Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.514
Filtrar
1.
Nat Commun ; 15(1): 3872, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719797

RESUMO

The gut microbiota and microglia play critical roles in Alzheimer's disease (AD), and elevated Bacteroides is correlated with cerebrospinal fluid amyloid-ß (Aß) and tau levels in AD. We hypothesize that Bacteroides contributes to AD by modulating microglia. Here we show that administering Bacteroides fragilis to APP/PS1-21 mice increases Aß plaques in females, modulates cortical amyloid processing gene expression, and down regulates phagocytosis and protein degradation microglial gene expression. We further show that administering Bacteroides fragilis to aged wild-type male and female mice suppresses microglial uptake of Aß1-42 injected into the hippocampus. Depleting murine Bacteroidota with metronidazole decreases amyloid load in aged 5xFAD mice, and activates microglial pathways related to phagocytosis, cytokine signaling, and lysosomal degradation. Taken together, our study demonstrates that members of the Bacteroidota phylum contribute to AD pathogenesis by suppressing microglia phagocytic function, which leads to impaired Aß clearance and accumulation of amyloid plaques.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Modelos Animais de Doenças , Camundongos Transgênicos , Microglia , Fagocitose , Placa Amiloide , Animais , Microglia/metabolismo , Microglia/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/microbiologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Placa Amiloide/metabolismo , Feminino , Camundongos , Masculino , Bacteroides fragilis/metabolismo , Microbioma Gastrointestinal , Humanos , Camundongos Endogâmicos C57BL , Hipocampo/metabolismo , Hipocampo/patologia
2.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731870

RESUMO

Transcranial magneto-acoustic stimulation (TMAS), which is characterized by high spatiotemporal resolution and high penetrability, is a non-invasive neuromodulation technology based on the magnetic-acoustic coupling effect. To reveal the effects of TMAS treatment on amyloid-beta (Aß) plaque and synaptic plasticity in Alzheimer's disease, we conducted a comparative analysis of TMAS and transcranial ultrasound stimulation (TUS) based on acoustic effects in 5xFAD mice and BV2 microglia cells. We found that the TMAS-TUS treatment effectively reduced amyloid plaque loads and plaque-associated neurotoxicity. Additionally, TMAS-TUS treatment ameliorated impairments in long-term memory formation and long-term potentiation. Moreover, TMAS-TUS treatment stimulated microglial proliferation and migration while enhancing the phagocytosis and clearance of Aß. In 5xFAD mice with induced microglial exhaustion, TMAS-TUS treatment-mediated Aß plaque reduction, synaptic rehabilitation improvement, and the increase in phospho-AKT levels were diminished. Overall, our study highlights that stimulation of hippocampal microglia by TMAS treatment can induce anti-cognitive impairment effects via PI3K-AKT signaling, providing hope for the development of new strategies for an adjuvant therapy for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Microglia , Placa Amiloide , Animais , Microglia/metabolismo , Camundongos , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Estimulação Magnética Transcraniana/métodos , Estimulação Acústica , Camundongos Transgênicos , Modelos Animais de Doenças , Sinapses/metabolismo , Hipocampo/metabolismo , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Plasticidade Neuronal , Potenciação de Longa Duração , Transdução de Sinais
3.
Alzheimers Res Ther ; 16(1): 101, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711159

RESUMO

BACKGROUND: In Alzheimer's disease (AD), microglia surround extracellular plaques and mount a sustained inflammatory response, contributing to the pathogenesis of the disease. Identifying approaches to specifically target plaque-associated microglia (PAMs) without interfering in the homeostatic functions of non-plaque associated microglia would afford a powerful tool and potential therapeutic avenue. METHODS: Here, we demonstrated that a systemically administered nanomedicine, hydroxyl dendrimers (HDs), can cross the blood brain barrier and are preferentially taken up by PAMs in a mouse model of AD. As proof of principle, to demonstrate biological effects in PAM function, we treated the 5xFAD mouse model of amyloidosis for 4 weeks via systemic administration (ip, 2x weekly) of HDs conjugated to a colony stimulating factor-1 receptor (CSF1R) inhibitor (D-45113). RESULTS: Treatment resulted in significant reductions in amyloid-beta (Aß) and a stark reduction in the number of microglia and microglia-plaque association in the subiculum and somatosensory cortex, as well as a downregulation in microglial, inflammatory, and synaptic gene expression compared to vehicle treated 5xFAD mice. CONCLUSIONS: This study demonstrates that systemic administration of a dendranib may be utilized to target and modulate PAMs.


Assuntos
Doença de Alzheimer , Dendrímeros , Modelos Animais de Doenças , Camundongos Transgênicos , Microglia , Placa Amiloide , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Placa Amiloide/tratamento farmacológico , Placa Amiloide/patologia , Camundongos , Peptídeos beta-Amiloides/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Humanos
4.
Nat Commun ; 15(1): 3996, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734693

RESUMO

SPI1 was recently reported as a genetic risk factor for Alzheimer's disease (AD) in large-scale genome-wide association studies. However, it is unknown whether SPI1 should be downregulated or increased to have therapeutic benefits. To investigate the effect of modulating SPI1 levels on AD pathogenesis, we performed extensive biochemical, histological, and transcriptomic analyses using both Spi1-knockdown and Spi1-overexpression mouse models. Here, we show that the knockdown of Spi1 expression significantly exacerbates insoluble amyloid-ß (Aß) levels, amyloid plaque deposition, and gliosis. Conversely, overexpression of Spi1 significantly ameliorates these phenotypes and dystrophic neurites. Further mechanistic studies using targeted and single-cell transcriptomics approaches demonstrate that altered Spi1 expression modulates several pathways, such as immune response pathways and complement system. Our data suggest that transcriptional reprogramming by targeting transcription factors, like Spi1, might hold promise as a therapeutic strategy. This approach could potentially expand the current landscape of druggable targets for AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Amiloidose , Modelos Animais de Doenças , Proteínas Proto-Oncogênicas , Transcriptoma , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Camundongos , Amiloidose/genética , Amiloidose/metabolismo , Amiloidose/patologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Fenótipo , Camundongos Transgênicos , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Placa Amiloide/genética , Humanos , Masculino , Camundongos Endogâmicos C57BL , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Transativadores
5.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732223

RESUMO

Alzheimer's disease (AD) is characterized by a loss of neurons in the cortex and subcortical regions. Previously, we showed that the progressive degeneration of subcortical monoaminergic (MAergic) neurons seen in human AD is recapitulated in the APPswe/PS1ΔE9 (APP/PS) transgenic mouse model. Because degeneration of cholinergic (Ach) neurons is also a prominent feature of AD, we examined the integrity of the Ach system in the APP/PS model. The overall density of Ach fibers is reduced in APP/PS1 mice at 12 and 18 months of age but not at 4 months of age. Analysis of basal forebrain Ach neurons shows no loss of Ach neurons in the APP/PS model. Thus, since MAergic systems show overt cell loss at 18 months of age, the Ach system is less vulnerable to neurodegeneration in the APP/PS1 model. We also examined whether the proximity to Aß deposition affected the degeneration of Ach and 5-HT afferents. We found that the areas closer to the edges of compact Aß deposits exhibit a more severe loss of afferents than the areas that are more distal to Aß deposits. Collectively, the results indicate that the APP/PS model recapitulates the degeneration of multiple subcortical neurotransmitter systems, including the Ach system. In addition, the results indicate that Aß deposits cause global as well as local toxicity to subcortical afferents.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Neurônios Colinérgicos , Modelos Animais de Doenças , Camundongos Transgênicos , Placa Amiloide , Presenilina-1 , Animais , Placa Amiloide/patologia , Placa Amiloide/metabolismo , Camundongos , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Presenilina-1/genética , Presenilina-1/metabolismo , Humanos , Peptídeos beta-Amiloides/metabolismo
6.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38673909

RESUMO

Recruitment and accumulation of reactive astrocytes around senile plaques are common pathological features of Alzheimer's disease (AD), with unclear mechanisms. Chemerin, an adipokine implicated in neuroinflammation, acts through its receptor, chemokine-like receptor 1 (CMKLR1), which also functions as a receptor for amyloid ß (Aß). The impact of the chemerin/CMKLR1 axis on astrocyte migration towards Aß plaques is unknown. Here we investigated the effect of CMKLR1 on astrocyte migration around Aß deposition in APP/PS1 mice with Cmklr1 knockout (APP/PS1-Cmklr1-/-). CMKLR1-expressed astrocytes were upregulated in the cortices and hippocampi of 9-month-old APP/PS1 mice. Chemerin mainly co-localized with neurons, and its expression was reduced in the brains of APP/PS1 mice, compared to WT mice. CMKLR1 deficiency decreased astrocyte colocalization with Aß plaques in APP/PS1-Cmklr1-/- mice, compared to APP/PS1 mice. Activation of the chemerin/CMKLR1 axis promoted the migration of primary cultured astrocytes and U251 cells, and reduced astrocyte clustering induced by Aß42. Mechanistic studies revealed that chemerin/CMKLR1 activation induced STING phosphorylation. Deletion of STING attenuated the promotion of the chemerin/CMKLR1 axis relative to astrocyte migration and abolished the inhibitory effect of chemerin on Aß42-induced astrocyte clustering. These findings suggest the involvement of the chemerin/CMKLR1/STING pathway in the regulation of astrocyte migration and recruitment to Aß plaques/Aß42.


Assuntos
Doença de Alzheimer , Astrócitos , Quimiocinas , Peptídeos e Proteínas de Sinalização Intercelular , Placa Amiloide , Receptores de Quimiocinas , Animais , Astrócitos/metabolismo , Quimiocinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Receptores de Quimiocinas/metabolismo , Receptores de Quimiocinas/genética , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Humanos , Peptídeos beta-Amiloides/metabolismo , Camundongos Knockout , Movimento Celular , Transdução de Sinais , Camundongos Transgênicos , Camundongos Endogâmicos C57BL
7.
J Neuroimmunol ; 390: 578342, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38640827

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive decline that severely affects patients and their families. Genetic and environmental risk factors, such as viral infections, synergize to accelerate the aging-associated neurodegeneration. Genetic risk factors for late-onset AD (LOAD), which accounts for most AD cases, are predominantly implicated in microglial and immune cell functions. As such, microglia play a major role in formation of amyloid beta (Aß) plaques, the major pathological hallmark of AD. This review aims to provide an overview of the current knowledge regarding the role of microglia in Aß plaque formation, as well as their impact on morphological and functional diversity of Aß plaques. Based on this discussion, we seek to identify challenges and opportunities in this field with potential therapeutic implications.


Assuntos
Doença de Alzheimer , Microglia , Placa Amiloide , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Humanos , Placa Amiloide/patologia , Placa Amiloide/metabolismo , Microglia/metabolismo , Microglia/patologia , Animais , Peptídeos beta-Amiloides/metabolismo
8.
Alzheimers Dement ; 20(5): 3406-3415, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38567735

RESUMO

INTRODUCTION: Aducanumab selectively targets aggregated forms of amyloid beta (Aß), a neuropathological hallmark of Alzheimer's disease (AD). METHODS: PRIME was a Phase 1b, double-blind, randomized clinical trial of aducanumab. During the 12-month placebo-controlled period, participants with prodromal AD or mild AD dementia were randomized to receive aducanumab or placebo. At week 56, participants could enroll in a long-term extension (LTE), in which all participants received aducanumab. The primary endpoint was safety and tolerability. RESULTS: Amyloid-related imaging abnormalities-edema (ARIA-E) were the most common adverse event. Dose titration was associated with a decrease in the incidence of ARIA-E. Over 48 months, aducanumab decreased brain amyloid levels in a dose- and time-dependent manner. Exploratory endpoints suggested a continued benefit in the reduction of clinical decline over 48 months. DISCUSSION: The safety profile of aducanumab remained unchanged in the LTE of PRIME. Amyloid plaque levels continued to decrease in participants treated with aducanumab. HIGHLIGHTS: PRIME was a Phase 1b, double-blind, randomized clinical trial of aducanumab. We report cumulative safety and 48-month efficacy results from PRIME. Amyloid-related imaging abnormalities-edema (ARIA-E) were the most common adverse event (AE); 61% of participants with ARIA-E were asymptomatic. Dose titration was associated with a decrease in the incidence of ARIA-E. Aducanumab decreased levels of amyloid beta (Aß) in a dose- and time-dependent manner.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Anticorpos Monoclonais Humanizados , Humanos , Método Duplo-Cego , Anticorpos Monoclonais Humanizados/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Masculino , Feminino , Idoso , Peptídeos beta-Amiloides/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Resultado do Tratamento , Placa Amiloide/tratamento farmacológico , Relação Dose-Resposta a Droga
9.
Alzheimers Dement ; 20(5): 3551-3566, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38624088

RESUMO

INTRODUCTION: Ozone (O3) is an air pollutant associated with Alzheimer's disease (AD) risk. The lung-brain axis is implicated in O3-associated glial and amyloid pathobiology; however, the role of disease-associated astrocytes (DAAs) in this process remains unknown. METHODS: The O3-induced astrocyte phenotype was characterized in 5xFAD mice by spatial transcriptomics and proteomics. Hmgb1fl/fl LysM-Cre+ mice were used to assess the role of peripheral myeloid cell high mobility group box 1 (HMGB1). RESULTS: O3 increased astrocyte and plaque numbers, impeded the astrocyte proteomic response to plaque deposition, augmented the DAA transcriptional fingerprint, increased astrocyte-microglia contact, and reduced bronchoalveolar lavage immune cell HMGB1 expression in 5xFAD mice. O3-exposed Hmgb1fl/fl LysM-Cre+ mice exhibited dysregulated DAA mRNA markers. DISCUSSION: Astrocytes and peripheral myeloid cells are critical lung-brain axis interactors. HMGB1 loss in peripheral myeloid cells regulates the O3-induced DAA phenotype. These findings demonstrate a mechanism and potential intervention target for air pollution-induced AD pathobiology. HIGHLIGHTS: Astrocytes are part of the lung-brain axis, regulating how air pollution affects plaque pathology. Ozone (O3) astrocyte effects are associated with increased plaques and modified by plaque localization. O3 uniquely disrupts the astrocyte transcriptomic and proteomic disease-associated astrocyte (DAA) phenotype in plaque associated astrocytes (PAA). O3 changes the PAA cell contact with microglia and cell-cell communication gene expression. Peripheral myeloid cell high mobility group box 1 regulates O3-induced transcriptomic changes in the DAA phenotype.


Assuntos
Doença de Alzheimer , Astrócitos , Proteína HMGB1 , Ozônio , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Proteína HMGB1/metabolismo , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Camundongos Transgênicos , Modelos Animais de Doenças , Encéfalo/patologia , Encéfalo/metabolismo , Placa Amiloide/patologia , Placa Amiloide/metabolismo , Microglia/metabolismo , Poluentes Atmosféricos , Pulmão/patologia , Peptídeos beta-Amiloides/metabolismo
10.
ACS Chem Neurosci ; 15(10): 2058-2069, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38652895

RESUMO

Amyloid plaques composed of fibrils of misfolded Aß peptides are pathological hallmarks of Alzheimer's disease (AD). Aß fibrils are polymorphic in their tertiary and quaternary molecular structures. This structural polymorphism may carry different pathologic potencies and can putatively contribute to clinical phenotypes of AD. Therefore, mapping of structural polymorphism of Aß fibrils and structural evolution over time is valuable to understanding disease mechanisms. Here, we investigated how Aß fibril structures in situ differ in Aß plaque of different mouse models expressing familial mutations in the AßPP gene. We imaged frozen brains with a combination of conformation-sensitive luminescent conjugated oligothiophene (LCO) ligands and Aß-specific antibodies. LCO fluorescence mapping revealed that mouse models APP23, APPPS1, and AppNL-F have different fibril structures within Aß-amyloid plaques depending on the AßPP-processing genotype. Co-staining with Aß-specific antibodies showed that individual plaques from APP23 mice expressing AßPP Swedish mutation have two distinct fibril polymorph regions of core and corona. The plaque core is predominantly composed of compact Aß40 fibrils, and the corona region is dominated by diffusely packed Aß40 fibrils. Conversely, the AßPP knock-in mouse AppNL-F, expressing the AßPP Iberian mutation along with Swedish mutation has tiny, cored plaques consisting mainly of compact Aß42 fibrils, vastly different from APP23 even at elevated age up to 21 months. Age-dependent polymorph rearrangement of plaque cores observed for APP23 and APPPS1 mice >12 months, appears strongly promoted by Aß40 and was hence minuscule in AppNL-F. These structural studies of amyloid plaques in situ can map disease-relevant fibril polymorph distributions to guide the design of diagnostic and therapeutic molecules.


Assuntos
Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide , Camundongos Transgênicos , Placa Amiloide , Animais , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Modelos Animais de Doenças , Encéfalo/metabolismo , Encéfalo/patologia , Mutação , Envelhecimento/metabolismo , Envelhecimento/patologia , Conformação Proteica , Humanos
11.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612850

RESUMO

This study aimed to elucidate the similarities and differences between amyloid-forming corpora amylacea (CA) in the prostate and lung, examine the nature of CAs in cystic tumors of the atrioventricular node (CTAVN), and clarify the distinctions between amyloid-forming CA and spheroid-type amyloid deposition. We conducted proteomics analyses using liquid chromatography-tandem mass spectrometry with laser microdissection and immunohistochemistry to validate the characteristics of CAs in the lung and prostate. Our findings revealed that the CAs in these organs primarily consisted of common proteins (ß2-microglobulin and lysozyme) and locally produced proteins. Moreover, we observed a discrepancy between the histopathological and proteomic analysis results in CTAVN-associated CAs. In addition, while the histopathological appearance of the amyloid-forming CAs and spheroid-type amyloid deposits were nearly identical, the latter deposition lacked ß2-microglobulin and lysozyme and exhibited evident destruction of the surrounding tissue. A literature review further supported these findings. These results suggest that amyloid-forming CAs in the lung and prostate are formed through a shared mechanism, serving as waste containers (wasteosomes) and/or storage for excess proteins (functional amyloids). In contrast, we hypothesize that while amyloid-forming CA and spheroid-type amyloid deposits are formed, in part, through common mechanisms, the latter are pathological.


Assuntos
Muramidase , Placa Amiloide , Masculino , Humanos , Imuno-Histoquímica , Proteômica , Proteínas Amiloidogênicas
12.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612867

RESUMO

Lymphatics participate in reverse cholesterol transport, and their presence in the arterial wall of the great vessels and prior experimental results suggest their possible role in the development of atherosclerosis. The aim of this study was to characterize the lymphatic vasculature of the arterial wall in atherosclerosis. Tissue sections and tissue-cleared aortas of wild-type mice unveiled significant differences in the density of the arterial lymphatic network throughout the arterial tree. Male and female Ldlr-/- and ApoE-/- mice on a Western diet showed sex-dependent differences in plaque formation and calcification. Female mice on a Western diet developed more calcification of atherosclerotic plaques than males. The lymphatic vessels within the aortic wall of these mice showed no major changes regarding the number of lymphatic junctions and end points or the lymphatic area. However, female mice on a Western diet showed moderate dilation of lymphatic vessels in the abdominal aorta and exhibited indications of increased peripheral lymphatic function, findings that require further studies to understand the role of lymphatics in the arterial wall during the development of atherosclerosis.


Assuntos
Aterosclerose , Calcinose , Vasos Linfáticos , Placa Aterosclerótica , Masculino , Animais , Camundongos , Aterosclerose/genética , Sistema Linfático , Aorta Abdominal , Placa Amiloide
13.
J Alzheimers Dis ; 98(4): 1415-1426, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578889

RESUMO

Background: Amyloid-ß (Aß) plaques play a pivotal role in Alzheimer's disease. The current positron emission tomography (PET) is expensive and limited in availability. In contrast, blood-based biomarkers (BBBMs) show potential for characterizing Aß plaques more affordably. We have previously proposed an MRI-based hippocampal morphometry measure to be an indicator of Aß plaques. Objective: To develop and validate an integrated model to predict brain amyloid PET positivity combining MRI feature and plasma Aß42/40 ratio. Methods: We extracted hippocampal multivariate morphometry statistics from MR images and together with plasma Aß42/40 trained a random forest classifier to perform a binary classification of participant brain amyloid PET positivity. We evaluated the model performance using two distinct cohorts, one from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the other from the Banner Alzheimer's Institute (BAI), including prediction accuracy, precision, recall rate, F1 score, and AUC score. Results: Results from ADNI (mean age 72.6, Aß+ rate 49.5%) and BAI (mean age 66.2, Aß+ rate 36.9%) datasets revealed the integrated multimodal (IMM) model's superior performance over unimodal models. The IMM model achieved prediction accuracies of 0.86 in ADNI and 0.92 in BAI, surpassing unimodal models based solely on structural MRI (0.81 and 0.87) or plasma Aß42/40 (0.73 and 0.81) predictors. CONCLUSIONS: Our IMM model, combining MRI and BBBM data, offers a highly accurate approach to predict brain amyloid PET positivity. This innovative multiplex biomarker strategy presents an accessible and cost-effective avenue for advancing Alzheimer's disease diagnostics, leveraging diverse pathologic features related to Aß plaques and structural MRI.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Placa Amiloide/diagnóstico por imagem , Peptídeos beta-Amiloides , Amiloide , Tomografia por Emissão de Pósitrons , Imageamento por Ressonância Magnética , Biomarcadores , Disfunção Cognitiva/diagnóstico por imagem , Proteínas tau
14.
J Mol Neurosci ; 74(2): 42, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613644

RESUMO

Alzheimer's disease (AD) is a severe neurological illness that causes memory loss and is a global problem. The calcium hypothesis recently steadily evolved in AD. The prospective targets for calcium homeostasis therapy, however, are limited, and gene expression-level research connected to calcium homeostasis in AD remains hazy. In this study, we analyzed the microarray dataset (GSE132903) taken from the Gene Expression Omnibus (GEO) database to investigate calcium homeostasis-related genes for AD. Using immunoblot analysis, we examined the association of ITPKB with inflammation in AD. Additionally, the immunofluorescence technique was employed to assess the impact of pharmacological inhibition of ITPKB on the amyloid-ß (Aß) plaque deposition in APP/PS1 mice. This article's further exploration of calcium homeostasis-related genes has propelled the validation of the calcium homeostasis theory in AD.


Assuntos
Doença de Alzheimer , Placa Amiloide , Animais , Camundongos , Placa Amiloide/genética , Transcriptoma , Cálcio , Doença de Alzheimer/genética , Modelos Animais , Homeostase
15.
J Vis Exp ; (205)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38557978

RESUMO

Peyronie's Disease (PD) is clinically characterized by the development of localized fibrous plaques, primarily on the tunica albuginea, especially on the dorsal area of the penis. These plaques are the hallmark feature of this condition, resulting in penile curvature, deformity, and painful erections for affected individuals. Although various nonsurgical treatment options exist, their overall effectiveness is limited. As a result, surgical intervention has become the ultimate choice for patients with severe penile curvature deformities and associated erectile dysfunction. Our research team has successfully employed a combined approach involving microscopic electric rotary grinding of the fibrous plaques and the use of tunica vaginalis or bovine pericardium as graft materials for the repairing of the defects of tunica albuginea in the treatment of PD. This approach has consistently yielded highly satisfactory results regarding the restoration of penile shape, with excellent cosmetic results and significantly improved sexual satisfaction. This protocol aims to present a comprehensive surgical management strategy utilizing electric rotary grinding of the plaques and repairing the defects of tunica albuginea by using the tunica vaginalis, which represents an optimal surgical strategy for treating PD.


Assuntos
Disfunção Erétil , Induração Peniana , Placa Aterosclerótica , Masculino , Humanos , Animais , Bovinos , Induração Peniana/cirurgia , Pênis , Disfunção Erétil/etiologia , Disfunção Erétil/cirurgia , Fibrose , Placa Amiloide
16.
PLoS One ; 19(4): e0299534, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38574297

RESUMO

Alzheimer's disease (AD) is the most common neuronal disorder that leads to the development of dementia. Until nowadays, some therapies may alleviate the symptoms, but there is no pharmacological treatment. Microdosing lithium has been used to modify the pathological characteristics of the disease, with effects in both experimental and clinical conditions. The present work aimed to analyze the effects of this treatment on spatial memory, anxiety, and molecular mechanisms related to long-term memory formation during the aging process of a mouse model of accelerated aging (SAMP-8). Female SAMP-8 showed learning and memory impairments together with disruption of memory mechanisms, neuronal loss, and increased density of senile plaques compared to their natural control strain, the senescence-accelerated mouse resistant (SAMR-1). Chronic treatment with lithium promoted memory maintenance, reduction in anxiety, and maintenance of proteins related to memory formation and neuronal density. The density of senile plaques was also reduced. An increase in the density of gamma-aminobutyric acid A (GABAA) and α7 nicotinic cholinergic receptors was also observed and related to neuroprotection and anxiety reduction. In addition, this microdose of lithium inhibited the activation of glycogen synthase kinase-3beta (GSK-3ß), the classical mechanism of lithium cell effects, which could contribute to the preservation of the memory mechanism and reduction in senile plaque formation. This work shows that lithium effects in neuroprotection along the aging process are not related to a unique cellular mechanism but produce multiple effects that slowly protect the brain along the aging process.


Assuntos
Doença de Alzheimer , Lítio , Compostos de Fenilmercúrio , Camundongos , Feminino , Animais , Lítio/farmacologia , Lítio/uso terapêutico , Placa Amiloide/patologia , Glicogênio Sintase Quinase 3 beta , Doença de Alzheimer/patologia , Envelhecimento/metabolismo , Modelos Animais de Doenças
17.
Brain Nerve ; 76(4): 399-408, 2024 Apr.
Artigo em Japonês | MEDLINE | ID: mdl-38589284

RESUMO

The 'amyloid hypothesis', initially put forward in 1992, posits that amyloid ß protein (Aß) contributes to neurodegeneration through aberrant aggregation. In the process of this aberrant aggregation, Aß forms oligomers, protofibrils, and mature fibrils, ultimately developing plaques. These mature fibrils and plaques were believed to be the culprits behind the neurotoxicity and neurodegeneration seen in Alzheimer's disease (AD). However, growing evidence in recent years has led to the 'Aß oligomer hypothesis', which suggests that the intermediate forms of aggregates, such as oligomers and protofibrils, exhibit stronger neurotoxicity than the mature forms. Consequently, efforts have been made to develop anti-Aß antibody drugs that specifically target these intermediate aggregates. Such interventions hold promise as disease-modifying treatments for AD.


Assuntos
Doença de Alzheimer , Humanos , Peptídeos beta-Amiloides , Amiloide/metabolismo , Placa Amiloide
18.
J Alzheimers Dis ; 99(1): 121-143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38640149

RESUMO

Background: Previous work from our group has shown that chronic exposure to Vanadium pentoxide (V2O5) causes cytoskeletal alterations suggesting that V2O5 can interact with cytoskeletal proteins through polymerization and tyrosine phosphatases inhibition, causing Alzheimer's disease (AD)-like hippocampal cell death. Objective: This work aims to characterize an innovative AD experimental model through chronic V2O5 inhalation, analyzing the spatial memory alterations and the presence of neurofibrillary tangles (NFTs), amyloid-ß (Aß) senile plaques, cerebral amyloid angiopathy, and dendritic spine loss in AD-related brain structures. Methods: 20 male Wistar rats were divided into control (deionized water) and experimental (0.02 M V2O5 1 h, 3/week for 6 months) groups (n = 10). The T-maze test was used to assess spatial memory once a month. After 6 months, histological alterations of the frontal and entorhinal cortices, CA1, subiculum, and amygdala were analyzed by performing Congo red, Bielschowsky, and Golgi impregnation. Results: Cognitive results in the T-maze showed memory impairment from the third month of V2O5 inhalation. We also noted NFTs, Aß plaque accumulation in the vascular endothelium and pyramidal neurons, dendritic spine, and neuronal loss in all the analyzed structures, CA1 being the most affected. Conclusions: This model characterizes neurodegenerative changes specific to AD. Our model is compatible with Braak AD stage IV, which represents a moment where it is feasible to propose therapies that have a positive impact on stopping neuronal damage.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Transtornos da Memória , Ratos Wistar , Compostos de Vanádio , Animais , Doença de Alzheimer/patologia , Doença de Alzheimer/induzido quimicamente , Masculino , Compostos de Vanádio/farmacologia , Ratos , Transtornos da Memória/patologia , Transtornos da Memória/induzido quimicamente , Aprendizagem em Labirinto/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Memória Espacial/efeitos dos fármacos , Emaranhados Neurofibrilares/patologia , Emaranhados Neurofibrilares/efeitos dos fármacos , Placa Amiloide/patologia , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/patologia , Administração por Inalação
19.
J Theor Biol ; 587: 111823, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38608804

RESUMO

This paper introduces a new model to simulate the progression of senile plaques, focusing on scenarios where concentrations of amyloid beta (Aß) monomers and aggregates vary between neurons. Extracellular variations in these concentrations may arise due to limited diffusivity of Aß monomers and a high rate of Aß monomer production at lipid membranes, requiring a substantial concentration gradient for diffusion-driven transport of Aß monomers. The dimensionless formulation of the model is presented, which identifies four key dimensionless parameters governing the solutions for Aß monomer and aggregate concentrations, as well as the radius of a growing Aß plaque within the control volume. These parameters include the dimensionless diffusivity of Aß monomers, the dimensionless rate of Aß monomer production, and the dimensionless half-lives of Aß monomers and aggregates. A dimensionless parameter is then introduced to evaluate the validity of the lumped capacitance approximation. An approximate solution is derived for the scenario involving large diffusivity of Aß monomers and dysfunctional protein degradation machinery, resulting in infinitely long half-lives for Aß monomers and aggregates. In this scenario, the concentrations of Aß aggregates and the radius of the Aß plaque depend solely on a single dimensionless parameter that characterizes the rate of Aß monomer production. According to the approximate solution, the concentration of Aß aggregates is linearly dependent on the rate of monomer production, and the radius of an Aß plaque is directly proportional to the cube root of the rate of monomer production. However, when departing from the conditions of the approximate solution (e.g., finite half-lives), the concentrations of Aß monomers and aggregates, along with the plaque radius, exhibit complex dependencies on all four dimensionless parameters. For instance, under physiological half-life conditions, the plaque radius reaches a maximum value and stabilizes thereafter.


Assuntos
Peptídeos beta-Amiloides , Placa Amiloide , Peptídeos beta-Amiloides/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Modelos Biológicos , Difusão
20.
J Mol Neurosci ; 74(2): 49, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668787

RESUMO

The pathogenesis of Alzheimer's disease (AD) is complex and involves an imbalance between production and clearance of amyloid-ß peptides (Aß), resulting in accumulation of Aß in senile plaques. Hypercholesterolemia is a major risk factor for developing AD, with cholesterol shown to accumulate in senile plaques and increase production of Aß. ABCG4 is a member of the ATP-binding cassette transporters predominantly expressed in the CNS and has been suggested to play a role in cholesterol and Aß efflux from the brain. In this study, we bred Abcg4 knockout (KO) with the APPSwe,Ind (J9) mouse model of AD to test the hypothesis that loss of Abcg4 would exacerbate the AD phenotype. Unexpectedly, no differences were observed in novel object recognition (NOR) and novel object placement (NOP) behavioral tests, or on histologic examinations of brain tissues for senile plaque numbers. Furthermore, clearance of radiolabeled Aß from the brains did not differ between Abcg4 KO and control mice. Metabolic testing by indirect calorimetry, glucose tolerance test (GTT), and insulin tolerance test (ITT) were also mostly similar between groups with only a few mild metabolic differences noted. Overall, these data suggest that the loss of ABCG4 did not exacerbate the AD phenotype.


Assuntos
Subfamília G de Transportadores de Cassetes de Ligação de ATP , Doença de Alzheimer , Animais , Masculino , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Encéfalo/metabolismo , Encéfalo/patologia , Camundongos Endogâmicos C57BL , Placa Amiloide/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...