Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.440
Filtrar
1.
Sci Adv ; 10(40): eadq0355, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39356760

RESUMO

2-Aminoethanethiol dioxygenase (ADO) is a thiol dioxygenase that sulfinylates cysteamine and amino-terminal cysteines in polypeptides. The pathophysiological roles of ADO remain largely unknown. Here, we demonstrate that ADO expression represents a vulnerability in cancer cells, as ADO depletion led to loss of proliferative capacity and survival in cancer cells and reduced xenograft growth. In contrast, generation of the ADO knockout mouse revealed high tolerance for ADO depletion in adult tissues. To understand the mechanism underlying ADO's essentiality in cancer cells, we characterized the cell proteome and metabolome following depletion of ADO. This revealed that ADO depletion leads to toxic levels of polyamines which can be driven by ADO's substrate cysteamine. Polyamine accumulation in turn stimulated expression of proline dehydrogenase (PRODH) which resulted in mitochondrial hyperactivity and ROS production, culminating in cell toxicity. This work identifies ADO as a unique vulnerability in cancer cells, due to its essential role in maintenance of redox homeostasis through restraining polyamine levels and proline catabolism.


Assuntos
Homeostase , Mitocôndrias , Oxirredução , Prolina , Prolina/metabolismo , Animais , Humanos , Mitocôndrias/metabolismo , Camundongos , Linhagem Celular Tumoral , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , Poliaminas/metabolismo , Dioxigenases/metabolismo , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Prolina Oxidase/metabolismo , Prolina Oxidase/genética , Cisteamina/metabolismo , Proliferação de Células
2.
J Nanobiotechnology ; 22(1): 559, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39267043

RESUMO

OBJECTIVE: The exacerbation of extreme high-temperature events due to global climate change poses a significant challenge to public health, particularly impacting the central nervous system through heat stroke. This study aims to develop Poly(amidoamine) (PAMAM) nanoparticles loaded with curcumin (PAMAM@Cur) to enhance its therapeutic efficacy in hypothalamic neural damage in a heat stroke model and explore its potential mechanisms. METHODS: Curcumin (Cur) was encapsulated into PAMAM nanoparticles through a hydrophobic interaction method, and various techniques were employed to characterize their physicochemical properties. A heat stroke mouse model was established to monitor body temperature and serum biochemical parameters, conduct behavioral assessments, histological examinations, and biochemical analyses. Transcriptomic and proteomic analyses were performed to investigate the therapeutic mechanisms of PAMAM@Cur, validated in an N2a cell model. RESULTS: PAMAM@Cur demonstrated good stability, photostability, cell compatibility, significant blood-brain barrier (BBB) penetration capability, and effective accumulation in the brain. PAMAM@Cur markedly improved behavioral performance and neural cell structural integrity in heat stroke mice, alleviated inflammatory responses, with superior therapeutic effects compared to Cur or PAMAM alone. Multi-omics analysis revealed that PAMAM@Cur regulated antioxidant defense genes and iron death-related genes, particularly upregulating the PCBP2 protein, stabilizing SLC7A11 and GPX4 mRNA, and reducing iron-dependent cell death. CONCLUSION: By enhancing the drug delivery properties of Cur and modulating molecular pathways relevant to disease treatment, PAMAM@Cur significantly enhances the therapeutic effects against hypothalamic neural damage induced by heat stroke, showcasing the potential of nanotechnology in improving traditional drug efficacy and providing new strategies for future clinical applications. SIGNIFICANCE: This study highlights the outlook of nanotechnology in treating neurological disorders caused by heat stroke, offering a novel therapeutic approach with potential clinical applications.


Assuntos
Curcumina , Golpe de Calor , Nanopartículas , Curcumina/farmacologia , Curcumina/química , Animais , Golpe de Calor/tratamento farmacológico , Camundongos , Nanopartículas/química , Masculino , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Modelos Animais de Doenças , Portadores de Fármacos/química , Dendrímeros/química , Dendrímeros/farmacologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Linhagem Celular , Poliaminas
3.
Int J Mol Sci ; 25(18)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39337514

