RESUMO
Pneumococcal surface protein A (PspA) is an important virulence factor in Streptococcus pneumoniae that binds to lactoferrin and protects the bacterium from the bactericidal action of lactoferricins-cationic peptides released upon lactoferrin proteolysis. The present study investigated if PspA can prevent killing by another cationic peptide, indolicidin. PspA-negative pneumococci were more sensitive to indolicidin-induced killing than bacteria expressing PspA, suggesting that PspA prevents the bactericidal action of indolicidin. Similarly, chemical removal of choline-binding proteins increased sensitivity to indolicidin. The absence of capsule and PspA had an additive effect on pneumococcal killing by the AMP. Furthermore, anti-PspA antibodies enhanced the bactericidal effect of indolicidin on pneumococci, while addition of soluble PspA fragments competitively inhibited indolicidin action. Previous in silico analysis suggests a possible interaction between PspA and indolicidin. Thus, we hypothesize that PspA acts by sequestering indolicidin and preventing it from reaching the bacterial membrane. A specific interaction between PspA and indolicidin was demonstrated by mass spectrometry, confirming that PspA can actively bind to the AMP. These results reinforce the vaccine potential of PspA and suggest a possible mechanism of innate immune evasion employed by pneumococci, which involves binding to cationic peptides and hindering their ability to damage the bacterial membranes.
Assuntos
Proteínas de Bactérias , Streptococcus pneumoniae , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/metabolismo , Proteínas de Bactérias/metabolismo , Lactoferrina/farmacologia , Lactoferrina/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Ligação ProteicaRESUMO
BACKGROUND: The combination of photodynamic therapy (PDT) and LL-37 has never been tested in an animal study and our research team background suggests this strategy might be a promising alternative to intensify periodontitis resolution. This study aimed to assess the effects of multiple sessions of PDT with chlorin-e6 conjugated to the antimicrobial peptide LL-37 loaded nanoemulsion, as adjunctive therapy in experimental periodontitis in rats. METHODS: Experimental periodontitis was induced in 81 rats. After disease establishment, animals were assigned to three groups: SRP (scaling and root planning); SRP + 1PDT, SRP followed by a single PDT session; SRP + 4PDT (n = 27), SRP followed by four PDT sessions at 0, 24, 48 and 72 h after SRP. Animals were subjected to euthanasia at 7, 14 and 28 days, and samples were submitted to osteoclast quantification, immunological and microtomography analysis. RESULTS: All treatments resulted in significant periodontal improvements and there was no significant difference between the groups in both local inflammatory response and healing process. Minimal adjunctive effects could be found for the combined therapy in terms of cytokine levels (IL-1ß and IL-10), with no statistical significance. However, the number of TRAP-positive osteoclasts per mm of alveolar bone linear surface for the group treated with PDT sessions was significantly lower than those treated with SRP only. CONCLUSIONS: Multiple PDT sessions with chlorin-e6 and LL-37 nanoemulsion as an adjunct to scaling and root planning reduced the presence of osteoclast in the local site but did not contribute towards bone regeneration and IL-1ß and IL-10 levels.
Assuntos
Peptídeos Catiônicos Antimicrobianos , Catelicidinas , Clorofilídeos , Emulsões , Periodontite , Fotoquimioterapia , Fármacos Fotossensibilizantes , Porfirinas , Animais , Fotoquimioterapia/métodos , Periodontite/tratamento farmacológico , Ratos , Porfirinas/farmacologia , Porfirinas/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Raspagem Dentária/métodos , Masculino , Ratos Wistar , Aplainamento Radicular/métodosRESUMO
AIM: Liver-expressed antimicrobial peptide 2 (LEAP2) dynamics in human plasma and its association with feeding behaviour remain poorly understood. Therefore, this study aims: (a) to investigate fasting LEAP2 in participants with normal weight or with overweight or mild obesity (OW/OB); (b) to study the association between fasting LEAP2 and anthropometric and metabolic traits, feeding behaviour, LEAP2 genetic variants and blood cell DNA methylation status; and (c) to ascertain postprandial changes in LEAP2 after high protein intake and the association with feeding behaviour and food intake. METHODS: Anthropometric and behavioural measures, genotyping, methylation profiling, plasma glucose and LEAP2 concentrations were assessed in 327 females and males. A subgroup of 123 participants received an ad libitum high-protein meal, and postprandial LEAP2 concentration and behavioural measures were assessed. RESULTS: LEAP2 concentration was higher in participants with OW/OB (p < 0.001) and in females (p < 0.001), and was associated with LEAP2 single nucleotide polymorphisms rs765760 (p = 0.012) and rs803223 (p = 0.019), but not with LEAP2 methylation status. LEAP2 concentration was directly related to glycaemia (p = 0.001) and fullness (p = 0.003) in participants with normal weight, whereas it was associated with body mass index (p = 0.018), waist circumference (p = 0.014) and motor impulsivity in participants with OW/OB (p = 0.005). A negative association with reward responsiveness was observed in participants with OW/OB (p = 0.023). LEAP2 concentration was inversely associated with food intake (p = 0.034) and decreased after a high-protein meal (p < 0.001), particularly in women (p = 0.002). CONCLUSION: Increased LEAP2 in participants with OW/OB is associated with behavioural characteristics of obesity. Our results show sexual dimorphism in LEAP2 concentration before and after food intake and highlight the role of LEAP2 in feeding regulation.
Assuntos
Proteínas Alimentares , Comportamento Alimentar , Comportamento Impulsivo , Estado Nutricional , Obesidade , Recompensa , Humanos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/metabolismo , Obesidade/psicologia , Obesidade/sangue , Proteínas Alimentares/administração & dosagem , Comportamento Alimentar/fisiologia , Período Pós-Prandial , Polimorfismo de Nucleotídeo Único , Sobrepeso/genética , Sobrepeso/metabolismo , Sobrepeso/sangue , Metilação de DNA , Jejum , Proteínas Sanguíneas , Peptídeos Catiônicos AntimicrobianosRESUMO
Peptides are bioactive molecules whose functional versatility in living organisms has led to successful applications in diverse fields. In recent years, the amount of data describing peptide sequences and function collected in open repositories has substantially increased, allowing the application of more complex computational models to study the relations between the peptide composition and function. This work introduces AMP-Detector, a sequence-based classification model for the detection of peptides' functional biological activity, focusing on accelerating the discovery and de novo design of potential antimicrobial peptides (AMPs). AMP-Detector introduces a novel sequence-based pipeline to train binary classification models, integrating protein language models and machine learning algorithms. This pipeline produced 21 models targeting antimicrobial, antiviral, and antibacterial activity, achieving average precision exceeding 83%. Benchmark analyses revealed that our models outperformed existing methods for AMPs and delivered comparable results for other biological activity types. Utilizing the Peptide Atlas, we applied AMP-Detector to discover over 190,000 potential AMPs and demonstrated that it is an integrative approach with generative learning to aid in de novo design, resulting in over 500 novel AMPs. The combination of our methodology, robust models, and a generative design strategy offers a significant advancement in peptide-based drug discovery and represents a pivotal tool for therapeutic applications.
Assuntos
Peptídeos Antimicrobianos , Aprendizado de Máquina , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Algoritmos , Descoberta de Drogas/métodos , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biologia Computacional/métodosRESUMO
With the emergence of multidrug-resistant microorganisms, microbial agents have become a serious global threat, affecting human health and various plants. Therefore, new therapeutic alternatives, such as chitin-binding proteins, are necessary. Chitin is an essential component of the fungal cell wall, and chitin-binding proteins exhibit antifungal activity. In the present study, chitin-binding peptides isolated from Capsicum chinense seeds were characterized and evaluated for their in vitro antimicrobial effect against the growth of Candida and Fusarium fungi. Proteins were extracted from the seeds and subsequently the chitin-binding proteins were separated by chitin affinity chromatography. After chromatography, two fractions, Cc-F1 (not retained on the column) and Cc-F2 (retained on the column), were obtained. Electrophoresis revealed major protein bands between 6.5 and 26.6 kDa for Cc-F1 and only a ~ 6.5 kDa protein band for Cc-F2, which was subsequently subjected to mass spectrometry. The protein showed similarity with hevein-like and endochitinase and was then named Cc-Hev. Data are available via ProteomeXchange with identifier PXD054607. Next, we predicted the three-dimensional structure of the peptides and performed a peptide docking with (NAG)3. Subsequently, growth inhibition assays were performed to evaluate the ability of the peptides to inhibit microorganism growth. Cc-Hev inhibited the growth of C. albicans (up to 75% inhibition) and C. tropicalis (100% inhibition) and induced a 65% decrease in cell viability for C. albicans and 100% for C. tropicalis. Based on these results, new techniques to combat fungal diseases could be developed through biotechnological applications; therefore, further studies are needed.
Assuntos
Antifúngicos , Candida , Capsicum , Quitina , Quitinases , Fusarium , Sementes , Sementes/química , Antifúngicos/farmacologia , Antifúngicos/isolamento & purificação , Antifúngicos/química , Antifúngicos/metabolismo , Quitina/metabolismo , Quitina/farmacologia , Fusarium/efeitos dos fármacos , Quitinases/farmacologia , Quitinases/metabolismo , Quitinases/química , Quitinases/isolamento & purificação , Candida/efeitos dos fármacos , Candida/enzimologia , Lectinas de Plantas/farmacologia , Lectinas de Plantas/química , Lectinas de Plantas/isolamento & purificação , Testes de Sensibilidade Microbiana , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/isolamento & purificação , Peptídeos/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Plantas/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Peptídeos Catiônicos AntimicrobianosRESUMO
Chagas disease, leishmaniasis, and malaria are major parasitic diseases disproportionately affecting the underprivileged population in developing nations. Finding new, alternative anti-parasitic compounds to treat these diseases is crucial because of the limited number of options currently available, the side effects they cause, the need for long treatment courses, and the emergence of drug-resistant parasites. Anti-microbial peptides (AMPs) derived from amphibian skin secretions are small bioactive molecules capable of lysing the cell membrane of pathogens while having low toxicity against human cells. Here, we report the anti-parasitic activity of five AMPs derived from skin secretions of three Ecuadorian frogs: cruzioseptin-1, cruzioseptin-4 (CZS-4), and cruzioseptin-16 from Cruziohyla calcarifer; dermaseptin-SP2 from Agalychnis spurrelli; and pictuseptin-1 from Boana picturata. These five AMPs were chemically synthesized. Initially, the hemolytic activity of CZS-4 and its minimal inhibitory concentration against Escherichia coli, Staphylococcus aureus, and Candida albicans were determined. Subsequently, the cytotoxicity of the synthetic AMPs against mammalian cells and their anti-parasitic activity against Leishmania mexicana promastigotes, erythrocytic stages of Plasmodium falciparum and mammalian stages of Trypanosoma cruzi were evaluated in vitro. The five AMPs displayed activity against the pathogens studied, with different levels of cytotoxicity against mammalian cells. In silico molecular docking analysis suggests this bioactivity may occur via pore formation in the plasma membrane, resulting in microbial lysis. CZS-4 displayed anti-bacterial, anti-fungal, and anti-parasitic activities with low cytotoxicity against mammalian cells. Further studies about this promising AMP are required to gain a better understanding of its activity.IMPORTANCEChagas disease, malaria, and leishmaniasis are major tropical diseases that cause extensive morbidity and mortality, for which available treatment options are unsatisfactory because of limited efficacy and side effects. Frog skin secretions contain molecules with anti-microbial properties known as anti-microbial peptides. We synthesized five peptides derived from the skin secretions of different species of tropical frogs and tested them against cultures of the causative agents of these three diseases, parasites known as Trypanosoma cruzi, Plasmodium falciparum, and Leishmania mexicana. All the different synthetic peptides studied showed activity against one of more of the parasites. Peptide cruzioseptin-4 is of special interest since it displayed intense activity against parasites while being innocuous against cultured mammalian cells, which indicates it does not simply hold general toxic properties; rather, its activity is specific against the parasites.
Assuntos
Anuros , Leishmania mexicana , Plasmodium falciparum , Pele , Trypanosoma cruzi , Animais , Trypanosoma cruzi/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Humanos , Leishmania mexicana/efeitos dos fármacos , Pele/parasitologia , Pele/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Proteínas de Anfíbios/farmacologia , Proteínas de Anfíbios/química , Equador , Doença de Chagas/tratamento farmacológicoRESUMO
Ghrelin has effects that range from the maturation of the central nervous system to the regulation of energy balance. The production of ghrelin increases significantly during the first weeks of life. Studies have addressed the metabolic effects of liver-expressed antimicrobial peptide 2 (LEAP2) in inhibiting the effects evoked by ghrelin, mainly in glucose homeostasis, insulin resistance, and lipid metabolism. Despite the known roles of ghrelin in the postnatal development, little is known about the long-term metabolic influences of modulation with the endogenous expressed growth hormone secretagogue receptor (GHSR) inverse agonist LEAP2. This study aimed to evaluate the contribution of GHSR signalling during perinatal phases, to neurodevelopment and energy metabolism in young animals, under inverse antagonism by LEAP2[1-14]. For this, two experimental models were used: (i) LEAP2[1-14] injections in female rats during the pregnancy. (ii) Postnatal modulation of GHSR with LEAP2[1-14] or MK677. Perinatal GHSR modulation by LEAP2[1-14] impacts glucose homeostasis in a sex and phase-dependent manner, despite no effects on body weight gain or food intake. Interestingly, liver PEPCK expression was remarkably impacted by LEAP2 injections. The observed results suggests that perinatal LEAP2 exposure can modulate liver metabolism and systemic glucose homeostasis. In addition, these results, although not expressive, may just be the beginning of the metabolic imbalance that will occur in adulthood.
Assuntos
Fígado , Receptores de Grelina , Animais , Fígado/metabolismo , Receptores de Grelina/metabolismo , Receptores de Grelina/genética , Feminino , Ratos , Gravidez , Masculino , Transdução de Sinais , Grelina/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Ratos Wistar , Metabolismo Energético , Maturidade Sexual/fisiologia , Glucose/metabolismo , Proteínas SanguíneasRESUMO
Monocytes are the primary targets of Zika virus (ZIKV) and are associated with ZIKV pathogenesis. Currently, there is no effective treatment for ZIKV infection. It is known that 1,25-dihydroxy vitamin D3 (VitD3) has strong antiviral activity in dengue virus-infected macrophages, but it is unknown whether VitD3 inhibits ZIKV infection in monocytes. We investigated the relationship between ZIKV infection and the expression of genes of the VitD3 pathway, as well as the inflammatory response of infected monocytes in vitro. ZIKV replication was evaluated using a plaque assay, and VitD3 pathway gene expression was analyzed by RT-qPCR. Pro-inflammatory cytokines/chemokines were quantified using ELISA. We found that VitD3 did not suppress ZIKV replication. The results showed a significant decrease in the expression of vitamin D3 receptor (VDR), cytochrome P450 family 24 subfamily A member 1 (CYP24A1), and cathelicidin antimicrobial peptide (CAMP) genes upon ZIKV infection. Treatment with VitD3 was unable to down-modulate production of pro-inflammatory cytokines, except TNF-α, and chemokines. This suggests that ZIKV infection inhibits the expression of VitD3 pathway genes, thereby preventing VitD3-dependent inhibition of viral replication and the inflammatory response. This is the first study to examine the effects of VitD3 in the context of ZIKV infection, and it has important implications for the role of VitD3 in the control of viral replication and inflammatory responses during monocyte infection.
Assuntos
Catelicidinas , Monócitos , Replicação Viral , Vitamina D3 24-Hidroxilase , Infecção por Zika virus , Zika virus , Humanos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Citocinas/metabolismo , Citocinas/genética , Monócitos/virologia , Monócitos/metabolismo , Monócitos/imunologia , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/genética , Replicação Viral/efeitos dos fármacos , Vitamina D3 24-Hidroxilase/genética , Vitamina D3 24-Hidroxilase/metabolismo , Zika virus/fisiologia , Infecção por Zika virus/virologia , Infecção por Zika virus/metabolismoRESUMO
Short-cationic alpha-helical antimicrobial peptides (SCHAMPs) are promising candidates to combat the growing global threat of antimicrobial resistance. They are short-sequenced, selective against bacteria, and have rapid action by destroying membranes. A full understanding of their mechanism of action will provide key information to design more potent and selective SCHAMPs. Molecular Dynamics (MD) simulations are invaluable tools that provide detailed insights into the peptide-membrane interaction at the atomic- and meso-scale level. We use atomistic and coarse-grained MD to look into the exact steps that four promising SCHAMPs-BP100, Decoralin, Neurokinin-1, and Temporin L-take when they interact with membranes. Following experimental set-ups, we explored the effects of SCHAMPs on anionic membranes and vesicles at multiple peptide concentrations. Our results showed all four peptides shared similar binding steps, initially binding to the membrane through electrostatic interactions and then flipping on their axes, dehydrating, and inserting their hydrophobic moieties into the membrane core. At higher concentrations, fully alpha-helical peptides induced membrane budding and protrusions. Our results suggest the carpet mode of action is fit for the description of SCHAMPs lysis activity and discuss the importance of large hydrophobic residues in SCHAMPs design and activity.
Assuntos
Peptídeos Catiônicos Antimicrobianos , Simulação de Dinâmica Molecular , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Eletricidade EstáticaRESUMO
Bactericidal permeability-increasing protein (BPI) is a multifunctional cationic protein produced by neutrophils, eosinophils, fibroblasts, and macrophages with antibacterial anti-inflammatory properties. In the context of Gram-negative infection, BPI kills bacteria, neutralizes the endotoxic activity of lipopolysaccharides (LPSs), and, thus, avoids immune hyperactivation. Interestingly, BPI increases in patients with Gram-positive meningitis, interacts with lipopeptides and lipoteichoic acids of Gram-positive bacteria, and significantly enhances the immune response in peripheral blood mononuclear cells. We evaluated the antimycobacterial and immunoregulatory properties of BPI in human macrophages infected with Mycobacterium tuberculosis. Our results showed that recombinant BPI entered macrophages, significantly reduced the intracellular growth of M. tuberculosis, and inhibited the production of the proinflammatory cytokine tumor necrosis factor-alpha (TNF-α). Furthermore, BPI decreased bacterial growth directly in vitro. These data suggest that BPI has direct and indirect bactericidal effects inhibiting bacterial growth and potentiating the immune response in human macrophages and support that this new protein's broad-spectrum antibacterial activity has the potential for fighting tuberculosis.
Assuntos
Peptídeos Catiônicos Antimicrobianos , Proteínas Sanguíneas , Macrófagos , Mycobacterium tuberculosis , Fator de Necrose Tumoral alfa , Humanos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/efeitos dos fármacos , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/farmacologia , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Tuberculose/microbiologia , Tuberculose/imunologia , Tuberculose/tratamento farmacológicoRESUMO
Antimicrobial peptides (AMPs) are promising cationic and amphipathic molecules to fight antibiotic resistance. To search for novel AMPs, we applied a computational strategy to identify peptide sequences within the organisms' proteome, including in-house developed software and artificial intelligence tools. After analyzing 150.450 proteins from eight proteomes of bacteria, plants, a protist, and a nematode, nine peptides were selected and modified to increase their antimicrobial potential. The 18 resulting peptides were validated by bioassays with four pathogenic bacterial species, one yeast species, and two cancer cell-lines. Fourteen of the 18 tested peptides were antimicrobial, with minimum inhibitory concentrations (MICs) values under 10 µM against at least three bacterial species; seven were active against Candida albicans with MICs values under 10 µM; six had a therapeutic index above 20; two peptides were active against A549 cells, and eight were active against MCF-7 cells under 30 µM. This study's most active antimicrobial peptides damage the bacterial cell membrane, including grooves, dents, membrane wrinkling, cell destruction, and leakage of cytoplasmic material. The results confirm that the proposed approach, which uses bioinformatic tools and rational modifications, is highly efficient and allows the discovery, with high accuracy, of potent AMPs encrypted in proteins.
Assuntos
Anti-Infecciosos , Proteoma , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Antimicrobianos , Inteligência Artificial , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Bactérias , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologiaRESUMO
BACKGROUND: Vitamin D (VD) deficiency is common among patients with atopic dermatitis (AD) and often associated with severity. However, randomized trials of VD supplementation in AD have had equivocal results, and there is little information regarding the effect of VD supplementation on type 2 immunity in AD patients. OBJECTIVES: To investigate the efficacy of VD supplementation to decrease severity of AD and to alter type 2 immunity biomarkers. METHODS: We performed a randomized, double-blind, placebo-controlled trial. We randomly assigned 101 children with AD to weekly oral vitamin D3 (VD3) or placebo for 6 weeks. The primary outcome was the change in the Severity Scoring of AD (SCORAD). RESULTS: Mean age of subjects was 6.3 ± 4.0 years, and baseline SCORAD was 32 ± 29. At baseline, 57% of children were VD deficient, with no difference between groups. Change in 25(OH)D was significantly greater with VD3 than placebo (+43.4 ± 34.5 nmol/L vs. +2.3 ± 21.2 nmol/L, p < 0.001). SCORAD change at 6 weeks was not different between VD and placebo (-5.3 ± 11.6 vs. -5.5 ± 9.9, p = 0.91). There were no significant between-group differences in change of eosinophil counts, total IgE, Staphylococcal enterotoxin specific IgE, CCL17, CCL22, CCL27, LL-37 or Staphylococcus aureus lesional skin colonization. Vitamin D receptor (VDR) gene single nucleotide polymorphisms FokI, ApaI and TaqI did not modify subjects' response to VD supplementation. CONCLUSIONS: Among children with AD, weekly VD supplementation improved VD status but did not modify AD severity or type 2 immunity biomarkers compared to placebo (ClinicalTrials.gov NCT01996423).
Assuntos
Biomarcadores , Colecalciferol , Dermatite Atópica , Suplementos Nutricionais , Índice de Gravidade de Doença , Vitamina D , Humanos , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/imunologia , Masculino , Feminino , Método Duplo-Cego , Criança , Biomarcadores/sangue , Pré-Escolar , Colecalciferol/administração & dosagem , Colecalciferol/uso terapêutico , Vitamina D/uso terapêutico , Vitamina D/administração & dosagem , Deficiência de Vitamina D/tratamento farmacológico , Deficiência de Vitamina D/complicações , Imunoglobulina E/sangue , Quimiocina CCL27 , Vitaminas/administração & dosagem , Vitaminas/uso terapêutico , Peptídeos Catiônicos AntimicrobianosRESUMO
Antimicrobial peptides (AMPs) constitute a complex network of 10-100 amino acid sequence molecules widely distributed in nature. While over 300 AMPs have been described in mammals, cathelicidins and defensins remain the most extensively studied. Some publications have explored the role of AMPs in COVID-19, but these findings are preliminary, and in vivo studies are still lacking. In this study, we report the plasma levels of five AMPs (LL-37, α-defensin 1, α-defensin 3, ß-defensin 1, and ß-defensin 3), using the ELISA technique (MyBioSource, San Diego, CA, United States, kits MBS2601339 (beta-defensin 1), MBS2602513 (beta-defensin 3), MBS703879 (alpha-defensin 1), MBS706289 (alpha-defensin 3), MBS7234921 (LL37)), and the measurement of six cytokines (tumor necrosis factor-α, interleukin-1ß, interleukin-6, interleukin-10, interferon-γ, and monocyte chemoattractant protein-1), through the magnetic bead immunoassay Milliplex® and the MAGPIX® System (MilliporeSigma, Darmstadt, Germany, kit HCYTOMAG-60 K (cytokines)), in 15 healthy volunteers, 36 COVID-19 patients without Acute Kidney Injury (AKI) and 17 COVID-19 patients with AKI. We found increased levels of α-defensin 1, α-defensin 3 and ß-defensin 3, in our COVID-19 population, when compared to healthy controls, along with higher levels of interleukin-6, interleukin-10, interferon-γ, and monocyte chemoattractant protein-1. These findings suggest that these AMPs and cytokines may play a crucial role in the systemic inflammatory response and tissue damage characterizing severe COVID-19. The levels of α-defensin 1 and α-defensin 3 were significantly higher in COVID-19 AKI group in comparison to the non-AKI group. Furthermore, IL-10 and the product IL-10 × IL-1B showed excellent performance in discriminating AKI, with AUCs of 0.86 and 0.88, respectively. Among patients with COVID-19, AMPs may play a key role in the inflammation process and disease progression. Additionally, α-defensin 1 and α-defensin 3 may mediate the AKI process in these patients, representing an opportunity for further research and potential therapeutic alternatives in the future.
Assuntos
Injúria Renal Aguda , COVID-19 , alfa-Defensinas , beta-Defensinas , Animais , Humanos , beta-Defensinas/metabolismo , Interleucina-10 , Peptídeos Catiônicos Antimicrobianos/metabolismo , Quimiocina CCL2 , SARS-CoV-2/metabolismo , Peptídeos Antimicrobianos , Interleucina-6 , Interferon gama , Estado Terminal , Citocinas/metabolismo , Biomarcadores , Injúria Renal Aguda/diagnóstico , Mamíferos/metabolismoRESUMO
A computational study of the peptides Cruzioseptin-4 and Pictuseptin-1, identified in Cruziohyla calcarifer and Boana picturata respectively, has been carried out. The studies on Cruzioseptin-4 show that it is a cationic peptide with a chain of 23 amino acids that possess 52.17% of hydrophobic amino acids and a charge of + 1.2 at pH 7. Similarly, Pictuseptin-1 is a 22 amino acids peptide with a charge of + 3 at pH 7 and 45.45% of hydrophobic amino acids. Furthermore, the predominant secondary structure for both peptides is alpha-helical. The physicochemical properties were predicted using PepCalc and Bio-Synthesis; secondary structures using Jpred4 and PredictProtein; while molecular docking was performed using Autodock Vina. Geometry optimization of the peptides was done using the ONIOM hybrid method with the HF/6-31G basis set implemented in the Gaussian 09 program. Finally, the molecular docking study indicates that the viable mechanism of action for both peptides is through a targeted attack on the cell membrane of pathogens via electrostatic interactions with different membrane components, leading to cell lysis.
Assuntos
Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Simulação de Acoplamento Molecular , Anuros/metabolismo , AminoácidosRESUMO
Protozoal infections cause significant morbidity and mortality in humans and animals. The use of several antiprotozoal drugs is associated with serious adverse effects and resistance development, and drugs that are more effective are urgently needed. Microorganisms, mammalian cells and fluids, insects, and reptiles are sources of antimicrobial peptides (AMPs) that act against pathogenic microorganisms; these AMPs have been widely studied as a promising alternative therapeutic option to conventional antibiotics, aiming to treat infections caused by multidrug-resistant pathogens. One advantage of AMP molecules is their adaptability, as they can be easily fine-tuned for broad-spectrum or targeted activity by changing the amino acid residues in their sequence. Consequently, these variations in structural and physicochemical properties can alter the antimicrobial activities of AMPs and decrease resistance development. This article presents an overview of peptide activities against amebiasis, giardiasis, trichomoniasis, Chagas disease, leishmaniasis, malaria, and toxoplasmosis. AMPs and their analogs demonstrate great potential as therapeutics, with potent and selective activity, when compared with commercially available drugs, and hold the potential to act as new scaffolds for the development of novel anti-protozoal drugs.
Assuntos
Anti-Infecciosos , Animais , Humanos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Peptídeos Antimicrobianos , Antibacterianos/uso terapêutico , MamíferosRESUMO
Since the 1980s, studies of antimicrobial peptides (AMPs) derived from anuran skin secretions have unveiled remarkable structural diversity and a wide range of activities. This study explores the potential of these peptides for drug development by examining granted patents, amino acid modifications related to patented peptides, and recent amphibians' taxonomic updates influencing AMP names. A total of 188 granted patents related to different anuran peptides were found, with Asia and North America being the predominant regions, contributing 65.4% and 15.4%, respectively. Conversely, although the Neotropical region is the world's most diversified region for amphibians, it holds only 3.7% of the identified patents. The antimicrobial activities of the peptides are claimed in 118 of these 188 patents. Additionally, for 160 of these peptides, 66 patents were registered for the natural sequence, 69 for both natural and derivative sequences, and 20 exclusively for sequence derivatives. Notably, common modifications include alterations in the side chains of amino acids and modifications to the peptides' N- and C-termini. This review underscores the biomedical potential of anuran-derived AMPs, emphasizing the need to bridge the gap between AMP description and practical drug development while highlighting the urgency of biodiversity conservation to facilitate biomedical discoveries.
Assuntos
Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Sequência de Aminoácidos , Anuros/metabolismo , Pele/químicaRESUMO
Resistance to antimicrobial drugs has been considered a public health problem. Likewise, the increasing resistance of cancer cells to drugs currently used in therapy has also become a problem. Therefore, the research and development of synthetic peptides bring a new perspective on the emergence of new drugs for treating this resistance since bioinformatics provides a means to optimize these molecules and save time and costs in research. Peptides have several mechanisms of action, such as forming pores on the cell membrane and inhibiting protein synthesis. Some studies report the use of antimicrobial peptides with the potential for action against cancer cells, suggesting a repositioning of antimicrobial peptides to fight back cancer resistance. There is an alteration in the microenvironment, making its net charge negative for the survival and growth of cancer cells. The changes in glycoproteins favor the membrane to have a more negative charge, favoring the interaction between the cells and the peptide, thus making possible the repositioning of these antimicrobial peptides against cancer. Here, we will discuss the mechanism of action, targets and effects of peptides, comparison between microbial and cancer cells, and proteomic changes caused by the interaction of peptides and cells.
Assuntos
Anti-Infecciosos , Neoplasias , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Antimicrobianos , Reposicionamento de Medicamentos , Proteômica , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Neoplasias/tratamento farmacológicoRESUMO
The existence of encrypted fragments with antimicrobial activity in human proteins has been thoroughly demonstrated in the literature. Recently, algorithms for the large-scale identification of these segments in whole proteomes were developed, and the pervasiveness of this phenomenon was stated. These algorithms typically mine encrypted cationic and amphiphilic segments of proteins, which, when synthesized as individual polypeptide sequences, exert antimicrobial activity by membrane disruption. In the present report, the human reference proteome was submitted to the software kamal for the uncovering of protein segments that correspond to putative intragenic antimicrobial peptides (IAPs). The assessment of the identity of these segments, frequency, functional classes of parent proteins, structural relevance, and evolutionary conservation of amino acid residues within their corresponding proteins was conducted in silico. Additionally, the antimicrobial and anticancer activity of six selected synthetic peptides was evaluated. Our results indicate that cationic and amphiphilic segments can be found in 2% of all human proteins, but are more common in transmembrane and peripheral membrane proteins. These segments are surface-exposed basic patches whose amino acid residues present similar conservation scores to other residues with similar solvent accessibility. Moreover, the antimicrobial and anticancer activity of the synthetic putative IAP sequences was irrespective to whether these are associated to membranes in the cellular setting. Our study discusses these findings in light of the current understanding of encrypted peptide sequences, offering some insights into the relevance of these segments to the organism in the context of their harboring proteins or as separate polypeptide sequences.
Assuntos
Anti-Infecciosos , Proteoma , Humanos , Proteoma/genética , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Sequência de Aminoácidos , AminoácidosRESUMO
Bioactive peptides have emerged as promising therapeutic agents with antimicrobial, antifungal, antiparasitic, and, recently, antitumoral properties with a mechanism of action based on membrane destabilization and cell death, often involving a conformational change in the peptide. This biophysical study aims to provide preliminary insights into the membrane-level antitumoral mode of action of crotalicidin, a cationic host defense peptide from rattlesnake venom, toward breast cancer cell lines. The lipid composition of breast cancer cell lines was obtained after lipid extraction and quantification to prepare representative cell membrane models. Membrane-peptide interaction studies were performed using differential scanning calorimetry and Fourier-transform infrared spectroscopy. The outcome evidences the potential antitumoral activity and selectivity of crotalicidin toward breast cancer cell lines and suggests a mechanism initiated by the electrostatic interaction of the peptide with the lipid bilayer surface and posterior conformation change with membrane intercalation between the acyl chains in negatively charged lipid systems. This research provides valuable information that clears up the antitumoral mode of action of crotalicidin.
Assuntos
Anti-Infecciosos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Fragmentos de Peptídeos/farmacologia , Bicamadas Lipídicas/química , Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Varredura Diferencial de CalorimetriaRESUMO
Changes in the structure and function of the microbiota are associated with various human diseases. These microbial changes can be mediated by antimicrobial peptides (AMPs), small peptides produced by the host and their microbiota, which play a crucial role in host-bacteria co-evolution. Thus, by studying AMPs produced by the microbiota (microbial AMPs), we can better understand the interactions between host and bacteria in microbiome homeostasis. Additionally, microbial AMPs are a new source of compounds against pathogenic and multi-resistant bacteria. Further, the growing accessibility to metagenomic and metatranscriptomic datasets presents an opportunity to discover new microbial AMPs. This review examines the structural properties of microbiota-derived AMPs, their molecular action mechanisms, genomic organization, and strategies for their identification in any microbiome data as well as experimental testing. Overall, we provided a comprehensive overview of this important topic from the microbial perspective.