U/mL. These findings validated the reliability of the model and demonstrated the effectiveness of optimized CMCase production conditions for isolate A49.


Assuntos
Celulase , Paenibacillus , Bacillus cereus/metabolismo , Celulose/metabolismo , Reprodutibilidade dos Testes , Celulase/metabolismo , Paenibacillus/metabolismo , Fermentação
5.
Appl Microbiol Biotechnol ; 108(1): 282, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573330

RESUMO

Oleanane-type ginsenosides are a class of compounds with remarkable pharmacological activities. However, the lack of effective preparation methods for specific rare ginsenosides has hindered the exploration of their pharmacological properties. In this study, a novel glycoside hydrolase PlGH3 was cloned from Paenibacillus lactis 154 and heterologous expressed in Escherichia coli. Sequence analysis revealed that PlGH3 consists of 749 amino acids with a molecular weight of 89.5 kDa, exhibiting the characteristic features of the glycoside hydrolase 3 family. The enzymatic characterization results of PlGH3 showed that the optimal reaction pH and temperature was 8 and 50 °C by using p-nitrophenyl-ß-D-glucopyranoside as a substrate, respectively. The Km and kcat values towards ginsenoside Ro were 79.59 ± 3.42 µM and 18.52 s-1, respectively. PlGH3 exhibits a highly specific activity on hydrolyzing the 28-O-ß-D-glucopyranosyl ester bond of oleanane-type saponins. The mechanism of hydrolysis specificity was then presumably elucidated through molecular docking. Eventually, four kinds of rare oleanane-type ginsenosides (calenduloside E, pseudoginsenoside RP1, zingibroside R1, and tarasaponin VI) were successfully prepared by biotransforming total saponins extracted from Panax japonicus. This study contributes to understanding the mechanism of enzymatic hydrolysis of the GH3 family and provides a practical route for the preparation of rare oleanane-type ginsenosides through biotransformation. KEY POINTS: • The glucose at C-28 in oleanane-type saponins can be directionally hydrolyzed. • Mechanisms to interpret PlGH3 substrate specificity by molecular docking. • Case of preparation of low-sugar alternative saponins by directed hydrolysis.


Assuntos
Ginsenosídeos , Ácido Oleanólico/análogos & derivados , Paenibacillus , Saponinas , Glicosídeo Hidrolases/genética , Simulação de Acoplamento Molecular , Escherichia coli/genética , Ésteres
6.
ACS Chem Biol ; 19(4): 992-998, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38562012

RESUMO

Glycosyltransferases play a fundamental role in the biosynthesis of glycoproteins and glycotherapeutics. In this study, we investigated protein glycosyltransferase FlgGT1, belonging to the GT2 family. The GT2 family includes cysteine S-glycosyltransferases involved in antimicrobial peptide biosyntheses, sharing conserved catalytic domains while exhibiting diverse C-terminal domains. Our in vitro studies revealed that FlgGT1 recognizes structural motifs rather than specific amino acid sequences when glycosylating the flagellin protein Hag. Notably, FlgGT1 is selective for serine or threonine O-glycosylation over cysteine S-glycosylation. Molecular dynamics simulations provided insights into the structural basis of FlgGT1's ability to accommodate various sugar nucleotides as donor substrates. Mutagenesis experiments on FlgGT1 demonstrated that truncating the relatively large C-terminal domain resulted in a loss of flagellin glycosylation activity. Our classification based on sequence similarity network analysis and AlphaFold2 structural predictions suggests that the acquisition of the C-terminal domain is a key evolutionary adaptation conferring distinct substrate specificities on glycosyltransferases within the GT2 family.


Assuntos
Flagelina , Glicosiltransferases , Paenibacillus , Sequência de Aminoácidos , Cisteína/metabolismo , Flagelina/metabolismo , Glicosilação , Glicosiltransferases/metabolismo , Paenibacillus/enzimologia , Paenibacillus/metabolismo
7.
Int J Biol Macromol ; 266(Pt 2): 131413, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582482

RESUMO

ß-1,3-Galactanases selectively degrade ß-1,3-galactan, thus it is an attractive enzyme technique to map high-galactan structure and prepare galactooligosaccharides. In this work, a gene encoding exo-ß-1,3-galactanase (PxGal43) was screened form Paenibacillus xylanexedens, consisting of a GH43 domain, a CBM32 domain and α-L-arabinofuranosidase B (AbfB) domain. Using ß-1,3-galactan (AG-II-P) as substrate, the recombined enzyme expressed in Escherichia coli BL21 (DE3) exhibited an optimal activity at pH 7.0 and 30 °C. The enzyme was thermostable, retaining >70 % activity after incubating at 50 °C for 2 h. In addition, it showed high tolerance to various metal ions, denaturants and detergents. Substrate specificity indicated that PxGal43 hydrolysis only ß-1,3-linked galactosyl oligosaccharides and polysaccharides, releasing galactose as an exo-acting manner. The function of the CBM32 and AbfB domain was revealed by their sequential deletion and suggested that their connection to the catalytic domain was crucial for the oligomerization, catalytic activity, substrate binding and thermal stability of PxGal43. The substrate docking and site-directed mutagenesis proposed that Glu191, Gln244, Asp138 and Glu81 served as the catalytic acid, catalytic base, pKa modulator, and substrate identifier in PxGal43, respectively. These results provide a better understanding and optimization of multi-domain bacterial GH43 ß-1,3-galactanase for the degradation of arabinogalactan.


Assuntos
Glicosídeo Hidrolases , Paenibacillus , Paenibacillus/enzimologia , Paenibacillus/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/química , Especificidade por Substrato , Domínios Proteicos , Concentração de Íons de Hidrogênio , Estabilidade Enzimática , Cinética , Hidrólise , Galactanos/metabolismo , Sequência de Aminoácidos , Temperatura
8.
Chembiochem ; 25(8): e202400010, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38439711

RESUMO

A plethora of di- and oligosaccharides isolated from the natural sources are used in food and pharmaceutical industry. An enzymatic hydrolysis of fungal cell wall ß-glucans is a good alternative to produce the desired oligosaccharides with different functionalities, such as the flavour enhancer gentiobiose. We have previously identified PsGly30A as a potential yeast cell wall degrading ß-1,6-glycosidase. The aim of this study is to characterise the PsGly30A enzyme, a member of the GH30 family, and to evaluate its suitability for the production of gentiobiose from ß-1,6-glucans. An endo-ß-1,6-glucanase PsGly30A encoding gene from Paenibacillus sp. GKG has been cloned and overexpressed in Escherichia coli. The recombinant enzyme has been active towards pustulan and yeast ß-glucan, but not on laminarin from the Laminaria digitata, confirming the endo-ß-1,6-glucanase mode of action. The PsGly30A shows the highest activity at pH 5.5 and 50 °C. The specific activity of PsGly30A on pustulan (1262±82 U/mg) is among the highest reported for GH30 ß-1,6-glycosidases. Moreover, gentiobiose is the major reaction product when pustulan, yeast ß-glucan or yeast cell walls have been used as a substrate. Therefore, PsGly30A is a promising catalyst for valorisation of the yeast-related by-products.


Assuntos
Dissacarídeos , Algas Comestíveis , Laminaria , Paenibacillus , beta-Glucanas , Saccharomyces cerevisiae/metabolismo , Concentração de Íons de Hidrogênio , Glucanos , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Oligossacarídeos , Especificidade por Substrato
9.
BMC Genomics ; 25(1): 276, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481158

RESUMO

BACKGROUND: Plant diseases caused by pathogenic fungi are devastating. However, commonly used fungicides are harmful to the environment, and some are becoming ineffective due to fungal resistance. Therefore, eco-friendly biological methods to control pathogenic fungi are urgently needed. RESULTS: In this study, a strain, Paenibacillus sp. lzh-N1, that could inhibit the growth of the pathogenic fungus Mycosphaerella sentina (Fr) Schrorter was isolated from the rhizosphere soil of pear trees, and the complete genome sequence of the strain was obtained, annotated, and analyzed to reveal the genetic foundation of its antagonistic ability. The entire genome of this strain contained a circular chromosome of 5,641,488 bp with a GC content of 45.50%. The results of species identification show that the strain belongs to the same species as P. polymyxa Sb3-1 and P. polymyxa CJX518. Sixteen secondary metabolic biosynthetic gene clusters were predicted by antiSMASH, including those of the antifungal peptides fusaricidin B and paenilarvins. In addition, biofilm formation-related genes containing two potential gene clusters for cyclic lactone autoinducer, a gene encoding S-ribosylhomocysteine lyase (LuxS), and three genes encoding exopolysaccharide biosynthesis protein were identified. CONCLUSIONS: Antifungal peptides and glucanase biosynthesized by Paenibacillus sp. lzh-N1 may be responsible for its antagonistic effect. Moreover, quorum sensing systems may influence the biocontrol activity of this strain directly or indirectly.


Assuntos
Paenibacillus , Paenibacillus/genética , Antifúngicos/química , Percepção de Quorum , Genoma Bacteriano
10.
Microb Biotechnol ; 17(3): e14438, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38529712

RESUMO

Paenibacillus polymyxa is a non-pathogenic, Gram-positive bacterium endowed with a rich and versatile metabolism. However interesting, this bacterium has been seldom used for bioproduction thus far. In this study, we engineered P. polymyxa for isobutanol production, a relevant bulk chemical and next-generation biofuel. A CRISPR-Cas9-based genome editing tool facilitated the chromosomal integration of a synthetic operon to establish isobutanol production. The 2,3-butanediol biosynthesis pathway, leading to the main fermentation product of P. polymyxa, was eliminated. A mutant strain harbouring the synthetic isobutanol operon (kdcA from Lactococcus lactis, and the native ilvC, ilvD and adh genes) produced 1 g L-1 isobutanol under microaerobic conditions. Improving NADPH regeneration by overexpression of the malic enzyme subsequently increased the product titre by 50%. Network-wide proteomics provided insights into responses of P. polymyxa to isobutanol and revealed a significant metabolic shift caused by alcohol production. Glucose-6-phosphate 1-dehydrogenase, the key enzyme in the pentose phosphate pathway, was identified as a bottleneck that hindered efficient NADPH regeneration through this pathway. Furthermore, we conducted culture optimization towards cultivating P. polymyxa in a synthetic minimal medium. We identified biotin (B7), pantothenate (B5) and folate (B9) to be mutual essential vitamins for P. polymyxa. Our rational metabolic engineering of P. polymyxa for the production of a heterologous chemical sheds light on the metabolism of this bacterium towards further biotechnological exploitation.


Assuntos
Butanóis , Paenibacillus polymyxa , Paenibacillus , Paenibacillus polymyxa/genética , Paenibacillus polymyxa/metabolismo , Carbono/metabolismo , NADP/metabolismo , Oxirredução , Paenibacillus/genética , Engenharia Metabólica
11.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38509027

RESUMO

AIMS: In this work, we aimed to isolate marine bacteria that produce metabolites with antifungal properties. METHODS AND RESULTS: Paenibacillus polymyxa 188 was isolated from a marine sediment sample, and it showed excellent antifungal activity against many fungi pathogenic to plants (Fusarium tricinctum, Pestalotiopsis clavispora, Fusarium oxysporum, F. oxysporum f. sp. Cubense (Foc), Curvularia plantarum, and Talaromyces pinophilus) and to humans (Aspergillus terreus, Penicillium oxalicum, and Microsphaeropsis arundinis). The antifungal compounds produced by P. polymyxa 188 were extracted and analyzed using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The complete genome sequence and biosynthetic gene clusters of P. polymyxa 188 were characterized and compared with those of other strains. A total of 238 carbohydrate-active enzymes (CAZymes) were identified in P. polymyxa 188. Two antibiotic gene clusters, fusaricidin and tridecaptin, exist in P. polymyxa 188, which is different from other strains that typically have multiple antibiotic gene clusters. CONCLUSIONS: Paenibacilluspolymyxa 188 was identified with numerous biosynthetic gene clusters, and its antifungal ability against pathogenic fungi was verified.


Assuntos
Paenibacillus polymyxa , Paenibacillus , Humanos , Paenibacillus polymyxa/metabolismo , Antifúngicos/química , Antibacterianos/metabolismo , Paenibacillus/genética
12.
Biotechniques ; 76(5): 192-202, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38469872

RESUMO

Dendrobium is a rich source of high-value natural components. Endophytic fungi are well studied, yet bacteria research is limited. In this study, endophytic bacteria from Dendrobium nobile were isolated using an improved method, showing inhibition of pathogens and growth promotion. JC-3jx, identified as Paenibacillus peoriae, exhibited significant inhibitory activity against tested fungi and bacteria, including Escherichia coli. JC-3jx also promoted corn seed rooting and Dendrobium growth, highlighting its excellent biocontrol and growth-promoting potential.


Assuntos
Dendrobium , Endófitos , Paenibacillus , Dendrobium/microbiologia , Dendrobium/crescimento & desenvolvimento , Paenibacillus/genética , Paenibacillus/isolamento & purificação , Endófitos/isolamento & purificação , Endófitos/genética , Raízes de Plantas/microbiologia , Zea mays/microbiologia
13.
Int J Biol Macromol ; 264(Pt 2): 130753, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462094

RESUMO

Chitooligosaccharides (COS) possess versatile functional properties that have found extensive applications across various fields. Chitosanase can specifically hydrolyze ß-1,4 glycosidic bonds in chitosan to produce COS. In this study, Csn-PD, a glycoside hydrolase family 46 chitosanase from Paenibacillus dendritiformis, which produces (GlcN)2 as its main product, was rationally redesigned aiming to improve its catalytic performance. Based on the results of molecular docking analysis and multiple sequence alignment, four amino acid residues in Csn-PD (I101, T120, T220, and Y259) were pinpointed for targeted mutations. Beneficial mutations in terms of enhanced catalytic activity were then combined by site-directed mutagenesis. Notably, the most promising variant, Csn-PDT6 (Csn-PD I101M/T120E/T220G), exhibited an impressive eight-fold surge in activity compared to the wild-type Csn-PD. This heightened enzymatic activity was complemented by an enhanced pH stability profile. A compelling feature of Csn-PDT6 is its preservation of the hydrolytic product profile observed in Csn-PD. This characteristic further accentuates its candidacy for the targeted production of (GlcN)2. The success of our strategic approach is vividly illustrated by the significant improvements achieved in the catalytic performance of the chitosanase, encompassing both its activity and stability. These developments offer a valuable model that may have implications for the semi-rational design of other enzymes.


Assuntos
Quitosana , Paenibacillus , Simulação de Acoplamento Molecular , Glicosídeo Hidrolases/química , Quitosana/química , Hidrólise
14.
Int J Biol Macromol ; 266(Pt 1): 131275, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556222

RESUMO

Carbohydrate-binding module (CBM) family 91 is a novel module primarily associated with glycoside hydrolase (GH) family 43 enzymes. However, our current understanding of its function remains limited. PphXyl43B is a ß-xylosidase/α-L-arabinofuranosidase bifunctional enzyme from physcomitrellae patens XB belonging to the GH43_11 subfamily and containing CBM91 at its C terminus. To fully elucidate the contributions of the CBM91 module, the truncated proteins consisting only the GH43_11 catalytic module (rPphXyl43B-dCBM91) and only the CBM91 module (rCBM91) of PphXyl43B were constructed, respectively. The result showed that rPphXyl43B-dCBM91 completely lost hydrolysis activity against both p-nitrophenyl-ß-D-xylopyranoside and p-nitrophenyl-α-L-arabinofuranoside; it also exhibited significantly reduced activity towards xylobiose, xylotriose, oat spelt xylan and corncob xylan compared to the control. Thus, the CBM91 module is crucial for the ß-xylosidase/α-L-arabinofuranosidase activities in PphXyl43B. However, rCBM91 did not exhibit any binding capability towards corncob xylan. Structural analysis indicated that CBM91 of PphXyl43B might adopt a loop conformation (residues 496-511: ILSDDYVVQSYGGFFT) to actively contribute to the catalytic pocket formation rather than substrate binding capability. This study provides important insights into understanding the function of CBM91 and can be used as a reference for analyzing the action mechanism of GH43_11 enzymes and their application in biomass energy conversion.


Assuntos
Domínio Catalítico , Glicosídeo Hidrolases , Paenibacillus , Xilosidases , Xilosidases/química , Xilosidases/metabolismo , Xilosidases/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Paenibacillus/enzimologia , Especificidade por Substrato , Hidrólise , Modelos Moleculares , Conformação Proteica , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Arabinose/metabolismo , Arabinose/análogos & derivados
15.
Biosci Biotechnol Biochem ; 88(5): 538-545, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38331414

RESUMO

Bacterial α-1,3-glucanase, classified as glycoside hydrolase (GH) family 87, has been divided into 3 subgroups based on differences in gene sequences in the catalytic domain. The enzymatic properties of subgroups 1 and 3 of several bacteria have been previously investigated and reported; however, the chemical characterization of subgroup 2 enzymes has not been previously conducted. The α-1,3-glucanase gene from Paenibacillus alginolyticus NBRC15375 (PaAgl) belonging to subgroup 2 of GH family 87 was cloned and expressed in Escherichia coli. PgAgl-N1 (subgroup 3) and PgAgl-N2 (subgroup 1) from P. glycanilyticus NBRC16188 were expressed in E. coli, and their enzymatic characteristics were compared. The amino acid sequence of PaAgl demonstrated that the homology was significantly lower in other subgroups when only the catalytic domain was compared. The oligosaccharide products of the mutan-degrading reaction seemed to have different characteristics among subgroups 1, 2, and 3 in GH family 87.


Assuntos
Sequência de Aminoácidos , Clonagem Molecular , Escherichia coli , Expressão Gênica , Glicosídeo Hidrolases , Paenibacillus , Paenibacillus/enzimologia , Paenibacillus/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Escherichia coli/genética , Especificidade por Substrato , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Domínio Catalítico , Concentração de Íons de Hidrogênio , Oligossacarídeos/metabolismo
16.
Plant Cell Rep ; 43(2): 49, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302760

RESUMO

KEY MESSAGE: Paenibacillus lentimorbus reprograms auxin signaling and metabolic pathways for modulating root system architecture to mitigate nutrient deficiency in maize crops. The arable land across the world is having deficiency and disproportionate nutrients, limiting crop productivity. In this study, the potential of plant growth-promoting rhizobacteria (PGPR) viz., Pseudomonas putida, Paenibacillus lentimorbus, and their consortium was explored for growth promotion in maize (Zea mays) under nutrient-deficient conditions. PGPR inoculation improved the overall health of plants under nutrient-deficient conditions. The PGPR inoculation significantly improved the root system architecture and also induced changes in root cortical aerenchyma. Based on plant growth and physiological parameters inoculation with P. lentimorbus performed better as compared to P. putida, consortium, and uninoculated control. Furthermore, expression of auxin signaling (rum1, rul1, lrp1, rtcs, rtcl) and root hair development (rth)-related genes modulated the root development process to improve nutrient acquisition and tolerance to nutrient-deficient conditions in P. lentimorbus inoculated maize plants. Further, GC-MS analysis indicated the involvement of metabolites including carbohydrates and organic acids due to the interaction between maize roots and P. lentimorbus under nutrient-deficient conditions. These findings affirm that P. lentimorbus enhance overall plant growth by modulating the root system of maize to provide better tolerance to nutrient-deficient condition.


Assuntos
Bacillus , Paenibacillus , Zea mays , Zea mays/genética , Redes e Vias Metabólicas , Nutrientes , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/metabolismo
17.
Int J Mol Sci ; 25(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38396880

RESUMO

Screening of Bacillus with antagonistic effects on paddy mold pathogens to provide strain resources for biological control of mold in Oryza sativa L. screening of Bacillus isolates antagonistic towards Aspergillus tubingensis from rhizosphere soil of healthy paddy; classification and identification of antagonistic strains by biological characteristics and 16S rDNA sequence analysis; transcriptome sequencing after RNA extraction from Bacillus-treated Aspergillus tubingensis; and extraction of inhibitory crude proteins of Bacillus by ammonium sulfate precipitation; inhibitory crude protein and Bacillus spp. were treated separately for A. tubingensis and observed by scanning electron microscopy (SEM). An antagonistic strain of Bacillus, named B7, was identified as Paenibacillus polymyxa by 16S rDNA identification and phylogenetic evolutionary tree comparison analysis. Analysis of the transcriptome results showed that genes related to secondary metabolite biosynthesis such as antifungal protein were significantly downregulated. SEM results showed that the mycelium of A. tubingensis underwent severe rupture after treatment with P. polymyxa and antifungal proteins, respectively. In addition, the sporocarp changed less after treatment with P. polymyxa, and the sporangium stalks had obvious folds. P. polymyxa B7 has a good antagonistic effect against A. tubingensis and has potential for biocontrol applications of paddy mold pathogens.


Assuntos
Aspergillus , Bacillus , Paenibacillus polymyxa , Paenibacillus , Paenibacillus polymyxa/genética , Antifúngicos/farmacologia , Filogenia , Antibiose , Bacillus/genética , DNA Ribossômico/genética , Paenibacillus/genética
18.
Antonie Van Leeuwenhoek ; 117(1): 32, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329631

RESUMO

A Gram-stain-positive, facultatively anaerobic, rod-shaped bacterium, designated JX-17T, was isolated from a soil sample collected in Jiangxi Province, PR China. Growth was observed at 15-48 °C (optimum 37 °C), at pH 5.0-9.0 (optimum pH 7.0) and with 0-6.0% (w/v) NaCl (optimum 1.0%). Strain JX-17T could degrade approximately 50% of 50 mg/L mesotrione within 2 days of incubation, but could not use mesotrione as sole carbon source for growth. Strain JX-17T showed less than 95.3% 16S rRNA gene sequence similarity with type strains of the genus Paenibacillus. In the phylogenetic tree based on 16S rRNA gene and genome sequences, strain JX-17T formed a distinct lineage within the genus Paenibacillus. The ANI values between JX-17T and the most closely related type strains P. lentus CMG1240T and P. farraposensis UY79T were 70.1% and 71.4%, respectively, and the dDDH values between them were 19.0% and 23.3%, respectively. The major cellular fatty acids were anteiso-C15:0, iso-C16:0, anteiso-C17:0 and C16:0, the predominant respiratory quinone was MK-7, the major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unidentified glycolipid, an aminophospholipid and a phosphatidylinositol. The diagnostic diamino acid of the peptidoglycan was meso-diaminopimelic acid, and the DNA G + C content was 50.1 mol%. Based on the phylogenetic, phenotypic and chemotaxonomic characteristics, strain JX-17T represents a novel species within the genus Paenibacillus, for which the name Paenibacillus lacisoli sp. nov is proposed, with strain JX-17T (= GDMCC 1.3962T = KCTC 43568T) as the type strain.


Assuntos
Cicloexanonas , Paenibacillus , Fosfolipídeos , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , DNA Bacteriano/química , Hibridização de Ácido Nucleico , Ácidos Graxos/análise , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana
19.
Artigo em Inglês | MEDLINE | ID: mdl-38334269

RESUMO

A novel Gram-positive strain WQ 127069T that was isolated from the soil of Baima Snow Mountain, a habitat of highly endangered Yunnan snub-nosed monkeys (Rhinopithecus bieti), was subjected to a polyphasic taxonomic study. Phylogenetic analysis based on the 16S rRNA gene sequences showed that the isolate belongs to the genus Paenibacillus, showing 98.4 and 96.08 % sequence similarity to the type strains Paenibacillus periandrae PM10T and Paenibacillus foliorum LMG 31456T, respectively. The G+C content of the genomic DNA of strain WQ127069T was 45.6 mol%. The predominant isoprenoid quinone was MK-7, and meso-diaminopimelic acid was present in peptidoglycan. The major cellular fatty acids were antiiso-C15 : 0, iso-C15 : 0 and C16 : 0. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidylmonomethylethanolamine. The whole genome average nucleotide identity and digital DNA-DNA hybridization values between strain WQ 127069T and strain PM10T were 93.2 and 52.5 %, respectively. Growth occurred at 5-40 °C (optimally at 20-35 °C), pH 6-8 (optimally at pH7.0) and with 0.5-2 % (w/v) NaCl (optimally at 0.5 %). On the basis of the taxonomic evidence, a novel species, Paenibacillus baimaensis sp. nov., is proposed. The type strain is WQ 127069T (=KCTC 43480T=CCTCC AB 2022381T).


Assuntos
Paenibacillus , Presbytini , Animais , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Solo , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , China , Ecossistema
20.
Artigo em Inglês | MEDLINE | ID: mdl-38305710

RESUMO

A Gram-stain-positive bacterium capable of resisting 5.0 mM glufosinate, designated strain YX-27T, was isolated from a sludge sample collected from a factory in Wuxi, Jiangsu, PR China. Cells were rod-shaped, facultatively anaerobic, endospore-forming, and motile by peritrichous flagella. Growth was observed at 15-42 °C (optimum at 30 °C), pH 4.0-8.0 (optimum pH 7.0-7.5) and with 0-2.5% NaCl (w/v; optimum, 0.5 %). Strain YX-27T could tolerate up to 6.0 mM glufosinate. Strain YX-27T showed the highest 16S rRNA gene sequence similarity to Paenibacillus tianjinensis TB2019T (96.17 %), followed by Paenibacillus odorifer DSM 1539T (96.15 %), Paenibacillus sophorae S27T (96.04 %), Paenibacillus apii 7124T (96.02 %) and Paenibacillus stellifer DSM 14472T (95.87 %). The phylogenetic tree based on genome and 16S rRNA gene sequences indicated that strain YX-27T was clustered in the genus Paenibacillus but formed a separate clade. The genome size of YX-27T was 5.22 Mb with a G+C content of 57.5 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between the genomes of strain YX-27T and 12 closely related type strains ranged from 70.8 to 74.8% and 19.8 to 23.0 %, respectively. The major cellular fatty acids were C16 : 0, anteiso-C15 : 0 and iso-C16 : 0. The major polar lipids were one diphosphatidylglycerol, one phosphatidylethanolamine, one phosphatidylglycerol, one phospholipid, four aminophospholipids and four unidentified lipids. The predominant respiratory quinone was MK-7. Based on phylogenetic, genomic, chemotaxonomic and phenotypic data, strain YX-27T was considered to represent a novel species for which the name Paenibacillus glufosinatiresistens sp. nov. is proposed, with YX-27T (=MCCC 1K08803T= KCTC 43611T) as the type strain.


Assuntos
Aminobutiratos , Ácidos Graxos , Paenibacillus , Ácidos Graxos/química , Esgotos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Composição de Bases , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Fosfolipídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...