RESUMO

Pheochromocytomas (PCCs) are tumors arising from chromaffin cells in the adrenal medulla, and paragangliomas (PGLs) are tumors derived from extra-adrenal sympathetic or parasympathetic paraganglia; these tumors are collectively referred to as PPGL cancer. Treatment for PPGL primarily involves surgical removal of the tumor, and only limited options are available for treatment of the disease once it becomes metastatic. Human carriers of the heterozygous mutations in the succinate dehydrogenase subunit B (SDHB) gene are susceptible to the development of PPGL. A physiologically relevant PCC patient-derived cell line hPheo1 was developed, and SDHB_KD cells carrying a stable short hairpin knockdown of SDHB were derived from it. An untargeted metabolomic approach uncovered an overactive polyamine pathway in the SDHB_KD cells that was subsequently fully validated in a large set of human SDHB-mutant PPGL tumor samples. We previously reported that treatment with the polyamine metabolism inhibitor N1,N11-diethylnorspermine (DENSPM) drastically inhibited growth of these PCC-derived cells in culture as well as in xenograft mouse models. Here we explored the mechanisms underlying DENSPM action in hPheo1 and SDHB_KD cells. Specifically, by performing an RNAseq analysis, we have identified gene expression changes associated with DENSPM treatment that broadly interfere with all aspects of lipid metabolism, including fatty acid (FA) synthesis, desaturation, and import/uptake. Furthermore, by performing an untargeted lipidomic liquid chromatography-mass spectrometry (LC/MS)-based analysis we uncovered specific groups of lipids that are dramatically reduced as a result of DENSPM treatment. Specifically, the bulk of plasmanyl ether lipid species that have been recently reported as the major determinants of cancer cell fate are notably decreased. In summary, this work suggests an intersection between active polyamine and lipid pathways in PCC cells.


Assuntos
Neoplasias das Glândulas Suprarrenais , Metabolismo dos Lipídeos , Feocromocitoma , Poliaminas , Feocromocitoma/metabolismo , Feocromocitoma/patologia , Feocromocitoma/tratamento farmacológico , Feocromocitoma/genética , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Poliaminas/metabolismo , Linhagem Celular Tumoral , Neoplasias das Glândulas Suprarrenais/metabolismo , Neoplasias das Glândulas Suprarrenais/patologia , Neoplasias das Glândulas Suprarrenais/tratamento farmacológico , Neoplasias das Glândulas Suprarrenais/genética , Succinato Desidrogenase/metabolismo , Succinato Desidrogenase/genética , Piperidinas/farmacologia , Animais , Camundongos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
4.
Nutrients ; 16(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39275210

RESUMO

Colorectal cancer (CRC) is the second leading cause of cancer death worldwide. Early detection and the modification of risk factors, such as diet, can reduce its incidence. Among food components, polyamines are important for maintaining gastrointestinal health and are metabolites of gut microbiota. Their disruption is linked to CRC, making polyamines a potential marker of the disease. This study analyzed the relationship between dietary components, including polyamines, and the presence of polyamines in feces to determine whether their presence could contribute to predicting the occurrence of colorectal lesions in patients. In total, 59 participants of both sexes (aged 50 to 70 years) who had undergone colonoscopy screening for CRC (18 without and 41 with colorectal lesions) participated in the study. A nutritional survey and determination of fecal polyamine content were performed. Specific dietary components and putrescine levels were higher in patients with colorectal lesions. The diet ratio of putrescine-spermidine and the fecal content of N-acetyl putrescine and cadaverine were elevated in patients with precancerous lesions and adenocarcinomas, showing a potential predictive value for the presence of colorectal lesions. These findings suggest that N-acetyl putrescine and cadaverine could be complementary markers for the diagnosis of suspected colorectal lesions.


Assuntos
Cadaverina , Neoplasias Colorretais , Dieta , Fezes , Poliaminas , Putrescina , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Fezes/química , Idoso , Putrescina/análise , Putrescina/metabolismo , Cadaverina/análise , Cadaverina/metabolismo , Poliaminas/análise , Poliaminas/metabolismo , Colonoscopia , Detecção Precoce de Câncer/métodos
5.
Proc Natl Acad Sci U S A ; 121(39): e2404781121, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39284055

RESUMO

Systemic inflammation elicits sickness behaviors and fever by engaging a complex neuronal circuitry that begins in the preoptic area of the hypothalamus. Ectotherms such as teleost fish display sickness behaviors in response to infection or inflammation, seeking warmer temperatures to enhance survival via behavioral fever responses. To date, the hypothalamus is the only brain region implicated in sickness behaviors and behavioral fever in teleosts. Yet, the complexity of neurobehavioral manifestations underlying sickness responses in teleosts suggests engagement of higher processing areas of the brain. Using in vivo models of systemic inflammation in rainbow trout, we find canonical pyrogenic cytokine responses in the hypothalamus whereas in the telencephalon and the optic tectum il-1b and tnfa expression is decoupled from il-6 expression. Polyamine metabolism changes, characterized by accumulation of putrescine and decreases in spermine and spermidine, are recorded in the telencephalon but not hypothalamus upon systemic injection of bacteria. While systemic inflammation causes canonical behavioral fever in trout, blockade of bacterial polyamine metabolism prior to injection abrogates behavioral fever, polyamine responses, and telencephalic but not hypothalamic cytokine responses. Combined, our work identifies the telencephalon as a neuronal substrate for brain responses to systemic inflammation in teleosts and uncovers the role of polyamines as critical chemical mediators in sickness behaviors.


Assuntos
Inflamação , Oncorhynchus mykiss , Poliaminas , Telencéfalo , Animais , Telencéfalo/metabolismo , Poliaminas/metabolismo , Inflamação/metabolismo , Oncorhynchus mykiss/metabolismo , Oncorhynchus mykiss/imunologia , Neurônios/metabolismo , Hipotálamo/metabolismo , Espermina/metabolismo , Putrescina/metabolismo , Comportamento de Doença/fisiologia , Espermidina/metabolismo
6.
Molecules ; 29(18)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39339289

RESUMO

In this study, we hypothesized that biotinylated and/or glycidol-flanked fourth-generation polyamidoamine (PAMAM G4) dendrimers could be a tool for efficient drug transport into glioma and liver cancer cells. For this purpose, native PAMAM (G4) dendrimers, biotinylated (G4B), glycidylated (G4gl), and biotinylated and glycidylated (G4Bgl), were synthesized, and their cytotoxicity, uptake, and accumulation in vitro and in vivo were studied in relation to the transport mediated by the sodium-dependent multivitamin transporter (SMVT). The studies showed that the human temozolomide-resistant glioma cell line (U-118 MG) and hepatocellular carcinoma cell line (HepG2) indicated a higher amount of SMVT than human HaCaT keratinocytes (HaCaTs) used as a model of normal cells. The G4gl and G4Bgl dendrimers were highly biocompatible in vitro (they did not affect proliferation and mitochondrial activity) against HaCaT and U-118 MG glioma cells and in vivo (against Caenorhabditis elegans and Wistar rats). The studied compounds penetrated efficiently into all studied cell lines, but inconsistently with the uptake pattern observed for biotin and disproportionately for the level of SMVT. G4Bgl was taken up and accumulated after 48 h to the highest degree in glioma U-118 MG cells, where it was distributed in the whole cell area, including the nuclei. It did not induce resistance symptoms in glioma cells, unlike HepG2 cells. Based on studies on Wistar rats, there are indications that it can also penetrate the blood-brain barrier and act in the central nervous system area. Therefore, it might be a promising candidate for a carrier of therapeutic agents in glioma therapy. In turn, visualization with a confocal microscope showed that biotinylated G4B penetrated efficiently into the body of C. elegans, and it may be a useful vehicle for drugs used in anthelmintic therapy.


Assuntos
Biotinilação , Dendrímeros , Portadores de Fármacos , Glioma , Neoplasias Hepáticas , Dendrímeros/química , Dendrímeros/farmacologia , Humanos , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Ratos , Portadores de Fármacos/química , Animais , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Poliaminas/química , Linhagem Celular Tumoral , Células Hep G2 , Ratos Wistar , Antineoplásicos/farmacologia , Antineoplásicos/química
7.
Cells ; 13(17)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39273047

RESUMO

Sea urchin eggs are covered with layers of extracellular matrix, namely, the vitelline layer (VL) and jelly coat (JC). It has been shown that sea urchin eggs' JC components serve as chemoattractants or ligands for the receptor on the fertilizing sperm to promote the acrosome reaction. Moreover, the egg's VL provides receptors for conspecific sperm to bind, and, to date, at least two sperm receptors have been identified on the surface of sea urchin eggs. Interestingly, however, according to our previous work, denuded sea urchin eggs devoid of the JC and VL do not fail to become fertilized by sperm. Instead, they are bound and penetratedby multiple sperm, raising the possibility that an alternative pathway independent of the VL-residing sperm receptor may be at work. In this research, we studied the roles of the JC and VL using intact and denuded eggs and the synthetic polyamine BPA-C8. BPA-C8 is known to bind to the negatively charged macromolecular complexes in the cells, such as the JC, VL, and the plasma membrane of echinoderm eggs, as well as to the actin filaments in fibroblasts. Our results showed that, when added to seawater, BPA-C8 significantly repressed the Ca2+ wave in the intact P. lividus eggs at fertilization. In eggs deprived of the VL and JC, BPA-C8 binds to the plasma membrane and increases fibrous structures connecting microvilli, thereby allowing the denuded eggs to revert towards monospermy at fertilization. However, the reduced Ca2+ signal in denuded eggs was nullified compared to the intact eggs because removing the JC and VL already decreased the Ca2+ wave. BPA-C8 does not cross the VL and the cell membrane of unfertilized sea urchin eggs to diffuse into the cytoplasm at variance with the fibroblasts. Indeed, the jasplakinolide-induced polymerization of subplasmalemmal actin filaments was inhibited in the eggs microinjected with BPA-C8, but not in the ones bath-incubated with the same dose of BPA-C8.


Assuntos
Fertilização , Óvulo , Ouriços-do-Mar , Animais , Fertilização/efeitos dos fármacos , Ouriços-do-Mar/efeitos dos fármacos , Ouriços-do-Mar/metabolismo , Óvulo/metabolismo , Óvulo/efeitos dos fármacos , Masculino , Poliaminas/metabolismo , Poliaminas/farmacologia , Feminino , Espermatozoides/metabolismo , Espermatozoides/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Interações Espermatozoide-Óvulo/efeitos dos fármacos , Cálcio/metabolismo
8.
Sci Rep ; 14(1): 21555, 2024 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285238

RESUMO

Ovarian cancer (OC) is the most lethal gynecologic cancer, mainly due to late diagnosis with widespread peritoneal spread at first presentation. We performed metabolomic analyses of ovarian and paired control tissues using capillary electrophoresis-mass spectrometry and liquid chromatography-mass spectrometry to understand its metabolomic dysregulation. Of the 130 quantified metabolites, 96 metabolites of glycometabolism, including glycolysis, tricarboxylic acid cycles, urea cycles, and one-carbon metabolites, showed significant differences between the samples. To evaluate the local and systemic metabolomic differences in OC, we also analyzed low or non-invasively available biofluids, including plasma, urine, and saliva collected from patients with OC and benign gynecological diseases. All biofluids and tissue samples showed consistently elevated concentrations of N1,N12-diacetylspermine compared to controls. Four metabolites, polyamines, and betaine, were significantly and consistently elevated in both plasma and tissue samples. These data indicate that plasma metabolic dysregulation, which the most reflected by those of OC tissues. Our metabolomic profiles contribute to our understanding of metabolomic abnormalities in OC and their effects on biofluids.


Assuntos
Metabolômica , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Metabolômica/métodos , Pessoa de Meia-Idade , Metaboloma , Líquidos Corporais/metabolismo , Adulto , Saliva/metabolismo , Idoso , Poliaminas/metabolismo , Poliaminas/sangue , Cromatografia Líquida , Espectrometria de Massas , Eletroforese Capilar , Espermina/análogos & derivados
9.
Sci Rep ; 14(1): 21669, 2024 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289425

RESUMO

A novel core-shell nanocarrier system has been designed for co-delivery of a small anticancer drug, docetaxel (DTX) and tumor suppressor (TS) miR-34a named as Exo(PAN34a+DTX). The core is formed by pH dependent polyamine salt aggregates (PSA) containing both the payloads and the shell is formed by RAW 264.7 cell derived exosomal fragments. Herein, phosphate driven polyallylamine hydrochloride (PAH, MW:17,500 Da) PSA was formed in presence of miR-34a and DTX to form PAN34a+DTX. The formulation exhibited pH dependent DTX release with only 33.55 ± 2.12% DTX release at pH 7.2 and 75.21 ± 1.8% DTX release till 144 h at pH 5.5. At 1.21 molar ratio of phosphate to the amine (known as R value), efficient complexation of miR-34a (3.6 µM) in the PAN particles was obtained. PAN34a+DTX demonstrated particle size (163.86 ± 12.89 nm) and zeta-potential value of 17.53 ± 5.10 mV which upon exosomal fragment layering changed to - 7.23 ± 2.75 mV which is similar to the zeta-potential of the exosomal fragments, i.e., - 8.40 ± 1.79 mV. The final formulation Exo(PAN34a+DTX), loaded with 40 ng/mL DTX and 50 nM miR-34a exhibited 48.20 ± 4.59% cytotoxicity in triple negative breast cancer (TNBC) cells, 4T1. Co-localization of CM-DiI (red fluorescence) stained exosomal fragments and FAM-siRNA (green fluorescence) in the cytoplasm of 4T1 cells after 6 h of Exo(PANFAM) treatment confirmed the efficiency of the designed system to co-deliver two actives. Exo(PAN34a+DTX) also reduced BCL-2 expression (target gene for miR-34a) by 8.98 folds in comparison to free DTX confirming promising co-delivery and apoptosis inducing effect of Exo(PAN34a+DTX) in 4T1.


Assuntos
Apoptose , Docetaxel , Exossomos , MicroRNAs , Poliaminas , MicroRNAs/genética , MicroRNAs/metabolismo , Docetaxel/farmacologia , Docetaxel/administração & dosagem , Poliaminas/química , Humanos , Exossomos/metabolismo , Apoptose/efeitos dos fármacos , Animais , Camundongos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Células RAW 264.7 , Linhagem Celular Tumoral , Portadores de Fármacos/química
10.
Theriogenology ; 229: 202-213, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39217649

RESUMO

BACKGROUND: The hypothalamic-pituitary-gonadal (HPG) axis is pivotal in regulating reproductive functions, with gonadotropin-releasing hormone (GnRH) acting as a central regulator. Recently, polyamines have been shown to regulate the HPG axis, including GnRH expression and ovarian biology in old and adult rodents. The present study firstly highlights the age-specific variation in the polyamine and their corresponding biosynthetic enzymes in the ovary during aging, and further, the study focuses on the effect of polyamines, putrescine, and agmatine, in young female mice. METHOD AND RESULT: Immunofluorescence analysis revealed age-related differences in the expression of ornithine decarboxylase 1 (ODC1), spermine (SPM), and spermidine (SPD) in the ovaries, with adult mice exhibiting significantly higher expression levels compared to young and old mice. Likewise, qPCR analysis showed the mRNA levels of Odc1, Spermidine synthase (Srm), and Spermine synthase (Sms) show a significant increase in adult ovaries, which is then followed by a significant decline in old age. Histological examination demonstrated morphological alterations in the ovaries with age, including decreased follicle numbers and increased stromal cells in old mice. Furthermore, treatment with putrescine, a polyamine, in young mice resulted in larger ovaries and increased follicle numbers compared to controls. Additionally, serum levels of gonadotropin-releasing hormone (GnRH) and progesterone (P4) were measured, showing elevated levels in polyamine-treated mice. GnRH mRNA expression also increased significantly. Gene expression analysis revealed upregulation of genes associated with folliculogenesis such as Fshr, Bmp15, Gdf9, Amh, Star, Hsdb3, and Plaur in the ovaries and onset of puberty such as Tac2, and Kiss1, and a decrease in Mkrn3 in the hypothalamus of polyamine-treated mice. CONCLUSION: This study investigates the effect of polyamines in young immature female mice, shedding light on their role in upregulating GnRH, and enhancing folliculogenesis. Overall, these findings suggest that polyamines play a crucial role in ovarian aging and HPG axis regulation, offering potential therapeutics to reinstate fertility in reproductively challenged individuals.


Assuntos
Hormônio Liberador de Gonadotropina , Maturidade Sexual , Animais , Feminino , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Camundongos , Maturidade Sexual/efeitos dos fármacos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Poliaminas/metabolismo , Envelhecimento , Ovário/efeitos dos fármacos , Ovário/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos
11.
Mol Plant Pathol ; 25(9): e70003, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39235122

RESUMO

Sugarcane smut fungus Sporisorium scitamineum produces polyamines putrescine (PUT), spermidine (SPD), and spermine (SPM) to regulate sexual mating/filamentous growth critical for pathogenicity. Besides de novo biosynthesis, intracellular levels of polyamines could also be modulated by oxidation. In this study, we identified two annotated polyamine oxidation enzymes (SsPAO and SsCuAO1) in S. scitamineum. Compared to the wild type (MAT-1), the ss1paoΔ and ss1cuao1Δ mutants were defective in sporidia growth, sexual mating/filamentation, and pathogenicity. The addition of a low concentration of cAMP (0.1 mM) could partially or fully restore filamentation of ss1paoΔ × ss2paoΔ or ss1cuao1Δ × ss2cuao1Δ. cAMP biosynthesis and hydrolysis genes were differentially expressed in the ss1paoΔ × ss2paoΔ or ss1cuao1Δ × ss2cuao1Δ cultures, further supporting that SsPAO- or SsCuAO1-based polyamine homeostasis regulates S. scitamineum filamentation by affecting the cAMP/PKA signalling pathway. During early infection, PUT promotes, while SPD inhibits, the accumulation of reactive oxygen species (ROS) in sugarcane, therefore modulating redox homeostasis at the smut fungus-sugarcane interface. Autophagy induction was found to be enhanced in the ss1paoΔ mutant and reduced in the ss1cuao1Δ mutant. Exogenous addition of cAMP, PUT, SPD, or SPM at low concentration promoted autophagy activity under a non-inductive condition (rich medium), suggesting a cross-talk between polyamines and cAMP signalling in regulating autophagy in S. scitamineum. Overall, our work proves that SsPAO- and SsCuAO1-mediated intracellular polyamines affect intracellular redox balance and thus play a role in growth, sexual mating/filamentation, and pathogenicity of S. scitamineum.


Assuntos
Oxirredução , Poliaminas , Poliaminas/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , AMP Cíclico/metabolismo , Saccharum/microbiologia , Regulação Fúngica da Expressão Gênica , Ustilaginales/patogenicidade , Autofagia
12.
Molecules ; 29(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39275124

RESUMO

Polyamines play a pivotal role in cancer cell proliferation. The excessive polyamine requirement of these malignancies is satisfied through heightened biosynthesis and augmented extracellular uptake via the polyamine transport system (PTS) present on the cell membrane. Meanwhile, photodynamic therapy (PDT) emerges as an effective anti-cancer treatment devoid of drug resistance. Recognizing these intricacies, our study devised a novel polyamine-derived photosensitizer (PS) for targeted photodynamic treatment, focusing predominantly on pancreatic cancer cells. We synthesized and evaluated novel spermine-derived fluorescent probes (N2) and PS (N3), exhibiting selectivity towards pancreatic cancer cells via PTS. N3 showed minimal dark toxicity but significant phototoxicity upon irradiation, effectively causing cell death in vitro. A significant reduction in tumor volume was observed post-treatment with no pronounced dark toxicity using the pancreatic cancer CDX mouse model, affirming the therapeutic potential of N3. Overall, our findings introduce a promising new strategy for cancer treatment, highlighting the potential of polyamine-derived PSs in PDT.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Poliaminas , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fotoquimioterapia/métodos , Animais , Camundongos , Humanos , Poliaminas/química , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Bull Exp Biol Med ; 177(3): 307-312, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39123088

RESUMO

We studied the effects of some nitrogen-containing, heterocyclic, and cyclic compounds on the rate of oxidative deamination of polyamines and putrescine in tissues with a high proliferation rate. For this purpose, the specific activities of the main enzymes of polyamine oxidative degradation - spermine oxidase (SMO), polyamine oxidase (PAO), and diamine oxidase (DAO) were determined using a cell-free test system from regenerating rat liver. The compounds methyl 2-(5-formylfuran-2-yl)benzoate and 2,7-bis-[2-(diethylamino)ethoxy]-9H-fluoren-9-one (and in the form of dihydrochloride) showed mainly activating effect on oxidative degradation of putrescine, spermidine, and spermine, which indirectly indicates their antiproliferative effect. Nitrogen-free compounds inhibited this process, thus exhibiting potentially carcinogenic properties. Correlations were calculated for activity of DAO, PAO, and SMO with 5 topological indices: Wiener (W), Rouvray (R), Balaban (J) in the Trinaistich modification, detour (Ip), and electropy (Ie). The highest dependence was noted for DAO and the Balaban index (R=-0.55), for PAO and the detour index (R=0.78), and for SMO and the electropy index (R=0.53). The remaining dependencies showed insignificant correlation strength.


Assuntos
Amina Oxidase (contendo Cobre) , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Animais , Ratos , Oxirredução/efeitos dos fármacos , Desaminação , Amina Oxidase (contendo Cobre)/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Poliamina Oxidase , Putrescina/metabolismo , Putrescina/farmacologia , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/química , Sistema Livre de Células , Fígado/metabolismo , Fígado/efeitos dos fármacos , Poliaminas/metabolismo , Espermina/metabolismo , Espermina/farmacologia , Espermidina/metabolismo , Masculino , Nitrogênio/metabolismo , Ratos Wistar
14.
Plant Physiol Biochem ; 215: 109030, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39137683

RESUMO

Globally, metal/metalloid(s) soil contamination is a persistent issue that affects the atmosphere, soil, water and plant health in today's industrialised world. However, an overabundance of these transition ions promotes the excessive buildup of reactive oxygen species (ROS) and ion imbalance, which harms agricultural productivity. Plants employ several strategies to overcome their negative effects, including hyperaccumulation, tolerance, exclusion, and chelation with organic molecules. Polyamines (PAs) are the organic compounds that act as chelating agents and modulate various physiological, biochemical, and molecular processes under metal/metalloid(s) stress. Their catabolic products, including H2O2 and gamma amino butyric acid (GABA), are also crucial signalling molecules in abiotic stress situations, particularly under metal/metalloid(s) stress. In this review, we explained how PAs regulate genes and enzymes, particularly under metal/metalloid(s) stress with a specific focus on arsenic (As), boron (B), cadmium (Cd), chromium (Cr), and zinc (Zn). The PAs regulate various plant stress responses by crosstalking with other plant hormones, upregulating phytochelatin, and metallothionein synthesis, modulating stomatal closure and antioxidant capacity. This review presents valuable insights into how PAs use a variety of tactics to reduce the harmful effects of metal/metalloid(s) through multifaceted strategies.


Assuntos
Metaloides , Poliaminas , Poliaminas/metabolismo , Metaloides/metabolismo , Metaloides/toxicidade , Plantas/metabolismo , Plantas/efeitos dos fármacos , Metais/metabolismo , Metais/toxicidade , Estresse Fisiológico/efeitos dos fármacos
15.
Biomacromolecules ; 25(9): 6050-6059, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39146037

RESUMO

The design of biocompatible and biodegradable nanostructures with controlled morphological features remains a predominant challenge in medical research. Stimuli-responsive vesicles offer significant advantages in drug delivery, biomedical applications, and diagnostic techniques. The combination of poly(2-oxazoline)s with biodegradable polymers could provide exceptional biocompatibility properties and be proposed as a versatile platform for the development of new medicines. Therefore, poly(2-ethyl-2-oxazoline) (PEtOx) and poly(2-isopropyl-2-oxazoline) (PiPrOx) possessing a hydroxy terminal group that acts as an initiator for the ring-opening polymerization of d,l-lactide (DLLA) have been utilized in this study. The resulting amphiphilic block polymers were used to create polymersomes, which undergo solvent-dependent reorganization into bowl-shaped vesicles or stomatocytes. By blending PEtOx-b-PDLLA and PiPrOx-b-PDLLA copolymers, a thermoresponsive stomatocyte was generated, where the opening narrowed and irreversibly closed with a slight increase in the temperature. Detailed transmission electron microscopy analysis reveals the formation of both closed and fused stomatocytes upon heating the sample above the critical solution temperature of PiPrOx.


Assuntos
Oxazóis , Oxazóis/química , Materiais Biocompatíveis/química , Polímeros/química , Humanos , Poliaminas/química , Polimerização , Temperatura , Microscopia Eletrônica de Transmissão , Dioxanos
16.
Commun Biol ; 7(1): 1031, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174732

RESUMO

Studies on the immune-regulatory roles played by the commensal microbes residing in the nasal mucosa consider the contribution of antiviral immune responses. Here, we sought to identify the nasal microbiome, Staphylococcus epidermidis-regulated antiviral immune responses and the alteration of polyamine metabolites in nasal epithelium. We found that polyamines were required for the life cycle of influenza A virus (IAV) and depletion of polyamines disturbed IAV replication in normal human nasal epithelial (NHNE) cells. Inoculation of S. epidermidis also suppressed IAV infection and the concentration of polyamines including putrescine, spermidine, and spermine was completely attenuated in S. epidermidis-inoculated NHNE cells. S. epidermidis activated the enzyme involved in the production of ornithine from arginine and downregulated the activity of the enzyme involved in the production of putrescine from ornithine in nasal epithelium. S. epidermidis also induced the activation of enzymes that promote the extracellular export of spermine and spermidine in NHNE cells. Our findings demonstrate that S. epidermidis is shown to be able of creating an intracellular environment lacking polyamines in the nasal epithelium and promote the balance of cellular polyamines in favor of the host to restrict influenza virus replication.


Assuntos
Vírus da Influenza A , Mucosa Nasal , Poliaminas , Staphylococcus epidermidis , Simbiose , Replicação Viral , Staphylococcus epidermidis/fisiologia , Staphylococcus epidermidis/metabolismo , Humanos , Poliaminas/metabolismo , Vírus da Influenza A/fisiologia , Mucosa Nasal/microbiologia , Mucosa Nasal/virologia , Mucosa Nasal/metabolismo , Influenza Humana/virologia , Influenza Humana/metabolismo
17.
Nature ; 633(8031): 895-904, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39169180

RESUMO

For over a century, fasting regimens have improved health, lifespan and tissue regeneration in diverse organisms, including humans1-6. However, how fasting and post-fast refeeding affect adult stem cells and tumour formation has yet to be explored in depth. Here we demonstrate that post-fast refeeding increases intestinal stem cell (ISC) proliferation and tumour formation; post-fast refeeding augments the regenerative capacity of Lgr5+ ISCs, and loss of the tumour suppressor gene Apc in post-fast-refed ISCs leads to a higher tumour incidence in the small intestine and colon than in the fasted or ad libitum-fed states, demonstrating that post-fast refeeding is a distinct state. Mechanistically, we discovered that robust mTORC1 induction in post-fast-refed ISCs increases protein synthesis via polyamine metabolism to drive these changes, as inhibition of mTORC1, polyamine metabolite production or protein synthesis abrogates the regenerative or tumorigenic effects of post-fast refeeding. Given our findings, fast-refeeding cycles must be carefully considered and tested when planning diet-based strategies for regeneration without increasing cancer risk, as post-fast refeeding leads to a burst in stem-cell-driven regeneration and tumorigenicity.


Assuntos
Proliferação de Células , Jejum , Alvo Mecanístico do Complexo 1 de Rapamicina , Poliaminas , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Poliaminas/metabolismo , Masculino , Feminino , Receptores Acoplados a Proteínas G/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Biossíntese de Proteínas , Intestinos/citologia , Intestinos/patologia , Regeneração , Carcinogênese/patologia , Carcinogênese/metabolismo , Camundongos Endogâmicos C57BL , Fatores de Tempo , Intestino Delgado/metabolismo , Intestino Delgado/citologia
18.
PLoS Biol ; 22(8): e3002731, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39102375

RESUMO

Bacterial pathogens utilize the factors of their hosts to infect them, but which factors they exploit remain poorly defined. Here, we show that a pathogenic Salmonella enterica serovar Typhimurium (STm) exploits host polyamines for the functional expression of virulence factors. An STm mutant strain lacking principal genes required for polyamine synthesis and transport exhibited impaired infectivity in mice. A polyamine uptake-impaired strain of STm was unable to inject effectors of the type 3 secretion system into host cells due to a failure of needle assembly. STm infection stimulated host polyamine production by increasing arginase expression. The decline in polyamine levels caused by difluoromethylornithine, which inhibits host polyamine production, attenuated STm colonization, whereas polyamine supplementation augmented STm pathogenesis. Our work reveals that host polyamines are a key factor promoting STm infection, and therefore a promising therapeutic target for bacterial infection.


Assuntos
Poliaminas , Salmonella typhimurium , Sistemas de Secreção Tipo III , Fatores de Virulência , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidade , Salmonella typhimurium/genética , Animais , Poliaminas/metabolismo , Camundongos , Sistemas de Secreção Tipo III/metabolismo , Sistemas de Secreção Tipo III/genética , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Interações Hospedeiro-Patógeno , Humanos , Infecções por Salmonella/metabolismo , Infecções por Salmonella/microbiologia , Feminino
19.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125742

RESUMO

Mammalian polyamines, including putrescine, spermidine, and spermine, are positively charged amines that are essential for all living cells including neoplastic cells. An increasing understanding of polyamine metabolism, its molecular functions, and its role in cancer has led to the interest in targeting polyamine metabolism as an anticancer strategy, as the metabolism of polyamines is frequently dysregulated in neoplastic disease. In addition, due to compensatory mechanisms, combination therapies are clinically more promising, as agents can work synergistically to achieve an effect beyond that of each strategy as a single agent. In this article, the nature of polyamines, their association with carcinogenesis, and the potential use of targeting polyamine metabolism in treating and preventing cancer as well as combination therapies are described. The goal is to review the latest strategies for targeting polyamine metabolism, highlighting new avenues for exploiting aberrant polyamine homeostasis for anticancer therapy and the mechanisms behind them.


Assuntos
Homeostase , Neoplasias , Poliaminas , Humanos , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Poliaminas/metabolismo , Animais , Sinergismo Farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
20.
J Pharm Biomed Anal ; 251: 116418, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39180893

RESUMO

The deregulation of amino acid and polyamine metabolism is a hallmark of malignancy that regulates cancer cell proliferation, angiogenesis, and invasion. A sensitive mass spectrometry method was developed to simultaneously quantify 10 cancer-associated metabolites in pleural effusion cells for the diagnosis of malignancy and to complement conventional pleural cytology. Analytes were detected by high-performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS) using C8-reversed-phase HPLC for separation and sequential window acquisition of all theoretical fragment ion spectra (SWATH) acquisition for obtaining high-resolution quantitative MS/MS chromatograms. This method was validated and applied to pleural effusion cells from patients with lung adenocarcinoma (LUAD, n = 48) and those from benign controls (n = 23). The range of the above metabolites was 2-200 ng/mL for proline, aspartate, ornithine, creatine, glutamine, glutamate, arginine, citrulline, and spermine and 10-1000 ng/mL for putrescine. The intra-assay and inter-assay coefficient of variation was below 13.70 % for all analytes. The joint detection of these metabolites in pleural effusion cells achieved a clinical sensitivity of 75.0 % and specificity of 95.7 % differentiating LUAD patients from benign controls. This assay enabled the detection of 10 cancer-associated metabolites in pleural effusion cells, and the increased concentration of these metabolites was correlated with the presence of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Aminoácidos , Neoplasias Pulmonares , Poliaminas , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Poliaminas/análise , Poliaminas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/diagnóstico , Aminoácidos/análise , Aminoácidos/metabolismo , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/diagnóstico , Masculino , Espectrometria de Massas em Tandem/métodos , Feminino , Pessoa de Meia-Idade , Idoso , Derrame Pleural Maligno/metabolismo , Derrame Pleural Maligno/diagnóstico , Sensibilidade e Especificidade , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/análise , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA