Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Microbiol Res ; 287: 127851, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094393

RESUMO

Despite Corylus avellana L. being an economically important shrub species known for its resilience to adverse environmental conditions, it constantly faces attacks from a plethora of biotic entities. Among these, the mite pest Phytoptus avellanae is gaining importance, causing economic losses every year. This mite colonises the new generative and vegetative buds, leading them to become swollen and reddish, and drastically reducing hazelnut production. The biology behind gall formation is still poorly understood. This study provides a qualitative and quantitative description of the microbiome in both healthy and infested buds of two economically important hazelnut cultivars through metabarcoding of fungal ITS and bacterial 16 S. Potentially pathogenic genera such as Fusarium and Pseudomonas were predominant in the infested buds, along with the obligate intracellular bacterial genus Wolbachia. Akanthomyces muscarius was instead isolated from culture-based methods only from the infested buds. These findings could improve the understanding of gall ecology, supporting the management of mite populations, and they could also serve as a milestone for further studies on low-impact, monitoring-driven, and genetically targeted control strategies.


Assuntos
Bactérias , Biodiversidade , Corylus , Código de Barras de DNA Taxonômico , Microbiota , Corylus/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Ácaros/microbiologia , Tumores de Planta/microbiologia , Fusarium/genética , Fusarium/classificação , Fusarium/isolamento & purificação
2.
Naturwissenschaften ; 111(5): 44, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136793

RESUMO

Galls are plant neoformations induced by specialized parasites. Since gall inducers rely on reactive plant sites for gall development, variations in abiotic factors that affect plant phenology are expected to impact the life cycle of gall inducers. To test the hypothesis that different light conditions affect both host plant and gall inducer life cycles, we studied the system Eugenia uniflora (Myrtaceae) - Clinodiplosis profusa (Cecidomyiidae), comparing plants occurring in sunny and shaded environments. We mapped phenological differences among individuals of E. uniflora occurring in the two environments and related them to the influence of luminosity on the life cycle of the gall inducer. Shade plants showed lower intensity of leaf sprouting throughout the year compared to sun-exposed plants, especially during the rainy season. Young and mature galls are synchronized with the peak of leaf sprouting at the beginning of the rainy season, lasting longer in sun-exposed plants - approximately two months longer compared to shade plants. The greater light intensity positively impacts the formation and growth of leaves and galls, with an extended period available for their induction and growth. Thus, light is an important factor for the development of gallers, considering that variations in luminosity influenced not only the phenology of the host plant, but also determined the life cycle of gall inducers. Furthermore, changes in plant-environment interactions are expected to affect the life cycle and richness of other host plant-gall inducer systems.


Assuntos
Eugenia , Luz Solar , Eugenia/fisiologia , Animais , Tumores de Planta/parasitologia , Luz , Folhas de Planta/parasitologia , Folhas de Planta/fisiologia , Estações do Ano , Interações Hospedeiro-Parasita/fisiologia , Estágios do Ciclo de Vida/fisiologia
3.
Chirality ; 36(8): e23702, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39138008

RESUMO

Pistacia palaestina Boiss. is a common tree in the Mediterranean maquis. The leaves of this plant accumulate defensive monoterpenes, whose levels greatly increase in galls induced by the aphid Baizongia pistaciae. We previously found a significant chemopolymorphism in monoterpene content among individual trees, but the chirality of these monoterpenes was unknown. Although most plant species specifically accumulate one enantiomeric form of a given compound, P. palaestina individuals display chemopolymorphism in the chirality of the key monoterpenes accumulated. We report here a marked enantiomeric variation for the limonene, α- and ß-pinene, camphene, sabinene, δ-3-carene, and terpene-4-ol content in leaves and galls of nine different naturally growing P. palaestina trees. Interestingly, insect-induced gall monoterpene composition is an augmentation of the specific enantiopolymorphism originally displayed by each individual tree.


Assuntos
Monoterpenos , Pistacia , Folhas de Planta , Folhas de Planta/química , Monoterpenos/química , Pistacia/química , Estereoisomerismo , Animais , Afídeos , Tumores de Planta/parasitologia
4.
J Environ Manage ; 365: 121625, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38959772

RESUMO

This is the first study providing long-term data on the dynamics of bees and wasps and their parasitoids for the evidence-based management of reed beds. Ten years ago, we identified Lipara (Chloropidae) - induced galls on common reed (Phragmites australis, Poaceae) as a critically important resource for specialized bees and wasps (Hymenoptera: Aculeata). We found that they were surprisingly common in relatively newly formed anthropogenic habitats, which elicited questions about the dynamics of bees and wasps and their parasitoids in newly formed reed beds of anthropogenic origin. Therefore, in the winter and spring of 2022/23, we sampled reed galls from the same set of reed beds of anthropogenic and natural origin as those in 2012/13. At 10 sites, the number of sampled galls was similar in both time periods (80-122% of the value from 2012/13); 12 sites experienced a moderate decline (30-79% of the value from 2012/13), and the number of galls at six sampling sites was only 3-23% of their abundance in 2012/13. Spontaneous development was associated with increasing populations. After 10 years of spontaneous development, the populations of bees and wasps (including their parasitoids) bound to Lipara-induced reed galls increased in abundance and species richness or remained at their previous levels, which was dependent on the sampling site. The only identified threat consisted of reclamation efforts. The effects of habitat age were limited, and the assemblages in habitats of near-natural and anthropogenic origin largely overlapped. However, several species were consistently present at lower abundances in the anthropogenic habitats and vice versa. In conclusion, we provided evidence-based support for the establishment of oligotrophic reed beds of anthropogenic origin as management tools providing sustainable habitats for specialized reed gall-associated aculeate hymenopteran inquilines, including the threatened species.


Assuntos
Ecossistema , Vespas , Animais , Vespas/fisiologia , Himenópteros/fisiologia , Poaceae , Abelhas/parasitologia , Tumores de Planta/parasitologia
5.
Mol Ecol ; 33(16): e17466, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39022998

RESUMO

Gall-forming insects induce various types of galls on their host plants by altering gene expression in host plant organs, and recent studies have been conducted for gene expression in galls. However, the evolutionary trajectories of gene expression patterns and the resulting phenotypes have not yet been studied using multiple related species. We investigated the speciation and the diversification process of galls induced by four closely related aphid species (Hormaphidini) on a host plant species (Hamamelis japonica) by examining the phylogenetic congruence between the geographical divergences of aphids and the host plant, and by comparing their gene expression patterns and resulting phenotypes. Phylogenetic analysis of aphids and the host plant showed that geographical isolation among host plant populations has interrupted gene flow in aphids and accelerated the speciation process. The concentration of phenolics and the complexity of the internal structure of galls were correlated with the expression levels of genes for the biosynthesis of phenolics and morphogenesis respectively. These results suggest that the expression levels of genes for the biosynthesis of phenolics and morphogenesis have evolutionarily increased in galls accelerated by the speciation process of aphids due to the distribution change of the host plant, leading to the related phenotypic evolution. Our study showed the evolutionary process of phenotypic traits in galls in the wild from both gene expression and actual phenotype levels.


Assuntos
Afídeos , Filogenia , Tumores de Planta , Afídeos/genética , Animais , Tumores de Planta/parasitologia , Tumores de Planta/genética , Fenótipo , Fluxo Gênico , Evolução Biológica , Metabolismo Secundário/genética , Interações Hospedeiro-Parasita/genética , Especiação Genética , Expressão Gênica , Fenóis/metabolismo
6.
Plant Biol (Stuttg) ; 26(5): 798-810, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38864838

RESUMO

Oak gall wasps have evolved strategies to manipulate the developmental pathways of their host to induce gall formation. This provides shelter and nutrients for the developing larva. Galls are entirely host tissue; however, the initiation, development, and physical appearance are controlled by the inducer. The underlying molecular mechanisms of gall formation, by which one or a small number of cells are reprogrammed and commit to a novel developmental path, are poorly understood. In this study, we sought a deeper insight into the molecular underpinnings of this process. Oak gall wasps have two generations each year, one sexual, and one asexual. Galls formed by these two generations exhibit a markedly different appearance. We sequenced transcriptomes of both the asexual and sexual generations of Neuroterus quercusbaccarum and Neuroterus numismalis. We then deployed Nanopore sequencing to generate long-read sequences to test the hypothesis that gall wasps introduce DNA insertions to determine gall development. We detected potential genome rearrangements but did not uncover any non-host DNA insertions. Transcriptome analysis revealed that transcriptomes of the sexual generations of distinct species of wasp are more similar than inter-generational comparisons from the same species of wasp. Our results highlight the intricate interplay between the host leaves and gall development, suggesting that season and requirements of the gall structure play a larger role than species in controlling gall development and structure.


Assuntos
Tumores de Planta , Quercus , Transcriptoma , Vespas , Animais , Vespas/fisiologia , Vespas/genética , Tumores de Planta/parasitologia , Tumores de Planta/genética , Quercus/genética , Quercus/parasitologia , Transcriptoma/genética , Reprodução Assexuada/genética , Interações Hospedeiro-Parasita/genética , Perfilação da Expressão Gênica
7.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38892425

RESUMO

Spontaneous tumour formation in higher plants can occur in the absence of pathogen invasion, depending on the plant genotype. Spontaneous tumour formation on the taproots is consistently observed in certain inbred lines of radish (Raphanus sativus var. radicula Pers.). In this paper, using Oxford Nanopore and Illumina technologies, we have sequenced the genomes of two closely related radish inbred lines that differ in their ability to spontaneously form tumours. We identified a large number of single nucleotide variants (amino acid substitutions, insertions or deletions, SNVs) that are likely to be associated with the spontaneous tumour formation. Among the genes involved in the trait, we have identified those that regulate the cell cycle, meristem activity, gene expression, and metabolism and signalling of phytohormones. After identifying the SNVs, we performed Sanger sequencing of amplicons corresponding to SNV-containing regions to validate our results. We then checked for the presence of SNVs in other tumour lines of the radish genetic collection and found the ERF118 gene, which had the SNVs in the majority of tumour lines. Furthermore, we performed the identification of the CLAVATA3/ESR (CLE) and WUSCHEL (WOX) genes and, as a result, identified two unique radish CLE genes which probably encode proteins with multiple CLE domains. The results obtained provide a basis for investigating the mechanisms of plant tumour formation and also for future genetic and genomic studies of radish.


Assuntos
Genoma de Planta , Raphanus , Sequenciamento Completo do Genoma , Raphanus/genética , Sequenciamento Completo do Genoma/métodos , Tumores de Planta/genética , Polimorfismo de Nucleotídeo Único , Proteínas de Plantas/genética
8.
An Acad Bras Cienc ; 96(2): e20230974, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38896694

RESUMO

Conservation Units (CUs) tend to have a high richness of herbivorous insects, including gall-inducing insects. Despite this, gall surveys carried out in these environments are punctual and some units have never had their galls investigated, such as the Chapada Diamantina National Park, Bahia (Chapada Diamantina Parna). Aiming to reduce this gap and contribute to future studies in CUs, this study aimed to survey the galls of the Chapada Diamantina Parna, Lençóis, as well as to investigate trends in research on galls in CUs in Brazil. For that, collections were carried out on monthly trips for one year. Published gall surveys were compiled. A total of 107 morphotypes induced in 88 host species were recorded. Most galls are formed in leaves, globoid in shape, green in color, and induced by Cecidomyiidae. This park has a relatively high richness of galls compared to other CUs, demonstrating its importance in the conservation of gall-inducing insects. The results also revealed that the number of surveys has been increasing over the years and that the Southeast concentrates the largest number of studies, a region that also gathers the largest number of specialists, demonstrating a geographic bias in the data.


Assuntos
Biodiversidade , Insetos , Parques Recreativos , Tumores de Planta , Animais , Brasil , Tumores de Planta/parasitologia , Insetos/classificação , Conservação dos Recursos Naturais
9.
BMC Plant Biol ; 24(1): 451, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789940

RESUMO

Root-knot nematodes (RKNs) infect host plants and obtain nutrients such as sugars for their own development. Therefore, inhibiting the nutrient supply to RKNs may be an effective method for alleviating root-knot nematode disease. At present, the pathway by which sucrose is unloaded from the phloem cells to giant cells (GCs) in root galls and which genes related to sugar metabolism and transport play key roles in this process are unclear. In this study, we found that sugars could be unloaded into GCs only from neighboring phloem cells through the apoplastic pathway. With the development of galls, the contents of sucrose, fructose and glucose in the galls and adjacent tissue increased gradually. SUT1, SUT2, SWEET7a, STP10, SUS3 and SPS1 may provide sugar sources for GCs, while STP1, STP2 and STP12 may transport more sugar to phloem parenchyma cells. At the early stage of Meloidogyne incognita infestation, the sucrose content in tomato roots and leaves increased, while the glucose and fructose contents decreased. SWEET7a, SPS1, INV-INH1, INV-INH2, SUS1 and SUS3 likely play key roles in root sugar delivery. These results elucidated the pathway of sugar unloading in tomato galls and provided an important theoretical reference for eliminating the sugar source of RKNs and preventing root-knot nematode disease.


Assuntos
Raízes de Plantas , Tumores de Planta , Solanum lycopersicum , Tylenchoidea , Tylenchoidea/fisiologia , Animais , Solanum lycopersicum/parasitologia , Solanum lycopersicum/metabolismo , Raízes de Plantas/parasitologia , Raízes de Plantas/metabolismo , Tumores de Planta/parasitologia , Doenças das Plantas/parasitologia , Sacarose/metabolismo , Açúcares/metabolismo , Metabolismo dos Carboidratos
10.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731957

RESUMO

Globally, gall-forming insects significantly contribute to the degradation of desert ecosystems. Recent studies have demonstrated that Haloxylon persicum suffers less damage from gall-formers compared to Haloxylon aphyllum. However, the mechanisms driving the long-term metabolic responses of these species to gall-forming biotic stress in their natural environment remain unclear. The current study comparatively analyzes the anatomical features and metabolomic changes in H. aphyllum and H. persicum damaged by gall-forming insects. This research aimed to uncover potential metabolic tolerance mechanisms through GC-MS analysis. The study findings indicate that gall-forming insects cause a reduction in nearly all the anatomical structures of Haloxylon shoots, with the effects being less severe in H. persicum than in H. aphyllum. Thus, the metabolic pathways responsible for the biosynthesis of biologically active substances that enhance resistance to gall inducers were different, specifically in H. aphyllum-the biosynthesis of fatty acids (+their derivatives) and γ-tocopherol (vitamin E) and H. persicum-the biosynthesis of fatty acids (+their derivatives), dialkyl ethers, carbohydrates (+their derivatives), aromatic acid derivatives, phytosterols, γ-tocopherol (vitamin E), phenols, and terpenoids. The results suggest that the modulation of metabolic pathways under biotic stress plays a crucial role in the enhanced survival and growth of H. persicum.


Assuntos
Metaboloma , Animais , Tumores de Planta/parasitologia , Cromatografia Gasosa-Espectrometria de Massas , Metabolômica/métodos
11.
Oecologia ; 205(1): 215-227, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38801540

RESUMO

Mutualisms are consumer-resource interactions, in which goods and services are exchanged. Biological market theory states that exchanges should be regulated by both partners. However, most studies on mutualisms are one-sided, focusing on the control exercised by host organisms on their symbionts. In the brood-site pollination mutualism between fig trees and their symbiont wasp pollinators, galled flowers are development sites for pollinator larvae and are exchanged for pollination services. We determined if pollinator galls influenced resource allocation to fig inflorescences called syconia and considered feedbacks from the host tree. We experimentally produced syconia containing only seeds (S), only pollinator galls (G) or seeds and galls (SG) with varying number of introduced female pollinator wasps, i.e., foundress wasps. Biomass allocation to syconia was affected by foundress numbers and treatment groups; SG treatments received highest biomass allocation at low foundress numbers, and both G and SG treatments at high foundress numbers. Seeds are important determinants of allocation at low foundress numbers; galls are likely more influential at high foundress numbers. Most allocation in the G and SG treatment was to the syconium wall, likely as protection from parasitoids and temperature/humidity fluctuations. Dry mass of individual seeds and wasps (except at low foundress numbers) was unchanged between treatment groups, indicating seeds and wasps regulate resource flow into them, with lower flow into galls containing the smaller males compared to females commensurate with sexual dimorphism. We demonstrate the importance of considering the direct role of symbionts in accessing resources and controlling exchanges within mutualisms.


Assuntos
Ficus , Polinização , Simbiose , Vespas , Vespas/fisiologia , Animais , Tumores de Planta , Sementes , Feminino , Biomassa
12.
Tree Physiol ; 44(3)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38349798

RESUMO

Peumus boldus, a tree native to Chile, is extensively used for medicinal purposes due to its richness in alkaloids and antioxidant polyphenols. A species of galling insect, Dasineura sp. induces structural and chemical changes on P. boldus stems while its galls are established and developed. Taking into account the antioxidant properties of P. boldus polyphenols, it would be expected that Dasineura sp. induces changes in the accumulation sites, chemical profile, and antioxidant activity of the P. boldus stem polyphenols, related to different reactive oxygen species (ROS) production levels during gall development. Dasineura sp. induces changes in the accumulation sites of total polyphenols, flavonols, and lignin, redirecting their accumulation toward the sites of greatest production of H2O2 and O2.-. Although changes in total polyphenol content would be expected, this did not vary significantly between non-galled and galled stems. However, the galling insect induced changes in the profile and concentration of soluble polyphenols, leading to the gall extracts' antioxidant capacity decreasing significantly during the maturation and senescence stages. Additionally, during the maturation stage, lignin deposition increases in the more peripheral gall tissues, which also contributes to ROS dissipation. The differences in the different gall developmental stages' antioxidant activity could be related to the identity and concentration of phenolic compounds in each gall extract, rather than to the total phenol content. Regardless of the mechanisms involved, the dissipation of the ROS generated by Dasineura sp. activity occurs, restoring the redox balance in galls and guaranteeing the success of the inducer.


Assuntos
Antioxidantes , Peumus , Polifenóis , Peumus/química , Lignina , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Fenóis , Tumores de Planta
13.
Braz J Biol ; 83: e279575, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422277

RESUMO

The Botanical Garden of the Museu Nacional/Universidade Federal do Rio de Janeiro (Rio de Janeiro, RJ, Brazil) was investigated monthly from October, 2017 to December, 2019 in a total of 27 collections, each lasting four hours, following the methodology of random walking. Vegetative and reproductive organs of herbs, bushes and trees (up to 2 m high) were examined by two people. Voucher material was deposited in the Entomological Collection of the Museu Nacional (MNRJ)/Universidade Federal do Rio de Janeiro. We found 13 insect gall morphotypes in nine host plant species of four families. All host plants are native of Brazil, except Ficus microcarpa L.f. (Moraceae), which is naturalized. Myrtaceae and Moraceae were the plant families with the greatest richness of gall morphotypes. Eugenia L. (Myrtaceae) and Ficus L. (Moraceae) were the plant genera with the highest number of gall morphotypes. In several inventories in the Atlantic forest, Myrtaceae and Eugenia stand out for harboring a great variety of galls, while Moraceae and Ficus were never stood out for this reason. Most plant species mentioned in the present study were already known as hosts of gall-inducing insects in Brazil. However, for the first time, insect galls are reported on Ficus crocata (Miq.) Miq. (Moraceae). We found two new morphotypes on Eugenia florida DC. (Myrtaceae). Leaves, stems and buds were the galled organs. Cecidomyiidae were the most frequent inducers. Galls of Thysanoptera were also found. Inquilines were observed in leaf galls on Eugenia florida. They promoted differences in gall morphology and killed the gall-inducing larva.


Assuntos
Myrtaceae , Tumores de Planta , Humanos , Animais , Brasil , Interações Hospedeiro-Parasita , Insetos , Árvores , Plantas
14.
Microsc Microanal ; 30(3): 607-618, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38323481

RESUMO

Manipulation of host plant physiology by leaf-galling insects is a multifaceted process. Among fundamental knowledge gaps surrounding this scientifically intriguing phenomenon is the appropriation of plant mineral nutrients and moisture for galling advantage. Small, soluble mineral ions and watery cell contents in dense gall tissues risk disruption during routine sample preparations. In this study, an X-ray microanalysis was applied to investigate gall mineral nutrition. Morphologically diverse leaf galls were sampled from three Australian rainforest tree species. Using cryo-analytical scanning electron microscopy, real-time X-ray analytical maps of cellular mineral nutrients and water were integrated with anatomical images of gall and leaf cross-sectional surfaces. A comparison of host-leaf and gall anatomies bore direct evidence of drastic changes to leaf cells through the galling process. Distinct "wet" and "dry" regions within galls were anatomically and/or chemically differentiated, suggesting specific functionality. "Wet" regions comprising hydrated cells including soft gall-cavity linings where larvae are known to feed contained soluble plant mineral nutrients, while C-rich "dry" tissues largely devoid of mineral nutrients likely contribute structural support. Mapping immobile nutrients such as Mn may provide a means of "matching" specific gall cell types to those in ungalled host-leaf tissues. The findings here provided otherwise inaccessible insights into leaf-gall mineral nutrition.


Assuntos
Insetos , Minerais , Folhas de Planta , Tumores de Planta , Folhas de Planta/química , Animais , Minerais/análise , Minerais/metabolismo , Tumores de Planta/parasitologia , Insetos/fisiologia , Microanálise por Sonda Eletrônica , Microscopia Eletrônica de Varredura , Austrália , Temperatura Baixa , Árvores
15.
PeerJ ; 12: e16898, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38332807

RESUMO

Agrobacterium tumefaciens is a soil-borne pathogenic bacterium that causes crown gall disease in many plants. Chemotaxis offers A. tumefaciens the ability to find its host and establish infection. Being an aerobic bacterium, A. tumefaciens possesses one chemotaxis system with multiple potential chemoreceptors. Chemoreceptors play an important role in perceiving and responding to environmental signals. However, the studies of chemoreceptors in A. tumefaciens remain relatively restricted. Here, we characterized a cytoplasmic chemoreceptor of A. tumefaciens C58 that contains an N-terminal globin domain. The chemoreceptor was designated as Atu1027. The deletion of Atu1027 not only eliminated the aerotactic response of A. tumefaciens to atmospheric air but also resulted in a weakened chemotactic response to multiple carbon sources. Subsequent site-directed mutagenesis and phenotypic analysis showed that the conserved residue His100 in Atu1027 is essential for the globin domain's function in both chemotaxis and aerotaxis. Furthermore, deleting Atu1027 impaired the biofilm formation and pathogenicity of A. tumefaciens. Collectively, our findings demonstrated that Atu1027 functions as an aerotaxis receptor that affects agrobacterial chemotaxis and the invasion of A. tumefaciens into its host.


Assuntos
Agrobacterium tumefaciens , Quimiotaxia , Agrobacterium tumefaciens/genética , Quimiotaxia/genética , Tumores de Planta/microbiologia , Plantas , Globinas
16.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365227

RESUMO

Tailocins are headless phage tail structures that mediate interbacterial antagonism. Although the prototypical tailocins, R- and F-pyocins, in Pseudomonas aeruginosa, and other predominantly R-type tailocins have been studied, their presence in Alphaproteobacteria remains unexplored. Here, we report the first alphaproteobacterial F-type tailocin, named rhizoviticin, as a determinant of the biocontrol activity of Allorhizobium vitis VAR03-1 against crown gall. Rhizoviticin is encoded by a chimeric prophage genome, one providing transcriptional regulators and the other contributing to tail formation and cell lysis, but lacking head formation genes. The rhizoviticin genome retains a nearly intact early phage region containing an integrase remnant and replication-related genes critical for downstream gene transcription, suggesting an ongoing transition of this locus from a prophage to a tailocin-coding region. Rhizoviticin is responsible for the most antagonistic activity in VAR03-1 culture supernatant against pathogenic A. vitis strain, and rhizoviticin deficiency resulted in a significant reduction in the antitumorigenic activity in planta. We identified the rhizoviticin-coding locus in eight additional A. vitis strains from diverse geographical locations, highlighting a unique survival strategy of certain Rhizobiales bacteria in the rhizosphere. These findings advance our understanding of the evolutionary dynamics of tailocins and provide a scientific foundation for employing rhizoviticin-producing strains in plant disease control.


Assuntos
Bacteriófagos , Vitis , Tumores de Planta/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Pseudomonas aeruginosa , Bacteriófagos/genética , Vitis/microbiologia
17.
BMC Plant Biol ; 24(1): 104, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336608

RESUMO

BACKGROUND: Crown gall disease caused by Agrobacterium tumefaciens is a very destructive affliction that affects grapevines. Endophytic bacteria have been discovered to control plant diseases via the use of several mechanisms. This research examined the potential for controlling crown gall by three endophytic bacteria that were previously isolated from healthy cultivated and wild grapevines including Pseudomonas kilonensis Ba35, Pseudomonas chlororaphis Ba47, and Serratia liquefaciens Ou55. RESULT: At various degrees, three endophytic bacteria suppressed the populations of A. tumefaciens Gh1 and greatly decreased the symptoms of crown gall. Furthermore, biofilm production and motility behaviors of A. tumefaciens Gh1were greatly inhibited by the Cell-free Culture Supernatant (CFCS) of endophytic bacteria. According to our findings, CFCS may reduce the adhesion of A. tumefaciens Gh1 cells to grapevine cv. Rashe root tissues as well as their chemotaxis motility toward the extract of the roots. When compared to the untreated control, statistical analysis showed that CFCS significantly reduced the swimming, twitching, and swarming motility of A. tumefaciens Gh1. The findings demonstrated that the endophytic bacteria effectively stimulated the production of plant defensive enzymes including superoxide dismutase (SOD), polyphenol oxidase (PPO), peroxidase (POD), phenylalanine ammonia lyase (PAL), and total soluble phenols at different time intervals in grapevine inoculated with A. tumefaciens Gh1. The Ba47 strain markedly increased the expression levels of defense genes associated with plant resistance. The up-regulation of PR1, PR2, VvACO1, and GAD1 genes in grapevine leaves indicates the activation of SA and JA pathways, which play a role in enhancing resistance to pathogen invasion. The results showed that treating grapevine with Ba47 increased antioxidant defense activities and defense-related gene expression, which reduced oxidative damage caused by A. tumefaciens and decreased the incidence of crown gall disease. CONCLUSION: This is the first study on how A. tumefaciens, the grapevine crown gall agent, is affected by CFCS generated by endophytic bacteria in terms of growth and virulence features. To create safer plant disease management techniques, knowledge of the biocontrol processes mediated by CFCS during microbial interactions is crucial.


Assuntos
Agrobacterium tumefaciens , Tumores de Planta , Agrobacterium tumefaciens/genética , Doenças das Plantas/microbiologia , Bactérias
19.
Protoplasma ; 261(3): 593-606, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38195894

RESUMO

Gall formation impacts the development of plant species by altering the structure and mobilization of reserves, and the functional and physiological patterns of the host organ. The current study aimed to evaluate the impact generated by the Neolithus fasciatus galling insect (Hemiptera: Triozidae) in Sapium glandulosum leaves (Euphorbiaceae) at the cytological, histological, histochemical, and biochemical levels. Non-galled leaves and galls in the young, mature, and senescent stages were evaluated. The non-galled leaf has a uniseriate epidermis, stomata only on the abaxial side, a dorsiventral mesophyll, and parenchyma cells with thin primary walls containing chloroplasts with plastoglobules. The gall has a parenchymatous compartmentalized cortex. The young and mature galls already have a dense cytoplasm, especially in the inner cells of the cortex, with chloroplasts, mitochondria, Golgi complex, and large and evident nuclei. In senescent galls, there are signs of organelle degradation and cell digestion. Carbohydrates occur in greater amounts in the mature gall, mainly in the starch grain form, while proteins and lipids predominate in non-galled leaves. Secondary metabolites occur mainly in the young gall and may be related to its protection and to the signaling of its development. Sapium glandulosum galls have histological and cytological compartmentalization of the cortex with a large amount of carbohydrates, which supply energy to maintain the development of the structure.


Assuntos
Hemípteros , Sapium , Animais , Cloroplastos , Carboidratos , Tumores de Planta , Folhas de Planta/metabolismo
20.
Plant Physiol ; 195(1): 698-712, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38236304

RESUMO

Many insects have evolved the ability to manipulate plant growth to generate extraordinary structures called galls, in which insect larva can develop while being sheltered and feeding on the plant. In particular, cynipid (Hymenoptera: Cynipidae) wasps have evolved to form morphologically complex galls and generate an astonishing array of gall shapes, colors, and sizes. However, the biochemical basis underlying these remarkable cellular and developmental transformations remains poorly understood. A key determinant in plant cellular development is cell wall deposition that dictates the physical form and physiological function of newly developing cells, tissues, and organs. However, it is unclear to what degree cell walls are restructured to initiate and support the formation of new gall tissue. Here, we characterize the molecular alterations underlying gall development using a combination of metabolomic, histological, and biochemical techniques to elucidate how valley oak (Quercus lobata) leaf cells are reprogrammed to form galls. Strikingly, gall development involves an exceptionally coordinated spatial deposition of lignin and xylan to form de novo gall vasculature. Our results highlight how cynipid wasps can radically change the metabolite profile and restructure the cell wall to enable the formation of galls, providing insights into the mechanism of gall induction and the extent to which plants can be entirely reprogrammed to form unique structures and organs.


Assuntos
Parede Celular , Interações Hospedeiro-Parasita , Tumores de Planta , Vespas , Animais , Parede Celular/metabolismo , Vespas/fisiologia , Tumores de Planta/parasitologia , Quercus/metabolismo , Quercus/parasitologia , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Lignina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA